linux_old1/tools/perf/util/evlist.c

923 lines
21 KiB
C

/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "util.h"
#include <lk/debugfs.h>
#include <poll.h>
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include <unistd.h>
#include "parse-events.h"
#include <sys/mman.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
#define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
struct thread_map *threads)
{
int i;
for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
INIT_HLIST_HEAD(&evlist->heads[i]);
INIT_LIST_HEAD(&evlist->entries);
perf_evlist__set_maps(evlist, cpus, threads);
evlist->workload.pid = -1;
}
struct perf_evlist *perf_evlist__new(void)
{
struct perf_evlist *evlist = zalloc(sizeof(*evlist));
if (evlist != NULL)
perf_evlist__init(evlist, NULL, NULL);
return evlist;
}
void perf_evlist__config(struct perf_evlist *evlist,
struct perf_record_opts *opts)
{
struct perf_evsel *evsel;
/*
* Set the evsel leader links before we configure attributes,
* since some might depend on this info.
*/
if (opts->group)
perf_evlist__set_leader(evlist);
if (evlist->cpus->map[0] < 0)
opts->no_inherit = true;
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__config(evsel, opts);
if (evlist->nr_entries > 1)
perf_evsel__set_sample_id(evsel);
}
}
static void perf_evlist__purge(struct perf_evlist *evlist)
{
struct perf_evsel *pos, *n;
list_for_each_entry_safe(pos, n, &evlist->entries, node) {
list_del_init(&pos->node);
perf_evsel__delete(pos);
}
evlist->nr_entries = 0;
}
void perf_evlist__exit(struct perf_evlist *evlist)
{
free(evlist->mmap);
free(evlist->pollfd);
evlist->mmap = NULL;
evlist->pollfd = NULL;
}
void perf_evlist__delete(struct perf_evlist *evlist)
{
perf_evlist__purge(evlist);
perf_evlist__exit(evlist);
free(evlist);
}
void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
{
list_add_tail(&entry->node, &evlist->entries);
++evlist->nr_entries;
}
void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
struct list_head *list,
int nr_entries)
{
list_splice_tail(list, &evlist->entries);
evlist->nr_entries += nr_entries;
}
void __perf_evlist__set_leader(struct list_head *list)
{
struct perf_evsel *evsel, *leader;
leader = list_entry(list->next, struct perf_evsel, node);
evsel = list_entry(list->prev, struct perf_evsel, node);
leader->nr_members = evsel->idx - leader->idx + 1;
list_for_each_entry(evsel, list, node) {
evsel->leader = leader;
}
}
void perf_evlist__set_leader(struct perf_evlist *evlist)
{
if (evlist->nr_entries) {
evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
__perf_evlist__set_leader(&evlist->entries);
}
}
int perf_evlist__add_default(struct perf_evlist *evlist)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
};
struct perf_evsel *evsel;
event_attr_init(&attr);
evsel = perf_evsel__new(&attr, 0);
if (evsel == NULL)
goto error;
/* use strdup() because free(evsel) assumes name is allocated */
evsel->name = strdup("cycles");
if (!evsel->name)
goto error_free;
perf_evlist__add(evlist, evsel);
return 0;
error_free:
perf_evsel__delete(evsel);
error:
return -ENOMEM;
}
static int perf_evlist__add_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
struct perf_evsel *evsel, *n;
LIST_HEAD(head);
size_t i;
for (i = 0; i < nr_attrs; i++) {
evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
if (evsel == NULL)
goto out_delete_partial_list;
list_add_tail(&evsel->node, &head);
}
perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
return 0;
out_delete_partial_list:
list_for_each_entry_safe(evsel, n, &head, node)
perf_evsel__delete(evsel);
return -1;
}
int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
size_t i;
for (i = 0; i < nr_attrs; i++)
event_attr_init(attrs + i);
return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
}
struct perf_evsel *
perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
(int)evsel->attr.config == id)
return evsel;
}
return NULL;
}
int perf_evlist__add_newtp(struct perf_evlist *evlist,
const char *sys, const char *name, void *handler)
{
struct perf_evsel *evsel;
evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
if (evsel == NULL)
return -1;
evsel->handler.func = handler;
perf_evlist__add(evlist, evsel);
return 0;
}
void perf_evlist__disable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
for (cpu = 0; cpu < nr_cpus; cpu++) {
list_for_each_entry(pos, &evlist->entries, node) {
if (!perf_evsel__is_group_leader(pos))
continue;
for (thread = 0; thread < nr_threads; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_DISABLE, 0);
}
}
}
void perf_evlist__enable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
for (cpu = 0; cpu < nr_cpus; cpu++) {
list_for_each_entry(pos, &evlist->entries, node) {
if (!perf_evsel__is_group_leader(pos))
continue;
for (thread = 0; thread < nr_threads; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_ENABLE, 0);
}
}
}
static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
{
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
int nfds = nr_cpus * nr_threads * evlist->nr_entries;
evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
return evlist->pollfd != NULL ? 0 : -ENOMEM;
}
void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
{
fcntl(fd, F_SETFL, O_NONBLOCK);
evlist->pollfd[evlist->nr_fds].fd = fd;
evlist->pollfd[evlist->nr_fds].events = POLLIN;
evlist->nr_fds++;
}
static void perf_evlist__id_hash(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
int hash;
struct perf_sample_id *sid = SID(evsel, cpu, thread);
sid->id = id;
sid->evsel = evsel;
hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
hlist_add_head(&sid->node, &evlist->heads[hash]);
}
void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
evsel->id[evsel->ids++] = id;
}
static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, int fd)
{
u64 read_data[4] = { 0, };
int id_idx = 1; /* The first entry is the counter value */
u64 id;
int ret;
ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
if (!ret)
goto add;
if (errno != ENOTTY)
return -1;
/* Legacy way to get event id.. All hail to old kernels! */
/*
* This way does not work with group format read, so bail
* out in that case.
