717 lines
20 KiB
C
717 lines
20 KiB
C
/*
|
|
* Copyright (C) 2014 Imagination Technologies
|
|
* Author: Paul Burton <paul.burton@imgtec.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cacheops.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/mips-cm.h>
|
|
#include <asm/mips-cpc.h>
|
|
#include <asm/mipsmtregs.h>
|
|
#include <asm/pm.h>
|
|
#include <asm/pm-cps.h>
|
|
#include <asm/smp-cps.h>
|
|
#include <asm/uasm.h>
|
|
|
|
/*
|
|
* cps_nc_entry_fn - type of a generated non-coherent state entry function
|
|
* @online: the count of online coupled VPEs
|
|
* @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
|
|
*
|
|
* The code entering & exiting non-coherent states is generated at runtime
|
|
* using uasm, in order to ensure that the compiler cannot insert a stray
|
|
* memory access at an unfortunate time and to allow the generation of optimal
|
|
* core-specific code particularly for cache routines. If coupled_coherence
|
|
* is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
|
|
* returns the number of VPEs that were in the wait state at the point this
|
|
* VPE left it. Returns garbage if coupled_coherence is zero or this is not
|
|
* the entry function for CPS_PM_NC_WAIT.
|
|
*/
|
|
typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
|
|
|
|
/*
|
|
* The entry point of the generated non-coherent idle state entry/exit
|
|
* functions. Actually per-core rather than per-CPU.
|
|
*/
|
|
static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
|
|
nc_asm_enter);
|
|
|
|
/* Bitmap indicating which states are supported by the system */
|
|
DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
|
|
|
|
/*
|
|
* Indicates the number of coupled VPEs ready to operate in a non-coherent
|
|
* state. Actually per-core rather than per-CPU.
|
|
*/
|
|
static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
|
|
static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
|
|
|
|
/* Indicates online CPUs coupled with the current CPU */
|
|
static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
|
|
|
|
/*
|
|
* Used to synchronize entry to deep idle states. Actually per-core rather
|
|
* than per-CPU.
|
|
*/
|
|
static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
|
|
|
|
/* Saved CPU state across the CPS_PM_POWER_GATED state */
|
|
DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
|
|
|
|
/* A somewhat arbitrary number of labels & relocs for uasm */
|
|
static struct uasm_label labels[32] __initdata;
|
|
static struct uasm_reloc relocs[32] __initdata;
|
|
|
|
/* CPU dependant sync types */
|
|
static unsigned stype_intervention;
|
|
static unsigned stype_memory;
|
|
static unsigned stype_ordering;
|
|
|
|
enum mips_reg {
|
|
zero, at, v0, v1, a0, a1, a2, a3,
|
|
t0, t1, t2, t3, t4, t5, t6, t7,
|
|
s0, s1, s2, s3, s4, s5, s6, s7,
|
|
t8, t9, k0, k1, gp, sp, fp, ra,
|
|
};
|
|
|
|
bool cps_pm_support_state(enum cps_pm_state state)
|
|
{
|
|
return test_bit(state, state_support);
|
|
}
|
|
|
|
static void coupled_barrier(atomic_t *a, unsigned online)
|
|
{
|
|
/*
|
|
* This function is effectively the same as
|
|
* cpuidle_coupled_parallel_barrier, which can't be used here since
|
|
* there's no cpuidle device.
