linux_old1/arch/sparc/kernel/irq_64.c

1045 lines
25 KiB
C

/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/ftrace.h>
#include <linux/irq.h>
#include <linux/kmemleak.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
#include <asm/cacheflush.h>
#include "entry.h"
#include "cpumap.h"
#include "kstack.h"
#define NUM_IVECS (IMAP_INR + 1)
struct ino_bucket *ivector_table;
unsigned long ivector_table_pa;
/* On several sun4u processors, it is illegal to mix bypass and
* non-bypass accesses. Therefore we access all INO buckets
* using bypass accesses only.
*/
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_clear_chain_pa(unsigned long bucket_pa)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* no outputs */
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
}
static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
{
unsigned int ret;
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__virt_irq)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_set_virt_irq(unsigned long bucket_pa,
unsigned int virt_irq)
{
__asm__ __volatile__("stwa %0, [%1] %2"
: /* no outputs */
: "r" (virt_irq),
"r" (bucket_pa +
offsetof(struct ino_bucket,
__virt_irq)),
"i" (ASI_PHYS_USE_EC));
}
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
static struct {
unsigned int dev_handle;
unsigned int dev_ino;
unsigned int in_use;
} virt_irq_table[NR_IRQS];
static DEFINE_SPINLOCK(virt_irq_alloc_lock);
unsigned char virt_irq_alloc(unsigned int dev_handle,
unsigned int dev_ino)
{
unsigned long flags;
unsigned char ent;
BUILD_BUG_ON(NR_IRQS >= 256);
spin_lock_irqsave(&virt_irq_alloc_lock, flags);
for (ent = 1; ent < NR_IRQS; ent++) {
if (!virt_irq_table[ent].in_use)
break;
}
if (ent >= NR_IRQS) {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
ent = 0;
} else {
virt_irq_table[ent].dev_handle = dev_handle;
virt_irq_table[ent].dev_ino = dev_ino;
virt_irq_table[ent].in_use = 1;
}
spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
return ent;
}
#ifdef CONFIG_PCI_MSI
void virt_irq_free(unsigned int virt_irq)
{
unsigned long flags;
if (virt_irq >= NR_IRQS)
return;
spin_lock_irqsave(&virt_irq_alloc_lock, flags);
virt_irq_table[virt_irq].in_use = 0;
spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
}
#endif
/*
* /proc/interrupts printing:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto skip;
seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
#endif
seq_printf(p, " %9s", irq_desc[i].chip->name);
seq_printf(p, " %s", action->name);
for (action=action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
skip:
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
} else if (i == NR_IRQS) {
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
}
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
struct irq_handler_data {
unsigned long iclr;
unsigned long imap;
void (*pre_handler)(unsigned int, void *, void *);
void *arg1;
void *arg2;
};
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity)
{
cpumask_t mask;
int cpuid;
cpumask_copy(&mask, affinity);
if (cpus_equal(mask, cpu_online_map)) {
cpuid = map_to_cpu(virt_irq);
} else {
cpumask_t tmp;
cpus_and(tmp, cpu_online_map, mask);
cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
}
return cpuid;
}
#else
#define irq_choose_cpu(virt_irq, affinity) \
real_hard_smp_processor_id()
#endif
static void sun4u_irq_enable(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(virt_irq,
irq_desc[virt_irq].affinity);
imap = data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, data->iclr);
}
}
static int sun4u_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(virt_irq, mask);
imap = data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, data->iclr);
}
return 0;
}
/* Don't do anything. The desc->status check for IRQ_DISABLED in
* handler_irq() will skip the handler call and that will leave the
* interrupt in the sent state. The next ->enable() call will hit the
* ICLR register to reset the state machine.
*
* This scheme is necessary, instead of clearing the Valid bit in the
* IMAP register, to handle the case of IMAP registers being shared by
* multiple INOs (and thus ICLR registers). Since we use a different
* virtual IRQ for each shared IMAP instance, the generic code thinks
* there is only one user so it prematurely calls ->disable() on
* free_irq().