*/
if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
return -1;
if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
read(fd, &read_data, sizeof(read_data)) == -1)
return -1;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
++id_idx;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
++id_idx;
id = read_data[id_idx];
add:
perf_evlist__id_add(evlist, evsel, cpu, thread, id);
return 0;
}
struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
{
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->heads[hash];
hlist_for_each_entry(sid, head, node)
if (sid->id == id)
return sid;
return NULL;
}
struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (evlist->nr_entries == 1)
return perf_evlist__first(evlist);
sid = perf_evlist__id2sid(evlist, id);
if (sid)
return sid->evsel;
if (!perf_evlist__sample_id_all(evlist))
return perf_evlist__first(evlist);
return NULL;
}
union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
{
struct perf_mmap *md = &evlist->mmap[idx];
unsigned int head = perf_mmap__read_head(md);
unsigned int old = md->prev;
unsigned char *data = md->base + page_size;
union perf_event *event = NULL;
if (evlist->overwrite) {
/*
* If we're further behind than half the buffer, there's a chance
* the writer will bite our tail and mess up the samples under us.
*
* If we somehow ended up ahead of the head, we got messed up.
*
* In either case, truncate and restart at head.
*/
int diff = head - old;
if (diff > md->mask / 2 || diff < 0) {
fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
/*
* head points to a known good entry, start there.
*/
old = head;
}
}
if (old != head) {
size_t size;
event = (union perf_event *)&data[old & md->mask];
size = event->header.size;
/*
* Event straddles the mmap boundary -- header should always
* be inside due to u64 alignment of output.
*/
if ((old & md->mask) + size != ((old + size) & md->mask)) {
unsigned int offset = old;
unsigned int len = min(sizeof(*event), size), cpy;
void *dst = &md->event_copy;
do {
cpy = min(md->mask + 1 - (offset & md->mask), len);
memcpy(dst, &data[offset & md->mask], cpy);
offset += cpy;
dst += cpy;
len -= cpy;
} while (len);
event = &md->event_copy;
}
old += size;
}
md->prev = old;
if (!evlist->overwrite)
perf_mmap__write_tail(md, old);
return event;
}
static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
{
if (evlist->mmap[idx].base != NULL) {
munmap(evlist->mmap[idx].base, evlist->mmap_len);
evlist->mmap[idx].base = NULL;
}
}
void perf_evlist__munmap(struct perf_evlist *evlist)
{
int i;
for (i = 0; i < evlist->nr_mmaps; i++)
__perf_evlist__munmap(evlist, i);
free(evlist->mmap);
evlist->mmap = NULL;
}
static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
{
evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
if (cpu_map__empty(evlist->cpus))
evlist->nr_mmaps = thread_map__nr(evlist->threads);
evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
return evlist->mmap != NULL ? 0 : -ENOMEM;
}
static int __perf_evlist__mmap(struct perf_evlist *evlist,
int idx, int prot, int mask, int fd)
{
evlist->mmap[idx].prev = 0;
evlist->mmap[idx].mask = mask;
evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
MAP_SHARED, fd, 0);
if (evlist->mmap[idx].base == MAP_FAILED) {
evlist->mmap[idx].base = NULL;
return -1;
}
perf_evlist__add_pollfd(evlist, fd);
return 0;
}
static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
{
struct perf_evsel *evsel;
int cpu, thread;
int nr_cpus = cpu_map__nr(evlist->cpus);
int nr_threads = thread_map__nr(evlist->threads);
for (cpu = 0; cpu < nr_cpus; cpu++) {
int output = -1;
for (thread = 0; thread < nr_threads; thread++) {
list_for_each_entry(evsel, &evlist->entries, node) {
int fd = FD(evsel, cpu, thread);
if (output == -1) {
output = fd;
if (__perf_evlist__mmap(evlist, cpu,
prot, mask, output) < 0)
goto out_unmap;
} else {
if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
goto out_unmap;
}
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
goto out_unmap;
}
}
}
return 0;
out_unmap:
for (cpu = 0; cpu < nr_cpus; cpu++)
__perf_evlist__munmap(evlist, cpu);
return -1;
