linux_old1/fs/xfs/xfs_dir_leaf.c

2214 lines
64 KiB
C

/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_bmap.h"
#include "xfs_dir_leaf.h"
#include "xfs_error.h"
/*
* xfs_dir_leaf.c
*
* Routines to implement leaf blocks of directories as Btrees of hashed names.
*/
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Routines used for growing the Btree.
*/
STATIC void xfs_dir_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args,
int insertion_index,
int freemap_index);
STATIC int xfs_dir_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer,
int musthave, int justcheck);
STATIC void xfs_dir_leaf_rebalance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2);
STATIC int xfs_dir_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *leaf_blk_1,
xfs_da_state_blk_t *leaf_blk_2,
int *number_entries_in_blk1,
int *number_namebytes_in_blk1);
STATIC int xfs_dir_leaf_create(struct xfs_da_args *args,
xfs_dablk_t which_block,
struct xfs_dabuf **bpp);
/*
* Utility routines.
*/
STATIC void xfs_dir_leaf_moveents(xfs_dir_leafblock_t *src_leaf,
int src_start,
xfs_dir_leafblock_t *dst_leaf,
int dst_start, int move_count,
xfs_mount_t *mp);
/*========================================================================
* External routines when dirsize < XFS_IFORK_DSIZE(dp).
*========================================================================*/
/*
* Validate a given inode number.
*/
int
xfs_dir_ino_validate(xfs_mount_t *mp, xfs_ino_t ino)
{
xfs_agblock_t agblkno;
xfs_agino_t agino;
xfs_agnumber_t agno;
int ino_ok;
int ioff;
agno = XFS_INO_TO_AGNO(mp, ino);
agblkno = XFS_INO_TO_AGBNO(mp, ino);
ioff = XFS_INO_TO_OFFSET(mp, ino);
agino = XFS_OFFBNO_TO_AGINO(mp, agblkno, ioff);
ino_ok =
agno < mp->m_sb.sb_agcount &&
agblkno < mp->m_sb.sb_agblocks &&
agblkno != 0 &&
ioff < (1 << mp->m_sb.sb_inopblog) &&
XFS_AGINO_TO_INO(mp, agno, agino) == ino;
if (unlikely(XFS_TEST_ERROR(!ino_ok, mp, XFS_ERRTAG_DIR_INO_VALIDATE,
XFS_RANDOM_DIR_INO_VALIDATE))) {
xfs_fs_cmn_err(CE_WARN, mp, "Invalid inode number 0x%Lx",
(unsigned long long) ino);
XFS_ERROR_REPORT("xfs_dir_ino_validate", XFS_ERRLEVEL_LOW, mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
/*
* Create the initial contents of a shortform directory.
*/
int
xfs_dir_shortform_create(xfs_da_args_t *args, xfs_ino_t parent)
{
xfs_dir_sf_hdr_t *hdr;
xfs_inode_t *dp;
dp = args->dp;
ASSERT(dp != NULL);
ASSERT(dp->i_d.di_size == 0);
if (dp->i_d.di_format == XFS_DINODE_FMT_EXTENTS) {
dp->i_df.if_flags &= ~XFS_IFEXTENTS; /* just in case */
dp->i_d.di_format = XFS_DINODE_FMT_LOCAL;
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
dp->i_df.if_flags |= XFS_IFINLINE;
}
ASSERT(dp->i_df.if_flags & XFS_IFINLINE);
ASSERT(dp->i_df.if_bytes == 0);
xfs_idata_realloc(dp, sizeof(*hdr), XFS_DATA_FORK);
hdr = (xfs_dir_sf_hdr_t *)dp->i_df.if_u1.if_data;
XFS_DIR_SF_PUT_DIRINO(&parent, &hdr->parent);
hdr->count = 0;
dp->i_d.di_size = sizeof(*hdr);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_DDATA);
return 0;
}
/*
* Add a name to the shortform directory structure.
* Overflow from the inode has already been checked for.
*/
int
xfs_dir_shortform_addname(xfs_da_args_t *args)
{
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
int i, offset, size;
xfs_inode_t *dp;
dp = args->dp;
ASSERT(dp->i_df.if_flags & XFS_IFINLINE);
/*
* Catch the case where the conversion from shortform to leaf
* failed part way through.