*
* We have to provide an explicit ->disable() method instead of using
* NULL to get the default. The reason is that if the generic code
* sees that, it also hooks up a default ->shutdown method which
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
*/
static void sun4u_irq_disable(unsigned int virt_irq)
{
}
static void sun4u_irq_eoi(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_desc *desc = irq_desc + virt_irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(data))
upa_writeq(ICLR_IDLE, data->iclr);
}
static void sun4v_irq_enable(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(virt_irq,
irq_desc[virt_irq].affinity);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
static int sun4v_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(virt_irq, mask);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
return 0;
}
static void sun4v_irq_disable(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_irq_eoi(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
struct irq_desc *desc = irq_desc + virt_irq;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_virq_enable(unsigned int virt_irq)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(virt_irq, irq_desc[virt_irq].affinity);
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static int sun4v_virt_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(virt_irq, mask);
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
return 0;
}
static void sun4v_virq_disable(unsigned int virt_irq)
{
unsigned long dev_handle, dev_ino;
int err;
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static void sun4v_virq_eoi(unsigned int virt_irq)
{
struct irq_desc *desc = irq_desc + virt_irq;
unsigned long dev_handle, dev_ino;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
static struct irq_chip sun4u_irq = {
.name = "sun4u",
.enable = sun4u_irq_enable,
.disable = sun4u_irq_disable,
.eoi = sun4u_irq_eoi,
.set_affinity = sun4u_set_affinity,
};
static struct irq_chip sun4v_irq = {
.name = "sun4v",
.enable = sun4v_irq_enable,
.disable = sun4v_irq_disable,
.eoi = sun4v_irq_eoi,
.set_affinity = sun4v_set_affinity,
};
static struct irq_chip sun4v_virq = {
.name = "vsun4v",
.enable = sun4v_virq_enable,
.disable = sun4v_virq_disable,
.eoi = sun4v_virq_eoi,
.set_affinity = sun4v_virt_set_affinity,
};
static void pre_flow_handler(unsigned int virt_irq,
struct irq_desc *desc)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
data->pre_handler(ino, data->arg1, data->arg2);
handle_fasteoi_irq(virt_irq, desc);
}
void irq_install_pre_handler(int virt_irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_desc *desc = irq_desc + virt_irq;
data->pre_handler = func;
data->arg1 = arg1;
data->arg2 = arg2;
desc->handle_irq = pre_flow_handler;
}
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
unsigned int virt_irq;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
virt_irq = bucket_get_virt_irq(__pa(bucket));
if (!virt_irq) {
virt_irq = virt_irq_alloc(0, ino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq,
&sun4u_irq,
handle_fasteoi_irq,
"IVEC");
}
data = get_irq_chip_data(virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(virt_irq, data);
data->imap = imap;
data->iclr = iclr;
out:
return virt_irq;
}
static unsigned int sun4v_build_common(unsigned long sysino,
struct irq_chip *chip)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
unsigned int virt_irq;
BUG_ON(tlb_type != hypervisor);
bucket = &ivector_table[sysino];
virt_irq = bucket_get_virt_irq(__pa(bucket));
if (!virt_irq) {
virt_irq = virt_irq_alloc(0, sysino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq, chip,
handle_fasteoi_irq,
"IVEC");
}
data = get_irq_chip_data(virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(virt_irq, data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
data->imap = ~0UL;
data->iclr = ~0UL;
out:
return virt_irq;
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
return sun4v_build_common(sysino, &sun4v_irq);
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
struct irq_handler_data *data;
unsigned long hv_err, cookie;
struct ino_bucket *bucket;
struct irq_desc *desc;
unsigned int virt_irq;
bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
if (unlikely(!bucket))
return 0;
/* The only reference we store to the IRQ bucket is
* by physical address which kmemleak can't see, tell
* it that this object explicitly is not a leak and
* should be scanned.
*/
kmemleak_not_leak(bucket);
__flush_dcache_range((unsigned long) bucket,
((unsigned long) bucket +
sizeof(struct ino_bucket)));
virt_irq = virt_irq_alloc(devhandle, devino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
handle_fasteoi_irq,
"IVEC");
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data))
return 0;
/* In order to make the LDC channel startup sequence easier,
* especially wrt. locking, we do not let request_irq() enable
* the interrupt.