}
static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
{
struct perf_evsel *evsel;
int thread;
int nr_threads = thread_map__nr(evlist->threads);
for (thread = 0; thread < nr_threads; thread++) {
int output = -1;
list_for_each_entry(evsel, &evlist->entries, node) {
int fd = FD(evsel, 0, thread);
if (output == -1) {
output = fd;
if (__perf_evlist__mmap(evlist, thread,
prot, mask, output) < 0)
goto out_unmap;
} else {
if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
goto out_unmap;
}
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
goto out_unmap;
}
}
return 0;
out_unmap:
for (thread = 0; thread < nr_threads; thread++)
__perf_evlist__munmap(evlist, thread);
return -1;
}
/** perf_evlist__mmap - Create per cpu maps to receive events
*
* @evlist - list of events
* @pages - map length in pages
* @overwrite - overwrite older events?
*
* If overwrite is false the user needs to signal event consuption using:
*
* struct perf_mmap *m = &evlist->mmap[cpu];
* unsigned int head = perf_mmap__read_head(m);
*
* perf_mmap__write_tail(m, head)
*
* Using perf_evlist__read_on_cpu does this automatically.
*/
int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
bool overwrite)
{
struct perf_evsel *evsel;
const struct cpu_map *cpus = evlist->cpus;
const struct thread_map *threads = evlist->threads;
int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
/* 512 kiB: default amount of unprivileged mlocked memory */
if (pages == UINT_MAX)
pages = (512 * 1024) / page_size;
else if (!is_power_of_2(pages))
return -EINVAL;
mask = pages * page_size - 1;
if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
return -ENOMEM;
if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
return -ENOMEM;
evlist->overwrite = overwrite;
evlist->mmap_len = (pages + 1) * page_size;
list_for_each_entry(evsel, &evlist->entries, node) {
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
evsel->sample_id == NULL &&
perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
return -ENOMEM;
}
if (cpu_map__empty(cpus))
return perf_evlist__mmap_per_thread(evlist, prot, mask);
return perf_evlist__mmap_per_cpu(evlist, prot, mask);
}
int perf_evlist__create_maps(struct perf_evlist *evlist,
struct perf_target *target)
{
evlist->threads = thread_map__new_str(target->pid, target->tid,
target->uid);
if (evlist->threads == NULL)
return -1;
if (perf_target__has_task(target))
evlist->cpus = cpu_map__dummy_new();
else if (!perf_target__has_cpu(target) && !target->uses_mmap)
evlist->cpus = cpu_map__dummy_new();
else
evlist->cpus = cpu_map__new(target->cpu_list);
if (evlist->cpus == NULL)
goto out_delete_threads;
return 0;
out_delete_threads:
thread_map__delete(evlist->threads);
return -1;
}
void perf_evlist__delete_maps(struct perf_evlist *evlist)
{
cpu_map__delete(evlist->cpus);
thread_map__delete(evlist->threads);
evlist->cpus = NULL;
evlist->threads = NULL;
}
int perf_evlist__apply_filters(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int err = 0;
const int ncpus = cpu_map__nr(evlist->cpus),
nthreads = thread_map__nr(evlist->threads);
list_for_each_entry(evsel, &evlist->entries, node) {
if (evsel->filter == NULL)
continue;
err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
if (err)
break;
}
return err;
}
int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
{
struct perf_evsel *evsel;
int err = 0;
const int ncpus = cpu_map__nr(evlist->cpus),
nthreads = thread_map__nr(evlist->threads);
list_for_each_entry(evsel, &evlist->entries, node) {
err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
if (err)
break;
}
return err;
}
bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
list_for_each_entry_continue(pos, &evlist->entries, node) {
if (first->attr.sample_type != pos->attr.sample_type)
return false;
}
return true;
}
u64 perf_evlist__sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.sample_type;
}
bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
u64 read_format = first->attr.read_format;
u64 sample_type = first->attr.sample_type;
list_for_each_entry_continue(pos, &evlist->entries, node) {
if (read_format != pos->attr.read_format)
