linux_old1/arch/x86/xen/smp.c

776 lines
19 KiB
C

/*
* Xen SMP support
*
* This file implements the Xen versions of smp_ops. SMP under Xen is
* very straightforward. Bringing a CPU up is simply a matter of
* loading its initial context and setting it running.
*
* IPIs are handled through the Xen event mechanism.
*
* Because virtual CPUs can be scheduled onto any real CPU, there's no
* useful topology information for the kernel to make use of. As a
* result, all CPUs are treated as if they're single-core and
* single-threaded.
*/
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/irq_work.h>
#include <linux/tick.h>
#include <asm/paravirt.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
#include <asm/cpu.h>
#include <xen/interface/xen.h>
#include <xen/interface/vcpu.h>
#include <asm/xen/interface.h>
#include <asm/xen/hypercall.h>
#include <xen/xen.h>
#include <xen/page.h>
#include <xen/events.h>
#include <xen/hvc-console.h>
#include "xen-ops.h"
#include "mmu.h"
cpumask_var_t xen_cpu_initialized_map;
struct xen_common_irq {
int irq;
char *name;
};
static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
/*
* Reschedule call back.
*/
static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
{
inc_irq_stat(irq_resched_count);
scheduler_ipi();
return IRQ_HANDLED;
}
static void cpu_bringup(void)
{
int cpu;
cpu_init();
touch_softlockup_watchdog();
preempt_disable();
/* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
xen_enable_sysenter();
xen_enable_syscall();
}
cpu = smp_processor_id();
smp_store_cpu_info(cpu);
cpu_data(cpu).x86_max_cores = 1;
set_cpu_sibling_map(cpu);
xen_setup_cpu_clockevents();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
this_cpu_write(cpu_state, CPU_ONLINE);
wmb();
/* We can take interrupts now: we're officially "up". */
local_irq_enable();
wmb(); /* make sure everything is out */
}
/* Note: cpu parameter is only relevant for PVH */
static void cpu_bringup_and_idle(int cpu)
{
#ifdef CONFIG_X86_64
if (xen_feature(XENFEAT_auto_translated_physmap) &&
xen_feature(XENFEAT_supervisor_mode_kernel))
xen_pvh_secondary_vcpu_init(cpu);
#endif
cpu_bringup();
cpu_startup_entry(CPUHP_ONLINE);
}
static void xen_smp_intr_free(unsigned int cpu)
{
if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
per_cpu(xen_resched_irq, cpu).irq = -1;
kfree(per_cpu(xen_resched_irq, cpu).name);
per_cpu(xen_resched_irq, cpu).name = NULL;
}
if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
per_cpu(xen_callfunc_irq, cpu).irq = -1;
kfree(per_cpu(xen_callfunc_irq, cpu).name);
per_cpu(xen_callfunc_irq, cpu).name = NULL;
}
if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
per_cpu(xen_debug_irq, cpu).irq = -1;
kfree(per_cpu(xen_debug_irq, cpu).name);
per_cpu(xen_debug_irq, cpu).name = NULL;
}
if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
NULL);
per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
}
if (xen_hvm_domain())
return;
if (per_cpu(xen_irq_work, cpu).irq >= 0) {
unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
per_cpu(xen_irq_work, cpu).irq = -1;
kfree(per_cpu(xen_irq_work, cpu).name);
per_cpu(xen_irq_work, cpu).name = NULL;
}
};
static int xen_smp_intr_init(unsigned int cpu)
{
int rc;
char *resched_name, *callfunc_name, *debug_name;
resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
cpu,
xen_reschedule_interrupt,
IRQF_PERCPU|IRQF_NOBALANCING,
resched_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(xen_resched_irq, cpu).irq = rc;
per_cpu(xen_resched_irq, cpu).name = resched_name;
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
cpu,
xen_call_function_interrupt,
IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(xen_callfunc_irq, cpu).irq = rc;
per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
IRQF_PERCPU | IRQF_NOBALANCING,
debug_name, NULL);
if (rc < 0)
goto fail;
per_cpu(xen_debug_irq, cpu).irq = rc;
per_cpu(xen_debug_irq, cpu).name = debug_name;
callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
cpu,
xen_call_function_single_interrupt,
IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
/*
* The IRQ worker on PVHVM goes through the native path and uses the
* IPI mechanism.