*/
desc = irq_desc + virt_irq;
desc->status |= IRQ_NOAUTOEN;
set_irq_chip_data(virt_irq, data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
data->imap = ~0UL;
data->iclr = ~0UL;
cookie = ~__pa(bucket);
hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
if (hv_err) {
prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
"err=%lu\n", devhandle, devino, hv_err);
prom_halt();
}
return virt_irq;
}
void ack_bad_irq(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
if (!ino)
ino = 0xdeadbeef;
printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
ino, virt_irq);
}
void *hardirq_stack[NR_CPUS];
void *softirq_stack[NR_CPUS];
void __irq_entry handler_irq(int irq, struct pt_regs *regs)
{
unsigned long pstate, bucket_pa;
struct pt_regs *old_regs;
void *orig_sp;
clear_softint(1 << irq);
old_regs = set_irq_regs(regs);
irq_enter();
/* Grab an atomic snapshot of the pending IVECs. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %3, %%pstate\n\t"
"ldx [%2], %1\n\t"
"stx %%g0, [%2]\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (pstate), "=&r" (bucket_pa)
: "r" (irq_work_pa(smp_processor_id())),
"i" (PSTATE_IE)
: "memory");
orig_sp = set_hardirq_stack();
while (bucket_pa) {
struct irq_desc *desc;
unsigned long next_pa;
unsigned int virt_irq;
next_pa = bucket_get_chain_pa(bucket_pa);
virt_irq = bucket_get_virt_irq(bucket_pa);
bucket_clear_chain_pa(bucket_pa);
desc = irq_desc + virt_irq;
if (!(desc->status & IRQ_DISABLED))
desc->handle_irq(virt_irq, desc);
bucket_pa = next_pa;
}
restore_hardirq_stack(orig_sp);
irq_exit();
set_irq_regs(old_regs);
}
void do_softirq(void)
{
unsigned long flags;
if (in_interrupt())
return;
local_irq_save(flags);
if (local_softirq_pending()) {
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %%sp, %0\n\t"
"mov %1, %%sp"
: "=&r" (orig_sp)
: "r" (sp));
__do_softirq();
__asm__ __volatile__("mov %0, %%sp"
: : "r" (orig_sp));
}
local_irq_restore(flags);
}
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
unsigned long flags;
raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
if (irq_desc[irq].action &&
!(irq_desc[irq].status & IRQ_PER_CPU)) {
if (irq_desc[irq].chip->set_affinity)
irq_desc[irq].chip->set_affinity(irq,
irq_desc[irq].affinity);
}
raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
}
tick_ops->disable_irq();
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (!strcmp(dp->name, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void notrace init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist_pa = 0UL;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
/* Each queue region must be a power of 2 multiple of 64 bytes in
* size. The base real address must be aligned to the size of the
* region. Thus, an 8KB queue must be 8KB aligned, for example.
*/
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
unsigned long p;
p = __get_free_pages(GFP_KERNEL, order);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
{
#ifdef CONFIG_SMP
unsigned long page;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
page = get_zeroed_page(GFP_KERNEL);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
prom_halt();
}
tb->cpu_mondo_block_pa = __pa(page);
tb->cpu_list_pa = __pa(page + 64);
#endif
}
/* Allocate mondo and error queues for all possible cpus. */
static void __init sun4v_init_mondo_queues(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
tb->nonresum_qmask);
}
}
static void __init init_send_mondo_info(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
init_cpu_send_mondo_info(tb);
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
unsigned long size;
map_prom_timers();
kill_prom_timer();
size = sizeof(struct ino_bucket) * NUM_IVECS;
ivector_table = kzalloc(size, GFP_KERNEL);
if (!ivector_table) {
prom_printf("Fatal error, cannot allocate ivector_table\n");
prom_halt();
}
__flush_dcache_range((unsigned long) ivector_table,
((unsigned long) ivector_table) + size);
ivector_table_pa = __pa(ivector_table);
if (tlb_type == hypervisor)
sun4v_init_mondo_queues();
init_send_mondo_info();
if (tlb_type == hypervisor) {
/* Load up the boot cpu's entries. */
sun4v_register_mondo_queues(hard_smp_processor_id());
}
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_desc[0].action = &timer_irq_action;
}