return false;
}
/* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
if ((sample_type & PERF_SAMPLE_READ) &&
!(read_format & PERF_FORMAT_ID)) {
return false;
}
return true;
}
u64 perf_evlist__read_format(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.read_format;
}
u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
struct perf_sample *data;
u64 sample_type;
u16 size = 0;
if (!first->attr.sample_id_all)
goto out;
sample_type = first->attr.sample_type;
if (sample_type & PERF_SAMPLE_TID)
size += sizeof(data->tid) * 2;
if (sample_type & PERF_SAMPLE_TIME)
size += sizeof(data->time);
if (sample_type & PERF_SAMPLE_ID)
size += sizeof(data->id);
if (sample_type & PERF_SAMPLE_STREAM_ID)
size += sizeof(data->stream_id);
if (sample_type & PERF_SAMPLE_CPU)
size += sizeof(data->cpu) * 2;
out:
return size;
}
bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
list_for_each_entry_continue(pos, &evlist->entries, node) {
if (first->attr.sample_id_all != pos->attr.sample_id_all)
return false;
}
return true;
}
bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.sample_id_all;
}
void perf_evlist__set_selected(struct perf_evlist *evlist,
struct perf_evsel *evsel)
{
evlist->selected = evsel;
}
void perf_evlist__close(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int ncpus = cpu_map__nr(evlist->cpus);
int nthreads = thread_map__nr(evlist->threads);
list_for_each_entry_reverse(evsel, &evlist->entries, node)
perf_evsel__close(evsel, ncpus, nthreads);
}
int perf_evlist__open(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int err;
list_for_each_entry(evsel, &evlist->entries, node) {
err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
if (err < 0)
goto out_err;
}
return 0;
out_err:
perf_evlist__close(evlist);
errno = -err;
return err;
}
int perf_evlist__prepare_workload(struct perf_evlist *evlist,
struct perf_target *target,
const char *argv[], bool pipe_output,
bool want_signal)
{
int child_ready_pipe[2], go_pipe[2];
char bf;
if (pipe(child_ready_pipe) < 0) {
perror("failed to create 'ready' pipe");
return -1;
}
if (pipe(go_pipe) < 0) {
perror("failed to create 'go' pipe");
goto out_close_ready_pipe;
}
evlist->workload.pid = fork();
if (evlist->workload.pid < 0) {
perror("failed to fork");
goto out_close_pipes;
}
if (!evlist->workload.pid) {
if (pipe_output)
dup2(2, 1);
signal(SIGTERM, SIG_DFL);
close(child_ready_pipe[0]);
close(go_pipe[1]);
fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
/*
* Tell the parent we're ready to go
*/
close(child_ready_pipe[1]);
/*
* Wait until the parent tells us to go.
*/
if (read(go_pipe[0], &bf, 1) == -1)
perror("unable to read pipe");
execvp(argv[0], (char **)argv);
perror(argv[0]);
if (want_signal)
kill(getppid(), SIGUSR1);
exit(-1);
}
if (perf_target__none(target))
evlist->threads->map[0] = evlist->workload.pid;
close(child_ready_pipe[1]);
close(go_pipe[0]);
/*
* wait for child to settle
*/
if (read(child_ready_pipe[0], &bf, 1) == -1) {
perror("unable to read pipe");
goto out_close_pipes;
}
fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
evlist->workload.cork_fd = go_pipe[1];
close(child_ready_pipe[0]);
return 0;
out_close_pipes:
close(go_pipe[0]);
close(go_pipe[1]);
out_close_ready_pipe:
close(child_ready_pipe[0]);
close(child_ready_pipe[1]);
return -1;
}
int perf_evlist__start_workload(struct perf_evlist *evlist)
{
if (evlist->workload.cork_fd > 0) {
char bf = 0;
int ret;
/*
* Remove the cork, let it rip!
*/
ret = write(evlist->workload.cork_fd, &bf, 1);
if (ret < 0)
perror("enable to write to pipe");
close(evlist->workload.cork_fd);
return ret;
}
return 0;
}
int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
struct perf_sample *sample)
{
struct perf_evsel *evsel = perf_evlist__first(evlist);
return perf_evsel__parse_sample(evsel, event, sample);
}
size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
{
struct perf_evsel *evsel;
size_t printed = 0;
list_for_each_entry(evsel, &evlist->entries, node) {
printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
perf_evsel__name(evsel));
}
return printed + fprintf(fp, "\n");;
}