820 lines
19 KiB
C
820 lines
19 KiB
C
/* iommu.c: Generic sparc64 IOMMU support.
|
|
*
|
|
* Copyright (C) 1999, 2007 David S. Miller (davem@davemloft.net)
|
|
* Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
|
|
#ifdef CONFIG_PCI
|
|
#include <linux/pci.h>
|
|
#endif
|
|
|
|
#include <asm/iommu.h>
|
|
|
|
#include "iommu_common.h"
|
|
|
|
#define STC_CTXMATCH_ADDR(STC, CTX) \
|
|
((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
|
|
#define STC_FLUSHFLAG_INIT(STC) \
|
|
(*((STC)->strbuf_flushflag) = 0UL)
|
|
#define STC_FLUSHFLAG_SET(STC) \
|
|
(*((STC)->strbuf_flushflag) != 0UL)
|
|
|
|
#define iommu_read(__reg) \
|
|
({ u64 __ret; \
|
|
__asm__ __volatile__("ldxa [%1] %2, %0" \
|
|
: "=r" (__ret) \
|
|
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
|
|
: "memory"); \
|
|
__ret; \
|
|
})
|
|
#define iommu_write(__reg, __val) \
|
|
__asm__ __volatile__("stxa %0, [%1] %2" \
|
|
: /* no outputs */ \
|
|
: "r" (__val), "r" (__reg), \
|
|
"i" (ASI_PHYS_BYPASS_EC_E))
|
|
|
|
/* Must be invoked under the IOMMU lock. */
|
|
static void __iommu_flushall(struct iommu *iommu)
|
|
{
|
|
if (iommu->iommu_flushinv) {
|
|
iommu_write(iommu->iommu_flushinv, ~(u64)0);
|
|
} else {
|
|
unsigned long tag;
|
|
int entry;
|
|
|
|
tag = iommu->iommu_tags;
|
|
for (entry = 0; entry < 16; entry++) {
|
|
iommu_write(tag, 0);
|
|
tag += 8;
|
|
}
|
|
|
|
/* Ensure completion of previous PIO writes. */
|
|
(void) iommu_read(iommu->write_complete_reg);
|
|
}
|
|
}
|
|
|
|
#define IOPTE_CONSISTENT(CTX) \
|
|
(IOPTE_VALID | IOPTE_CACHE | \
|
|
(((CTX) << 47) & IOPTE_CONTEXT))
|
|
|
|
#define IOPTE_STREAMING(CTX) \
|
|
(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
|
|
|
|
/* Existing mappings are never marked invalid, instead they
|
|
* are pointed to a dummy page.
|
|
*/
|
|
#define IOPTE_IS_DUMMY(iommu, iopte) \
|
|
((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
|
|
|
|
static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
|
|
{
|
|
unsigned long val = iopte_val(*iopte);
|
|
|
|
val &= ~IOPTE_PAGE;
|
|
val |= iommu->dummy_page_pa;
|
|
|
|
iopte_val(*iopte) = val;
|
|
}
|
|
|
|
/* Based largely upon the ppc64 iommu allocator. */
|
|
static long arena_alloc(struct iommu *iommu, unsigned long npages)
|
|
{
|
|
struct iommu_arena *arena = &iommu->arena;
|
|
unsigned long n, i, start, end, limit;
|
|
int pass;
|
|
|
|
limit = arena->limit;
|
|
start = arena->hint;
|
|
pass = 0;
|
|
|
|
again:
|
|
n = find_next_zero_bit(arena->map, limit, start);
|
|
end = n + npages;
|
|
if (unlikely(end >= limit)) {
|
|
if (likely(pass < 1)) {
|
|
limit = start;
|
|
start = 0;
|
|
__iommu_flushall(iommu);
|
|
pass++;
|
|
goto again;
|
|
} else {
|
|
/* Scanned the whole thing, give up. */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = n; i < end; i++) {
|
|
if (test_bit(i, arena->map)) {
|
|
start = i + 1;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
for (i = n; i < end; i++)
|
|
__set_bit(i, arena->map);
|
|
|
|
arena->hint = end;
|
|
|
|
return n;
|
|
}
|
|
|
|
static void arena_free(struct iommu_arena *arena, unsigned long base, unsigned long npages)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = base; i < (base + npages); i++)
|
|
__clear_bit(i, arena->map);
|
|
}
|
|
|
|
int iommu_table_init(struct iommu *iommu, int tsbsize,
|
|
u32 dma_offset, u32 dma_addr_mask)
|
|
{
|
|
unsigned long i, tsbbase, order, sz, num_tsb_entries;
|
|
|
|
num_tsb_entries = tsbsize / sizeof(iopte_t);
|
|
|
|
/* Setup initial software IOMMU state. */