|
|
*/
|
|
|
|
if (!coupled_coherence)
|
|
return;
|
|
|
|
smp_mb__before_atomic_inc();
|
|
atomic_inc(a);
|
|
|
|
while (atomic_read(a) < online)
|
|
cpu_relax();
|
|
|
|
if (atomic_inc_return(a) == online * 2) {
|
|
atomic_set(a, 0);
|
|
return;
|
|
}
|
|
|
|
while (atomic_read(a) > online)
|
|
cpu_relax();
|
|
}
|
|
|
|
int cps_pm_enter_state(enum cps_pm_state state)
|
|
{
|
|
unsigned cpu = smp_processor_id();
|
|
unsigned core = current_cpu_data.core;
|
|
unsigned online, left;
|
|
cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
|
|
u32 *core_ready_count, *nc_core_ready_count;
|
|
void *nc_addr;
|
|
cps_nc_entry_fn entry;
|
|
struct core_boot_config *core_cfg;
|
|
struct vpe_boot_config *vpe_cfg;
|
|
|
|
/* Check that there is an entry function for this state */
|
|
entry = per_cpu(nc_asm_enter, core)[state];
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
/* Calculate which coupled CPUs (VPEs) are online */
|
|
#ifdef CONFIG_MIPS_MT
|
|
if (cpu_online(cpu)) {
|
|
cpumask_and(coupled_mask, cpu_online_mask,
|
|
&cpu_sibling_map[cpu]);
|
|
online = cpumask_weight(coupled_mask);
|
|
cpumask_clear_cpu(cpu, coupled_mask);
|
|
} else
|
|
#endif
|
|
{
|
|
cpumask_clear(coupled_mask);
|
|
online = 1;
|
|
}
|
|
|
|
/* Setup the VPE to run mips_cps_pm_restore when started again */
|
|
if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
|
|
core_cfg = &mips_cps_core_bootcfg[core];
|
|
vpe_cfg = &core_cfg->vpe_config[current_cpu_data.vpe_id];
|
|
vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
|
|
vpe_cfg->gp = (unsigned long)current_thread_info();
|
|
vpe_cfg->sp = 0;
|
|
}
|
|
|
|
/* Indicate that this CPU might not be coherent */
|
|
cpumask_clear_cpu(cpu, &cpu_coherent_mask);
|
|
smp_mb__after_clear_bit();
|
|
|
|
/* Create a non-coherent mapping of the core ready_count */
|
|
core_ready_count = per_cpu(ready_count, core);
|
|
nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
|
|
(unsigned long)core_ready_count);
|
|
nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
|
|
nc_core_ready_count = nc_addr;
|
|
|
|
/* Ensure ready_count is zero-initialised before the assembly runs */
|
|
ACCESS_ONCE(*nc_core_ready_count) = 0;
|
|
coupled_barrier(&per_cpu(pm_barrier, core), online);
|
|
|
|
/* Run the generated entry code */
|
|
left = entry(online, nc_core_ready_count);
|
|
|
|
/* Remove the non-coherent mapping of ready_count */
|
|
kunmap_noncoherent();
|
|
|
|
/* Indicate that this CPU is definitely coherent */
|
|
cpumask_set_cpu(cpu, &cpu_coherent_mask);
|
|
|
|
/*
|
|
* If this VPE is the first to leave the non-coherent wait state then
|
|
* it needs to wake up any coupled VPEs still running their wait
|
|
* instruction so that they return to cpuidle, which can then complete
|
|
* coordination between the coupled VPEs & provide the governor with
|
|
* a chance to reflect on the length of time the VPEs were in the
|
|
* idle state.
|
|
*/
|
|
if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
|
|
arch_send_call_function_ipi_mask(coupled_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
|
|
struct uasm_reloc **pr,
|
|
const struct cache_desc *cache,
|
|
unsigned op, int lbl)
|
|
{
|
|
unsigned cache_size = cache->ways << cache->waybit;
|
|
unsigned i;
|
|
const unsigned unroll_lines = 32;
|
|
|
|
/* If the cache isn't present this function has it easy */
|
|
if (cache->flags & MIPS_CACHE_NOT_PRESENT)
|
|
return;
|
|
|
|
/* Load base address */
|
|
UASM_i_LA(pp, t0, (long)CKSEG0);
|
|
|
|
/* Calculate end address */
|
|
if (cache_size < 0x8000)
|
|
uasm_i_addiu(pp, t1, t0, cache_size);
|
|
else
|
|
UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
|
|
|
|
/* Start of cache op loop */
|
|
uasm_build_label(pl, *pp, lbl);
|
|
|
|
/* Generate the cache ops */
|
|
for (i = 0; i < unroll_lines; i++)
|
|
uasm_i_cache(pp, op, i * cache->linesz, t0);
|
|
|
|
/* Update the base address */
|
|
uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
|
|
|
|
/* Loop if we haven't reached the end address yet */
|
|
uasm_il_bne(pp, pr, t0, t1, lbl);
|
|
uasm_i_nop(pp);
|
|
}
|
|
|
|
static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
|
|
struct uasm_reloc **pr,
|
|
const struct cpuinfo_mips *cpu_info,
|
|
int lbl)
|
|
{
|
|
unsigned i, fsb_size = 8;
|
|
unsigned num_loads = (fsb_size * 3) / 2;
|
|
unsigned line_stride = 2;
|
|
unsigned line_size = cpu_info->dcache.linesz;
|
|
unsigned perf_counter, perf_event;
|
|
unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
|
|
|
|
/*
|
|
* Determine whether this CPU requires an FSB flush, and if so which
|
|
* performance counter/event reflect stalls due to a full FSB.