*/
if (xen_hvm_domain())
return 0;
callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
cpu,
xen_irq_work_interrupt,
IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(xen_irq_work, cpu).irq = rc;
per_cpu(xen_irq_work, cpu).name = callfunc_name;
return 0;
fail:
xen_smp_intr_free(cpu);
return rc;
}
static void __init xen_fill_possible_map(void)
{
int i, rc;
if (xen_initial_domain())
return;
for (i = 0; i < nr_cpu_ids; i++) {
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
if (rc >= 0) {
num_processors++;
set_cpu_possible(i, true);
}
}
}
static void __init xen_filter_cpu_maps(void)
{
int i, rc;
unsigned int subtract = 0;
if (!xen_initial_domain())
return;
num_processors = 0;
disabled_cpus = 0;
for (i = 0; i < nr_cpu_ids; i++) {
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
if (rc >= 0) {
num_processors++;
set_cpu_possible(i, true);
} else {
set_cpu_possible(i, false);
set_cpu_present(i, false);
subtract++;
}
}
#ifdef CONFIG_HOTPLUG_CPU
/* This is akin to using 'nr_cpus' on the Linux command line.
* Which is OK as when we use 'dom0_max_vcpus=X' we can only
* have up to X, while nr_cpu_ids is greater than X. This
* normally is not a problem, except when CPU hotplugging
* is involved and then there might be more than X CPUs
* in the guest - which will not work as there is no
* hypercall to expand the max number of VCPUs an already
* running guest has. So cap it up to X. */
if (subtract)
nr_cpu_ids = nr_cpu_ids - subtract;
#endif
}
static void __init xen_smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != 0);
native_smp_prepare_boot_cpu();
if (xen_pv_domain()) {
if (!xen_feature(XENFEAT_writable_page_tables))
/* We've switched to the "real" per-cpu gdt, so make
* sure the old memory can be recycled. */
make_lowmem_page_readwrite(xen_initial_gdt);
#ifdef CONFIG_X86_32
/*
* Xen starts us with XEN_FLAT_RING1_DS, but linux code
* expects __USER_DS
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
xen_filter_cpu_maps();
xen_setup_vcpu_info_placement();
}
/*
* The alternative logic (which patches the unlock/lock) runs before
* the smp bootup up code is activated. Hence we need to set this up
* the core kernel is being patched. Otherwise we will have only
* modules patched but not core code.
*/
xen_init_spinlocks();
}
static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned cpu;
unsigned int i;
if (skip_ioapic_setup) {
char *m = (max_cpus == 0) ?
"The nosmp parameter is incompatible with Xen; " \
"use Xen dom0_max_vcpus=1 parameter" :
"The noapic parameter is incompatible with Xen";
xen_raw_printk(m);
panic(m);
}
xen_init_lock_cpu(0);
smp_store_boot_cpu_info();
cpu_data(0).x86_max_cores = 1;
for_each_possible_cpu(i) {
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
}
set_cpu_sibling_map(0);
if (xen_smp_intr_init(0))
BUG();
if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
panic("could not allocate xen_cpu_initialized_map\n");
cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
/* Restrict the possible_map according to max_cpus. */
while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
continue;
set_cpu_possible(cpu, false);
}
for_each_possible_cpu(cpu)
set_cpu_present(cpu, true);
}
static int
cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
{
struct vcpu_guest_context *ctxt;
struct desc_struct *gdt;
unsigned long gdt_mfn;
if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
return 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (ctxt == NULL)
return -ENOMEM;
gdt = get_cpu_gdt_table(cpu);
#ifdef CONFIG_X86_32
/* Note: PVH is not yet supported on x86_32. */
ctxt->user_regs.fs = __KERNEL_PERCPU;
ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
#endif
ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
ctxt->flags = VGCF_IN_KERNEL;
ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
ctxt->user_regs.ds = __USER_DS;
ctxt->user_regs.es = __USER_DS;
ctxt->user_regs.ss = __KERNEL_DS;
xen_copy_trap_info(ctxt->trap_ctxt);
ctxt->ldt_ents = 0;
BUG_ON((unsigned long)gdt & ~PAGE_MASK);
gdt_mfn = arbitrary_virt_to_mfn(gdt);
make_lowmem_page_readonly(gdt);
make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
ctxt->gdt_frames[0] = gdt_mfn;
ctxt->gdt_ents = GDT_ENTRIES;
ctxt->kernel_ss = __KERNEL_DS;
ctxt->kernel_sp = idle->thread.sp0;
#ifdef CONFIG_X86_32
ctxt->event_callback_cs = __KERNEL_CS;
ctxt->failsafe_callback_cs = __KERNEL_CS;
#else
ctxt->gs_base_kernel = per_cpu_offset(cpu);
#endif
ctxt->event_callback_eip =
(unsigned long)xen_hypervisor_callback;
ctxt->failsafe_callback_eip =
(unsigned long)xen_failsafe_callback;
ctxt->user_regs.cs = __KERNEL_CS;
per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
#ifdef CONFIG_X86_32
}
#else
} else
/* N.B. The user_regs.eip (cpu_bringup_and_idle) is called with
* %rdi having the cpu number - which means are passing in
* as the first parameter the cpu. Subtle!