|
|
spin_lock_init(&iommu->lock);
|
|
iommu->ctx_lowest_free = 1;
|
|
iommu->page_table_map_base = dma_offset;
|
|
iommu->dma_addr_mask = dma_addr_mask;
|
|
|
|
/* Allocate and initialize the free area map. */
|
|
sz = num_tsb_entries / 8;
|
|
sz = (sz + 7UL) & ~7UL;
|
|
iommu->arena.map = kzalloc(sz, GFP_KERNEL);
|
|
if (!iommu->arena.map) {
|
|
printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
iommu->arena.limit = num_tsb_entries;
|
|
|
|
/* Allocate and initialize the dummy page which we
|
|
* set inactive IO PTEs to point to.
|
|
*/
|
|
iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0);
|
|
if (!iommu->dummy_page) {
|
|
printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
|
|
goto out_free_map;
|
|
}
|
|
memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
|
|
iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
|
|
|
|
/* Now allocate and setup the IOMMU page table itself. */
|
|
order = get_order(tsbsize);
|
|
tsbbase = __get_free_pages(GFP_KERNEL, order);
|
|
if (!tsbbase) {
|
|
printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
|
|
goto out_free_dummy_page;
|
|
}
|
|
iommu->page_table = (iopte_t *)tsbbase;
|
|
|
|
for (i = 0; i < num_tsb_entries; i++)
|
|
iopte_make_dummy(iommu, &iommu->page_table[i]);
|
|
|
|
return 0;
|
|
|
|
out_free_dummy_page:
|
|
free_page(iommu->dummy_page);
|
|
iommu->dummy_page = 0UL;
|
|
|
|
out_free_map:
|
|
kfree(iommu->arena.map);
|
|
iommu->arena.map = NULL;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static inline iopte_t *alloc_npages(struct iommu *iommu, unsigned long npages)
|
|
{
|
|
long entry;
|
|
|
|
entry = arena_alloc(iommu, npages);
|
|
if (unlikely(entry < 0))
|
|
return NULL;
|
|
|
|
return iommu->page_table + entry;
|
|
}
|
|
|
|
static inline void free_npages(struct iommu *iommu, dma_addr_t base, unsigned long npages)
|
|
{
|
|
arena_free(&iommu->arena, base >> IO_PAGE_SHIFT, npages);
|
|
}
|
|
|
|
static int iommu_alloc_ctx(struct iommu *iommu)
|
|
{
|
|
int lowest = iommu->ctx_lowest_free;
|
|
int sz = IOMMU_NUM_CTXS - lowest;
|
|
int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
|
|
|
|
if (unlikely(n == sz)) {
|
|
n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
|
|
if (unlikely(n == lowest)) {
|
|
printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
|
|
n = 0;
|
|
}
|
|
}
|
|
if (n)
|
|
__set_bit(n, iommu->ctx_bitmap);
|
|
|
|
return n;
|
|
}
|
|
|
|
static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
|
|
{
|
|
if (likely(ctx)) {
|
|
__clear_bit(ctx, iommu->ctx_bitmap);
|
|
if (ctx < iommu->ctx_lowest_free)
|
|
iommu->ctx_lowest_free = ctx;
|
|
}
|
|
}
|
|
|
|
static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_addrp, gfp_t gfp)
|
|
{
|
|
struct iommu *iommu;
|
|
iopte_t *iopte;
|
|
unsigned long flags, order, first_page;
|
|
void *ret;
|
|
int npages;
|
|
|
|
size = IO_PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
if (order >= 10)
|
|
return NULL;
|
|
|
|
first_page = __get_free_pages(gfp, order);
|
|
if (first_page == 0UL)
|
|
return NULL;
|
|
memset((char *)first_page, 0, PAGE_SIZE << order);
|
|
|
|
iommu = dev->archdata.iommu;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
iopte = alloc_npages(iommu, size >> IO_PAGE_SHIFT);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
if (unlikely(iopte == NULL)) {
|
|
free_pages(first_page, order);
|
|
return NULL;
|
|
}
|
|
|
|
*dma_addrp = (iommu->page_table_map_base +
|
|
((iopte - iommu->page_table) << IO_PAGE_SHIFT));