|
|
*/
|
|
switch (__get_cpu_type(cpu_info->cputype)) {
|
|
case CPU_INTERAPTIV:
|
|
perf_counter = 1;
|
|
perf_event = 51;
|
|
break;
|
|
|
|
case CPU_PROAPTIV:
|
|
/* Newer proAptiv cores don't require this workaround */
|
|
if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
|
|
return 0;
|
|
|
|
/* On older ones it's unavailable */
|
|
return -1;
|
|
|
|
/* CPUs which do not require the workaround */
|
|
case CPU_P5600:
|
|
return 0;
|
|
|
|
default:
|
|
WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the fill/store buffer (FSB) is not holding the results
|
|
* of a prefetch, since if it is then the CPC sequencer may become
|
|
* stuck in the D3 (ClrBus) state whilst entering a low power state.
|
|
*/
|
|
|
|
/* Preserve perf counter setup */
|
|
uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
|
|
uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
|
|
|
|
/* Setup perf counter to count FSB full pipeline stalls */
|
|
uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
|
|
uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
|
|
uasm_i_ehb(pp);
|
|
uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
|
|
uasm_i_ehb(pp);
|
|
|
|
/* Base address for loads */
|
|
UASM_i_LA(pp, t0, (long)CKSEG0);
|
|
|
|
/* Start of clear loop */
|
|
uasm_build_label(pl, *pp, lbl);
|
|
|
|
/* Perform some loads to fill the FSB */
|
|
for (i = 0; i < num_loads; i++)
|
|
uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
|
|
|
|
/*
|
|
* Invalidate the new D-cache entries so that the cache will need
|
|
* refilling (via the FSB) if the loop is executed again.
|
|
*/
|
|
for (i = 0; i < num_loads; i++) {
|
|
uasm_i_cache(pp, Hit_Invalidate_D,
|
|
i * line_size * line_stride, t0);
|
|
uasm_i_cache(pp, Hit_Writeback_Inv_SD,
|
|
i * line_size * line_stride, t0);
|
|
}
|
|
|
|
/* Completion barrier */
|
|
uasm_i_sync(pp, stype_memory);
|
|
uasm_i_ehb(pp);
|
|
|
|
/* Check whether the pipeline stalled due to the FSB being full */
|
|
uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
|
|
|
|
/* Loop if it didn't */
|
|
uasm_il_beqz(pp, pr, t1, lbl);
|
|
uasm_i_nop(pp);
|
|
|
|
/* Restore perf counter 1. The count may well now be wrong... */
|
|
uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
|
|
uasm_i_ehb(pp);
|
|
uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
|
|
uasm_i_ehb(pp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
|
|
struct uasm_reloc **pr,
|
|
unsigned r_addr, int lbl)
|
|
{
|
|
uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
|
|
uasm_build_label(pl, *pp, lbl);
|
|
uasm_i_ll(pp, t1, 0, r_addr);
|
|
uasm_i_or(pp, t1, t1, t0);
|
|
uasm_i_sc(pp, t1, 0, r_addr);
|
|
uasm_il_beqz(pp, pr, t1, lbl);
|
|
uasm_i_nop(pp);
|
|
}
|
|
|
|
static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
|
|
{
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
u32 *buf, *p;
|
|
const unsigned r_online = a0;
|
|
const unsigned r_nc_count = a1;
|
|
const unsigned r_pcohctl = t7;
|
|
const unsigned max_instrs = 256;
|
|
unsigned cpc_cmd;
|
|
int err;
|
|
enum {
|
|
lbl_incready = 1,
|
|
lbl_poll_cont,
|
|
lbl_secondary_hang,
|
|
lbl_disable_coherence,
|
|
lbl_flush_fsb,
|
|
lbl_invicache,
|
|
lbl_flushdcache,
|
|
lbl_hang,
|
|
lbl_set_cont,
|
|
lbl_secondary_cont,
|
|
lbl_decready,
|
|
};
|
|
|
|
/* Allocate a buffer to hold the generated code */
|
|
p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
/* Clear labels & relocs ready for (re)use */
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
|
|
/*
|
|
* Save CPU state. Note the non-standard calling convention
|
|
* with the return address placed in v0 to avoid clobbering
|
|
* the ra register before it is saved.