*/
ctxt->user_regs.rdi = cpu;
#endif
ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
BUG();
kfree(ctxt);
return 0;
}
static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
{
int rc;
per_cpu(current_task, cpu) = idle;
#ifdef CONFIG_X86_32
irq_ctx_init(cpu);
#else
clear_tsk_thread_flag(idle, TIF_FORK);
per_cpu(kernel_stack, cpu) =
(unsigned long)task_stack_page(idle) -
KERNEL_STACK_OFFSET + THREAD_SIZE;
#endif
xen_setup_runstate_info(cpu);
xen_setup_timer(cpu);
xen_init_lock_cpu(cpu);
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* make sure interrupts start blocked */
per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
rc = cpu_initialize_context(cpu, idle);
if (rc)
return rc;
if (num_online_cpus() == 1)
/* Just in case we booted with a single CPU. */
alternatives_enable_smp();
rc = xen_smp_intr_init(cpu);
if (rc)
return rc;
rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
BUG_ON(rc);
while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
barrier();
}
return 0;
}
static void xen_smp_cpus_done(unsigned int max_cpus)
{
}
#ifdef CONFIG_HOTPLUG_CPU
static int xen_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == 0)
return -EBUSY;
cpu_disable_common();
load_cr3(swapper_pg_dir);
return 0;
}
static void xen_cpu_die(unsigned int cpu)
{
while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(HZ/10);
}
xen_smp_intr_free(cpu);
xen_uninit_lock_cpu(cpu);
xen_teardown_timer(cpu);
}
static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
{
play_dead_common();
HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
cpu_bringup();
/*
* commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
* clears certain data that the cpu_idle loop (which called us
* and that we return from) expects. The only way to get that
* data back is to call:
*/
tick_nohz_idle_enter();
}
#else /* !CONFIG_HOTPLUG_CPU */
static int xen_cpu_disable(void)
{
return -ENOSYS;
}
static void xen_cpu_die(unsigned int cpu)
{
BUG();
}
static void xen_play_dead(void)
{
BUG();
}
#endif
static void stop_self(void *v)
{
int cpu = smp_processor_id();
/* make sure we're not pinning something down */
load_cr3(swapper_pg_dir);
/* should set up a minimal gdt */
set_cpu_online(cpu, false);
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
BUG();
}
static void xen_stop_other_cpus(int wait)
{
smp_call_function(stop_self, NULL, wait);
}
static void xen_smp_send_reschedule(int cpu)
{
xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
}
static void __xen_send_IPI_mask(const struct cpumask *mask,
int vector)
{
unsigned cpu;
for_each_cpu_and(cpu, mask, cpu_online_mask)
xen_send_IPI_one(cpu, vector);
}
static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
{
int cpu;
__xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
/* Make sure other vcpus get a chance to run if they need to. */
for_each_cpu(cpu, mask) {
if (xen_vcpu_stolen(cpu)) {
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
break;
}
}
}
static void xen_smp_send_call_function_single_ipi(int cpu)
{
__xen_send_IPI_mask(cpumask_of(cpu),
XEN_CALL_FUNCTION_SINGLE_VECTOR);
}
static inline int xen_map_vector(int vector)
{
int xen_vector;
switch (vector) {
case RESCHEDULE_VECTOR:
xen_vector = XEN_RESCHEDULE_VECTOR;
break;
case CALL_FUNCTION_VECTOR:
xen_vector = XEN_CALL_FUNCTION_VECTOR;
break;
case CALL_FUNCTION_SINGLE_VECTOR:
xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
break;