|
|
ret = (void *) first_page;
|
|
npages = size >> IO_PAGE_SHIFT;
|
|
first_page = __pa(first_page);
|
|
while (npages--) {
|
|
iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
|
|
IOPTE_WRITE |
|
|
(first_page & IOPTE_PAGE));
|
|
iopte++;
|
|
first_page += IO_PAGE_SIZE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dma_4u_free_coherent(struct device *dev, size_t size,
|
|
void *cpu, dma_addr_t dvma)
|
|
{
|
|
struct iommu *iommu;
|
|
iopte_t *iopte;
|
|
unsigned long flags, order, npages;
|
|
|
|
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
|
|
iommu = dev->archdata.iommu;
|
|
iopte = iommu->page_table +
|
|
((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
free_npages(iommu, dvma - iommu->page_table_map_base, npages);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
order = get_order(size);
|
|
if (order < 10)
|
|
free_pages((unsigned long)cpu, order);
|
|
}
|
|
|
|
static dma_addr_t dma_4u_map_single(struct device *dev, void *ptr, size_t sz,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
iopte_t *base;
|
|
unsigned long flags, npages, oaddr;
|
|
unsigned long i, base_paddr, ctx;
|
|
u32 bus_addr, ret;
|
|
unsigned long iopte_protection;
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
if (unlikely(direction == DMA_NONE))
|
|
goto bad_no_ctx;
|
|
|
|
oaddr = (unsigned long)ptr;
|
|
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
|
|
npages >>= IO_PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
base = alloc_npages(iommu, npages);
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush)
|
|
ctx = iommu_alloc_ctx(iommu);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
if (unlikely(!base))
|
|
goto bad;
|
|
|
|
bus_addr = (iommu->page_table_map_base +
|
|
((base - iommu->page_table) << IO_PAGE_SHIFT));
|
|
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
|
|
base_paddr = __pa(oaddr & IO_PAGE_MASK);
|
|
if (strbuf->strbuf_enabled)
|
|
iopte_protection = IOPTE_STREAMING(ctx);
|
|
else
|
|
iopte_protection = IOPTE_CONSISTENT(ctx);
|
|
if (direction != DMA_TO_DEVICE)
|
|
iopte_protection |= IOPTE_WRITE;
|
|
|
|
for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
|
|
iopte_val(*base) = iopte_protection | base_paddr;
|
|
|
|
return ret;
|
|
|
|
bad:
|
|
iommu_free_ctx(iommu, ctx);
|
|
bad_no_ctx:
|
|
if (printk_ratelimit())
|
|
WARN_ON(1);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
|
|
u32 vaddr, unsigned long ctx, unsigned long npages,
|
|
enum dma_data_direction direction)
|
|
{
|
|
int limit;
|
|
|
|
if (strbuf->strbuf_ctxflush &&
|
|
iommu->iommu_ctxflush) {
|
|
unsigned long matchreg, flushreg;
|
|
u64 val;
|
|
|
|
flushreg = strbuf->strbuf_ctxflush;
|
|
matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
|
|
|
|
iommu_write(flushreg, ctx);
|
|
val = iommu_read(matchreg);
|
|
val &= 0xffff;
|
|
if (!val)
|
|
goto do_flush_sync;
|
|
|
|
while (val) {
|
|
if (val & 0x1)
|
|
iommu_write(flushreg, ctx);
|
|
val >>= 1;
|
|
}
|
|
val = iommu_read(matchreg);
|
|
if (unlikely(val)) {
|
|
printk(KERN_WARNING "strbuf_flush: ctx flush "
|
|
"timeout matchreg[%lx] ctx[%lx]\n",
|
|
val, ctx);
|
|
goto do_page_flush;
|
|
}
|
|
} else {
|
|
unsigned long i;
|
|
|
|
do_page_flush:
|
|
for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
|
|
iommu_write(strbuf->strbuf_pflush, vaddr);
|
|
}
|
|
|
|
do_flush_sync:
|
|
/* If the device could not have possibly put dirty data into
|
|
* the streaming cache, no flush-flag synchronization needs
|
|
* to be performed.