|
|
*/
|
|
UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
|
|
uasm_i_jalr(&p, v0, t0);
|
|
uasm_i_nop(&p);
|
|
}
|
|
|
|
/*
|
|
* Load addresses of required CM & CPC registers. This is done early
|
|
* because they're needed in both the enable & disable coherence steps
|
|
* but in the coupled case the enable step will only run on one VPE.
|
|
*/
|
|
UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
|
|
|
|
if (coupled_coherence) {
|
|
/* Increment ready_count */
|
|
uasm_i_sync(&p, stype_ordering);
|
|
uasm_build_label(&l, p, lbl_incready);
|
|
uasm_i_ll(&p, t1, 0, r_nc_count);
|
|
uasm_i_addiu(&p, t2, t1, 1);
|
|
uasm_i_sc(&p, t2, 0, r_nc_count);
|
|
uasm_il_beqz(&p, &r, t2, lbl_incready);
|
|
uasm_i_addiu(&p, t1, t1, 1);
|
|
|
|
/* Ordering barrier */
|
|
uasm_i_sync(&p, stype_ordering);
|
|
|
|
/*
|
|
* If this is the last VPE to become ready for non-coherence
|
|
* then it should branch below.
|
|
*/
|
|
uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
|
|
uasm_i_nop(&p);
|
|
|
|
if (state < CPS_PM_POWER_GATED) {
|
|
/*
|
|
* Otherwise this is not the last VPE to become ready
|
|
* for non-coherence. It needs to wait until coherence
|
|
* has been disabled before proceeding, which it will do
|
|
* by polling for the top bit of ready_count being set.
|
|
*/
|
|
uasm_i_addiu(&p, t1, zero, -1);
|
|
uasm_build_label(&l, p, lbl_poll_cont);
|
|
uasm_i_lw(&p, t0, 0, r_nc_count);
|
|
uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
|
|
uasm_i_ehb(&p);
|
|
uasm_i_yield(&p, zero, t1);
|
|
uasm_il_b(&p, &r, lbl_poll_cont);
|
|
uasm_i_nop(&p);
|
|
} else {
|
|
/*
|
|
* The core will lose power & this VPE will not continue
|
|
* so it can simply halt here.
|
|
*/
|
|
uasm_i_addiu(&p, t0, zero, TCHALT_H);
|
|
uasm_i_mtc0(&p, t0, 2, 4);
|
|
uasm_build_label(&l, p, lbl_secondary_hang);
|
|
uasm_il_b(&p, &r, lbl_secondary_hang);
|
|
uasm_i_nop(&p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the point of no return - this VPE will now proceed to
|
|
* disable coherence. At this point we *must* be sure that no other
|
|
* VPE within the core will interfere with the L1 dcache.
|
|
*/
|
|
uasm_build_label(&l, p, lbl_disable_coherence);
|
|
|
|
/* Invalidate the L1 icache */
|
|
cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
|
|
Index_Invalidate_I, lbl_invicache);
|
|
|
|
/* Writeback & invalidate the L1 dcache */
|
|
cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
|
|
Index_Writeback_Inv_D, lbl_flushdcache);
|
|
|
|
/* Completion barrier */
|
|
uasm_i_sync(&p, stype_memory);
|
|
uasm_i_ehb(&p);
|
|
|
|
/*
|
|
* Disable all but self interventions. The load from COHCTL is defined
|
|
* by the interAptiv & proAptiv SUMs as ensuring that the operation
|
|
* resulting from the preceeding store is complete.