case IRQ_WORK_VECTOR:
xen_vector = XEN_IRQ_WORK_VECTOR;
break;
#ifdef CONFIG_X86_64
case NMI_VECTOR:
case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
xen_vector = XEN_NMI_VECTOR;
break;
#endif
default:
xen_vector = -1;
printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
vector);
}
return xen_vector;
}
void xen_send_IPI_mask(const struct cpumask *mask,
int vector)
{
int xen_vector = xen_map_vector(vector);
if (xen_vector >= 0)
__xen_send_IPI_mask(mask, xen_vector);
}
void xen_send_IPI_all(int vector)
{
int xen_vector = xen_map_vector(vector);
if (xen_vector >= 0)
__xen_send_IPI_mask(cpu_online_mask, xen_vector);
}
void xen_send_IPI_self(int vector)
{
int xen_vector = xen_map_vector(vector);
if (xen_vector >= 0)
xen_send_IPI_one(smp_processor_id(), xen_vector);
}
void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
int vector)
{
unsigned cpu;
unsigned int this_cpu = smp_processor_id();
int xen_vector = xen_map_vector(vector);
if (!(num_online_cpus() > 1) || (xen_vector < 0))
return;
for_each_cpu_and(cpu, mask, cpu_online_mask) {
if (this_cpu == cpu)
continue;
xen_send_IPI_one(cpu, xen_vector);
}
}
void xen_send_IPI_allbutself(int vector)
{
xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
}
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_interrupt();
inc_irq_stat(irq_call_count);
irq_exit();
return IRQ_HANDLED;
}
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_single_interrupt();
inc_irq_stat(irq_call_count);
irq_exit();
return IRQ_HANDLED;
}
static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
{
irq_enter();
irq_work_run();
inc_irq_stat(apic_irq_work_irqs);
irq_exit();
return IRQ_HANDLED;
}
static const struct smp_ops xen_smp_ops __initconst = {
.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
.smp_prepare_cpus = xen_smp_prepare_cpus,
.smp_cpus_done = xen_smp_cpus_done,
.cpu_up = xen_cpu_up,
.cpu_die = xen_cpu_die,
.cpu_disable = xen_cpu_disable,
.play_dead = xen_play_dead,
.stop_other_cpus = xen_stop_other_cpus,
.smp_send_reschedule = xen_smp_send_reschedule,
.send_call_func_ipi = xen_smp_send_call_function_ipi,
.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
};
void __init xen_smp_init(void)
{
smp_ops = xen_smp_ops;
xen_fill_possible_map();
}
static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
{
native_smp_prepare_cpus(max_cpus);
WARN_ON(xen_smp_intr_init(0));
xen_init_lock_cpu(0);
}
static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int rc;
/*
* xen_smp_intr_init() needs to run before native_cpu_up()
* so that IPI vectors are set up on the booting CPU before
* it is marked online in native_cpu_up().
*/
rc = xen_smp_intr_init(cpu);
WARN_ON(rc);
if (!rc)
rc = native_cpu_up(cpu, tidle);
/*
* We must initialize the slowpath CPU kicker _after_ the native
* path has executed. If we initialized it before none of the
* unlocker IPI kicks would reach the booting CPU as the booting
* CPU had not set itself 'online' in cpu_online_mask. That mask
* is checked when IPIs are sent (on HVM at least).
*/
xen_init_lock_cpu(cpu);
return rc;
}
static void xen_hvm_cpu_die(unsigned int cpu)
{
xen_cpu_die(cpu);
native_cpu_die(cpu);
}
void __init xen_hvm_smp_init(void)
{
if (!xen_have_vector_callback)
return;
smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
smp_ops.cpu_up = xen_hvm_cpu_up;
smp_ops.cpu_die = xen_hvm_cpu_die;
smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
}