|
|
*/
|
|
if (direction == DMA_TO_DEVICE)
|
|
return;
|
|
|
|
STC_FLUSHFLAG_INIT(strbuf);
|
|
iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
|
|
(void) iommu_read(iommu->write_complete_reg);
|
|
|
|
limit = 100000;
|
|
while (!STC_FLUSHFLAG_SET(strbuf)) {
|
|
limit--;
|
|
if (!limit)
|
|
break;
|
|
udelay(1);
|
|
rmb();
|
|
}
|
|
if (!limit)
|
|
printk(KERN_WARNING "strbuf_flush: flushflag timeout "
|
|
"vaddr[%08x] ctx[%lx] npages[%ld]\n",
|
|
vaddr, ctx, npages);
|
|
}
|
|
|
|
static void dma_4u_unmap_single(struct device *dev, dma_addr_t bus_addr,
|
|
size_t sz, enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
iopte_t *base;
|
|
unsigned long flags, npages, ctx, i;
|
|
|
|
if (unlikely(direction == DMA_NONE)) {
|
|
if (printk_ratelimit())
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
|
|
npages >>= IO_PAGE_SHIFT;
|
|
base = iommu->page_table +
|
|
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
|
|
bus_addr &= IO_PAGE_MASK;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
/* Record the context, if any. */
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush)
|
|
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
|
|
|
|
/* Step 1: Kick data out of streaming buffers if necessary. */
|
|
if (strbuf->strbuf_enabled)
|
|
strbuf_flush(strbuf, iommu, bus_addr, ctx,
|
|
npages, direction);
|
|
|
|
/* Step 2: Clear out TSB entries. */
|
|
for (i = 0; i < npages; i++)
|
|
iopte_make_dummy(iommu, base + i);
|
|
|
|
free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
|
|
|
|
iommu_free_ctx(iommu, ctx);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
#define SG_ENT_PHYS_ADDRESS(SG) \
|
|
(__pa(page_address((SG)->page)) + (SG)->offset)
|
|
|
|
static void fill_sg(iopte_t *iopte, struct scatterlist *sg,
|
|
int nused, int nelems,
|
|
unsigned long iopte_protection)
|
|
{
|
|
struct scatterlist *dma_sg = sg;
|
|
int i;
|
|
|
|
for (i = 0; i < nused; i++) {
|
|
unsigned long pteval = ~0UL;
|
|
u32 dma_npages;
|
|
|
|
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
|
|
dma_sg->dma_length +
|
|
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
|
|
do {
|
|
unsigned long offset;
|
|
signed int len;
|
|
|
|
/* If we are here, we know we have at least one
|
|
* more page to map. So walk forward until we
|
|
* hit a page crossing, and begin creating new
|
|
* mappings from that spot.