|
|
*/
|
|
uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
|
|
uasm_i_sw(&p, t0, 0, r_pcohctl);
|
|
uasm_i_lw(&p, t0, 0, r_pcohctl);
|
|
|
|
/* Sync to ensure previous interventions are complete */
|
|
uasm_i_sync(&p, stype_intervention);
|
|
uasm_i_ehb(&p);
|
|
|
|
/* Disable coherence */
|
|
uasm_i_sw(&p, zero, 0, r_pcohctl);
|
|
uasm_i_lw(&p, t0, 0, r_pcohctl);
|
|
|
|
if (state >= CPS_PM_CLOCK_GATED) {
|
|
err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
|
|
lbl_flush_fsb);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/* Determine the CPC command to issue */
|
|
switch (state) {
|
|
case CPS_PM_CLOCK_GATED:
|
|
cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
|
|
break;
|
|
case CPS_PM_POWER_GATED:
|
|
cpc_cmd = CPC_Cx_CMD_PWRDOWN;
|
|
break;
|
|
default:
|
|
BUG();
|
|
goto out_err;
|
|
}
|
|
|
|
/* Issue the CPC command */
|
|
UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
|
|
uasm_i_addiu(&p, t1, zero, cpc_cmd);
|
|
uasm_i_sw(&p, t1, 0, t0);
|
|
|
|
if (state == CPS_PM_POWER_GATED) {
|
|
/* If anything goes wrong just hang */
|
|
uasm_build_label(&l, p, lbl_hang);
|
|
uasm_il_b(&p, &r, lbl_hang);
|
|
uasm_i_nop(&p);
|
|
|
|
/*
|
|
* There's no point generating more code, the core is
|
|
* powered down & if powered back up will run from the
|
|
* reset vector not from here.
|
|
*/
|
|
goto gen_done;
|
|
}
|
|
|
|
/* Completion barrier */
|
|
uasm_i_sync(&p, stype_memory);
|
|
uasm_i_ehb(&p);
|
|
}
|
|
|
|
if (state == CPS_PM_NC_WAIT) {
|
|
/*
|
|
* At this point it is safe for all VPEs to proceed with
|
|
* execution. This VPE will set the top bit of ready_count
|
|
* to indicate to the other VPEs that they may continue.
|
|
*/
|
|
if (coupled_coherence)
|
|
cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
|
|
lbl_set_cont);
|
|
|
|
/*
|
|
* VPEs which did not disable coherence will continue
|
|
* executing, after coherence has been disabled, from this
|
|
* point.
|
|
*/
|
|
uasm_build_label(&l, p, lbl_secondary_cont);
|
|
|
|
/* Now perform our wait */
|
|
uasm_i_wait(&p, 0);
|
|
}
|
|
|
|
/*
|
|
* Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
|
|
* will run this. The first will actually re-enable coherence & the
|
|
* rest will just be performing a rather unusual nop.
|
|
*/
|
|
uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
|
|
uasm_i_sw(&p, t0, 0, r_pcohctl);
|
|
uasm_i_lw(&p, t0, 0, r_pcohctl);
|
|
|
|
/* Completion barrier */
|
|
uasm_i_sync(&p, stype_memory);
|
|
uasm_i_ehb(&p);
|
|
|
|
if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
|
|
/* Decrement ready_count */
|
|
uasm_build_label(&l, p, lbl_decready);
|
|
uasm_i_sync(&p, stype_ordering);
|
|
uasm_i_ll(&p, t1, 0, r_nc_count);
|
|
uasm_i_addiu(&p, t2, t1, -1);
|
|
uasm_i_sc(&p, t2, 0, r_nc_count);
|
|
uasm_il_beqz(&p, &r, t2, lbl_decready);
|
|
uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
|
|
|
|
/* Ordering barrier */
|
|
uasm_i_sync(&p, stype_ordering);
|
|
}
|
|
|
|
if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
|
|
/*
|
|
* At this point it is safe for all VPEs to proceed with
|
|
* execution. This VPE will set the top bit of ready_count
|
|
* to indicate to the other VPEs that they may continue.
|
|
*/
|
|
cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
|
|
|
|
/*
|
|
* This core will be reliant upon another core sending a
|
|
* power-up command to the CPC in order to resume operation.
|
|
* Thus an arbitrary VPE can't trigger the core leaving the
|
|
* idle state and the one that disables coherence might as well
|
|
* be the one to re-enable it. The rest will continue from here
|
|
* after that has been done.