|
|
*/
|
|
for (;;) {
|
|
unsigned long tmp;
|
|
|
|
tmp = SG_ENT_PHYS_ADDRESS(sg);
|
|
len = sg->length;
|
|
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
|
|
pteval = tmp & IO_PAGE_MASK;
|
|
offset = tmp & (IO_PAGE_SIZE - 1UL);
|
|
break;
|
|
}
|
|
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
|
|
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
|
|
offset = 0UL;
|
|
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
|
|
break;
|
|
}
|
|
sg = sg_next(sg);
|
|
nelems--;
|
|
}
|
|
|
|
pteval = iopte_protection | (pteval & IOPTE_PAGE);
|
|
while (len > 0) {
|
|
*iopte++ = __iopte(pteval);
|
|
pteval += IO_PAGE_SIZE;
|
|
len -= (IO_PAGE_SIZE - offset);
|
|
offset = 0;
|
|
dma_npages--;
|
|
}
|
|
|
|
pteval = (pteval & IOPTE_PAGE) + len;
|
|
sg = sg_next(sg);
|
|
nelems--;
|
|
|
|
/* Skip over any tail mappings we've fully mapped,
|
|
* adjusting pteval along the way. Stop when we
|
|
* detect a page crossing event.
|
|
*/
|
|
while (nelems &&
|
|
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
|
|
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
|
|
((pteval ^
|
|
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
|
|
pteval += sg->length;
|
|
sg = sg_next(sg);
|
|
nelems--;
|
|
}
|
|
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
|
|
pteval = ~0UL;
|
|
} while (dma_npages != 0);
|
|
dma_sg = sg_next(dma_sg);
|
|
}
|
|
}
|
|
|
|
static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
unsigned long flags, ctx, npages, iopte_protection;
|
|
iopte_t *base;
|
|
u32 dma_base;
|
|
struct scatterlist *sgtmp;
|
|
int used;
|
|
|
|
/* Fast path single entry scatterlists. */
|
|
if (nelems == 1) {
|
|
sglist->dma_address =
|
|
dma_4u_map_single(dev,
|
|
(page_address(sglist->page) +
|
|
sglist->offset),
|
|
sglist->length, direction);
|
|
if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
|
|
return 0;
|
|
sglist->dma_length = sglist->length;
|
|
return 1;
|
|
}
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
if (unlikely(direction == DMA_NONE))
|
|
goto bad_no_ctx;
|
|
|
|
/* Step 1: Prepare scatter list. */
|
|
|
|
npages = prepare_sg(sglist, nelems);
|
|
|
|
/* Step 2: Allocate a cluster and context, if necessary. */
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
base = alloc_npages(iommu, npages);
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush)
|
|
ctx = iommu_alloc_ctx(iommu);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
if (base == NULL)
|
|
goto bad;
|
|
|
|
dma_base = iommu->page_table_map_base +
|
|
((base - iommu->page_table) << IO_PAGE_SHIFT);
|
|
|
|
/* Step 3: Normalize DMA addresses. */
|
|
used = nelems;
|
|
|
|
sgtmp = sglist;
|
|
while (used && sgtmp->dma_length) {
|
|
sgtmp->dma_address += dma_base;
|
|
sgtmp = sg_next(sgtmp);
|
|
used--;
|
|
}
|
|
used = nelems - used;
|
|
|
|
/* Step 4: Create the mappings. */
|
|
if (strbuf->strbuf_enabled)
|
|
iopte_protection = IOPTE_STREAMING(ctx);
|
|
else
|
|
iopte_protection = IOPTE_CONSISTENT(ctx);
|
|
if (direction != DMA_TO_DEVICE)
|
|
iopte_protection |= IOPTE_WRITE;
|
|
|
|
fill_sg(base, sglist, used, nelems, iopte_protection);
|
|
|
|
#ifdef VERIFY_SG
|
|
verify_sglist(sglist, nelems, base, npages);
|
|
#endif
|
|
|
|
return used;
|
|
|
|
bad:
|
|
iommu_free_ctx(iommu, ctx);
|
|
bad_no_ctx:
|
|
if (printk_ratelimit())
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
iopte_t *base;
|
|
unsigned long flags, ctx, i, npages;
|
|
struct scatterlist *sg, *sgprv;
|
|
u32 bus_addr;
|
|
|
|
if (unlikely(direction == DMA_NONE)) {
|
|
if (printk_ratelimit())
|
|
WARN_ON(1);
|
|
}
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
bus_addr = sglist->dma_address & IO_PAGE_MASK;
|
|
|
|
sgprv = NULL;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
if (sg->dma_length == 0)
|
|
break;
|
|
sgprv = sg;
|
|
}
|
|
|
|
npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
|
|
bus_addr) >> IO_PAGE_SHIFT;
|
|
|
|
base = iommu->page_table +
|
|
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
/* Record the context, if any. */
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush)
|
|
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
|
|
|
|
/* Step 1: Kick data out of streaming buffers if necessary. */
|
|
if (strbuf->strbuf_enabled)
|
|
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
|
|
|
|
/* Step 2: Clear out the TSB entries. */
|
|
for (i = 0; i < npages; i++)
|
|
iopte_make_dummy(iommu, base + i);
|
|
|
|
free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
|
|
|
|
iommu_free_ctx(iommu, ctx);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void dma_4u_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t bus_addr, size_t sz,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
unsigned long flags, ctx, npages;
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
if (!strbuf->strbuf_enabled)
|
|
return;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
|
|
npages >>= IO_PAGE_SHIFT;
|
|
bus_addr &= IO_PAGE_MASK;
|
|
|
|
/* Step 1: Record the context, if any. */
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush &&
|
|
strbuf->strbuf_ctxflush) {
|
|
iopte_t *iopte;
|
|
|
|
iopte = iommu->page_table +
|
|
((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
|
|
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
|
|
}
|
|
|
|
/* Step 2: Kick data out of streaming buffers. */
|
|
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void dma_4u_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct iommu *iommu;
|
|
struct strbuf *strbuf;
|
|
unsigned long flags, ctx, npages, i;
|
|
struct scatterlist *sg, *sgprv;
|
|
u32 bus_addr;
|
|
|
|
iommu = dev->archdata.iommu;
|
|
strbuf = dev->archdata.stc;
|
|
|
|
if (!strbuf->strbuf_enabled)
|
|
return;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
/* Step 1: Record the context, if any. */
|
|
ctx = 0;
|
|
if (iommu->iommu_ctxflush &&
|
|
strbuf->strbuf_ctxflush) {
|
|
iopte_t *iopte;
|
|
|
|
iopte = iommu->page_table +
|
|
((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
|
|
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
|
|
}
|
|
|
|
/* Step 2: Kick data out of streaming buffers. */
|
|
bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
|
|
sgprv = NULL;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
if (sg->dma_length == 0)
|
|
break;
|
|
sgprv = sg;
|
|
}
|
|
|
|
npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
|
|
- bus_addr) >> IO_PAGE_SHIFT;
|
|
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
const struct dma_ops sun4u_dma_ops = {
|
|
.alloc_coherent = dma_4u_alloc_coherent,
|
|
.free_coherent = dma_4u_free_coherent,
|
|
.map_single = dma_4u_map_single,
|
|
.unmap_single = dma_4u_unmap_single,
|
|
.map_sg = dma_4u_map_sg,
|
|
.unmap_sg = dma_4u_unmap_sg,
|
|
.sync_single_for_cpu = dma_4u_sync_single_for_cpu,
|
|
.sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
|
|
};
|
|
|
|
const struct dma_ops *dma_ops = &sun4u_dma_ops;
|
|
EXPORT_SYMBOL(dma_ops);
|
|
|
|
int dma_supported(struct device *dev, u64 device_mask)
|
|
{
|
|
struct iommu *iommu = dev->archdata.iommu;
|
|
u64 dma_addr_mask = iommu->dma_addr_mask;
|
|
|
|
if (device_mask >= (1UL << 32UL))
|
|
return 0;
|
|
|
|
if ((device_mask & dma_addr_mask) == dma_addr_mask)
|
|
return 1;
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (dev->bus == &pci_bus_type)
|
|
return pci_dma_supported(to_pci_dev(dev), device_mask);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_supported);
|
|
|
|
int dma_set_mask(struct device *dev, u64 dma_mask)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
if (dev->bus == &pci_bus_type)
|
|
return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(dma_set_mask);
|