|
|
*/
|
|
uasm_build_label(&l, p, lbl_secondary_cont);
|
|
|
|
/* Ordering barrier */
|
|
uasm_i_sync(&p, stype_ordering);
|
|
}
|
|
|
|
/* The core is coherent, time to return to C code */
|
|
uasm_i_jr(&p, ra);
|
|
uasm_i_nop(&p);
|
|
|
|
gen_done:
|
|
/* Ensure the code didn't exceed the resources allocated for it */
|
|
BUG_ON((p - buf) > max_instrs);
|
|
BUG_ON((l - labels) > ARRAY_SIZE(labels));
|
|
BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
|
|
|
|
/* Patch branch offsets */
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
/* Flush the icache */
|
|
local_flush_icache_range((unsigned long)buf, (unsigned long)p);
|
|
|
|
return buf;
|
|
out_err:
|
|
kfree(buf);
|
|
return NULL;
|
|
}
|
|
|
|
static int __init cps_gen_core_entries(unsigned cpu)
|
|
{
|
|
enum cps_pm_state state;
|
|
unsigned core = cpu_data[cpu].core;
|
|
unsigned dlinesz = cpu_data[cpu].dcache.linesz;
|
|
void *entry_fn, *core_rc;
|
|
|
|
for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
|
|
if (per_cpu(nc_asm_enter, core)[state])
|
|
continue;
|
|
if (!test_bit(state, state_support))
|
|
continue;
|
|
|
|
entry_fn = cps_gen_entry_code(cpu, state);
|
|
if (!entry_fn) {
|
|
pr_err("Failed to generate core %u state %u entry\n",
|
|
core, state);
|
|
clear_bit(state, state_support);
|
|
}
|
|
|
|
per_cpu(nc_asm_enter, core)[state] = entry_fn;
|
|
}
|
|
|
|
if (!per_cpu(ready_count, core)) {
|
|
core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
|
|
if (!core_rc) {
|
|
pr_err("Failed allocate core %u ready_count\n", core);
|
|
return -ENOMEM;
|
|
}
|
|
per_cpu(ready_count_alloc, core) = core_rc;
|
|
|
|
/* Ensure ready_count is aligned to a cacheline boundary */
|
|
core_rc += dlinesz - 1;
|
|
core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
|
|
per_cpu(ready_count, core) = core_rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init cps_pm_init(void)
|
|
{
|
|
unsigned cpu;
|
|
int err;
|
|
|
|
/* Detect appropriate sync types for the system */
|
|
switch (current_cpu_data.cputype) {
|
|
case CPU_INTERAPTIV:
|
|
case CPU_PROAPTIV:
|
|
case CPU_M5150:
|
|
case CPU_P5600:
|
|
stype_intervention = 0x2;
|
|
stype_memory = 0x3;
|
|
stype_ordering = 0x10;
|
|
break;
|
|
|
|
default:
|
|
pr_warn("Power management is using heavyweight sync 0\n");
|
|
}
|
|
|
|
/* A CM is required for all non-coherent states */
|
|
if (!mips_cm_present()) {
|
|
pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If interrupts were enabled whilst running a wait instruction on a
|
|
* non-coherent core then the VPE may end up processing interrupts
|
|
* whilst non-coherent. That would be bad.
|
|
*/
|
|
if (cpu_wait == r4k_wait_irqoff)
|
|
set_bit(CPS_PM_NC_WAIT, state_support);
|
|
else
|
|
pr_warn("pm-cps: non-coherent wait unavailable\n");
|
|
|
|
/* Detect whether a CPC is present */
|
|
if (mips_cpc_present()) {
|
|
/* Detect whether clock gating is implemented */
|
|
if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
|
|
set_bit(CPS_PM_CLOCK_GATED, state_support);
|
|
else
|
|
pr_warn("pm-cps: CPC does not support clock gating\n");
|
|
|
|
/* Power gating is available with CPS SMP & any CPC */
|
|
if (mips_cps_smp_in_use())
|
|
set_bit(CPS_PM_POWER_GATED, state_support);
|
|
else
|
|
pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
|
|
} else {
|
|
pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
|
|
}
|
|
|
|
for_each_present_cpu(cpu) {
|
|
err = cps_gen_core_entries(cpu);
|
|
if (err)
|
|
return err;
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
arch_initcall(cps_pm_init);
|