*/
if (dp->i_d.di_size < sizeof(xfs_dir_sf_hdr_t)) {
ASSERT(XFS_FORCED_SHUTDOWN(dp->i_mount));
return XFS_ERROR(EIO);
}
ASSERT(dp->i_df.if_bytes == dp->i_d.di_size);
ASSERT(dp->i_df.if_u1.if_data != NULL);
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
sfe = &sf->list[0];
for (i = sf->hdr.count-1; i >= 0; i--) {
if (sfe->namelen == args->namelen &&
args->name[0] == sfe->name[0] &&
memcmp(args->name, sfe->name, args->namelen) == 0)
return XFS_ERROR(EEXIST);
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
}
offset = (int)((char *)sfe - (char *)sf);
size = XFS_DIR_SF_ENTSIZE_BYNAME(args->namelen);
xfs_idata_realloc(dp, size, XFS_DATA_FORK);
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
sfe = (xfs_dir_sf_entry_t *)((char *)sf + offset);
XFS_DIR_SF_PUT_DIRINO(&args->inumber, &sfe->inumber);
sfe->namelen = args->namelen;
memcpy(sfe->name, args->name, sfe->namelen);
sf->hdr.count++;
dp->i_d.di_size += size;
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_DDATA);
return 0;
}
/*
* Remove a name from the shortform directory structure.
*/
int
xfs_dir_shortform_removename(xfs_da_args_t *args)
{
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
int base, size = 0, i;
xfs_inode_t *dp;
dp = args->dp;
ASSERT(dp->i_df.if_flags & XFS_IFINLINE);
/*
* Catch the case where the conversion from shortform to leaf
* failed part way through.
*/
if (dp->i_d.di_size < sizeof(xfs_dir_sf_hdr_t)) {
ASSERT(XFS_FORCED_SHUTDOWN(dp->i_mount));
return XFS_ERROR(EIO);
}
ASSERT(dp->i_df.if_bytes == dp->i_d.di_size);
ASSERT(dp->i_df.if_u1.if_data != NULL);
base = sizeof(xfs_dir_sf_hdr_t);
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
sfe = &sf->list[0];
for (i = sf->hdr.count-1; i >= 0; i--) {
size = XFS_DIR_SF_ENTSIZE_BYENTRY(sfe);
if (sfe->namelen == args->namelen &&
sfe->name[0] == args->name[0] &&
memcmp(sfe->name, args->name, args->namelen) == 0)
break;
base += size;
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
}
if (i < 0) {
ASSERT(args->oknoent);
return XFS_ERROR(ENOENT);
}
if ((base + size) != dp->i_d.di_size) {
memmove(&((char *)sf)[base], &((char *)sf)[base+size],
dp->i_d.di_size - (base+size));
}
sf->hdr.count--;
xfs_idata_realloc(dp, -size, XFS_DATA_FORK);
dp->i_d.di_size -= size;
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_DDATA);
return 0;
}
/*
* Look up a name in a shortform directory structure.
*/
int
xfs_dir_shortform_lookup(xfs_da_args_t *args)
{
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
int i;
xfs_inode_t *dp;
dp = args->dp;
ASSERT(dp->i_df.if_flags & XFS_IFINLINE);
/*
* Catch the case where the conversion from shortform to leaf
* failed part way through.
*/
if (dp->i_d.di_size < sizeof(xfs_dir_sf_hdr_t)) {
ASSERT(XFS_FORCED_SHUTDOWN(dp->i_mount));
return XFS_ERROR(EIO);
}
ASSERT(dp->i_df.if_bytes == dp->i_d.di_size);
ASSERT(dp->i_df.if_u1.if_data != NULL);
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
if (args->namelen == 2 &&
args->name[0] == '.' && args->name[1] == '.') {
XFS_DIR_SF_GET_DIRINO(&sf->hdr.parent, &args->inumber);
return(XFS_ERROR(EEXIST));
}
if (args->namelen == 1 && args->name[0] == '.') {
args->inumber = dp->i_ino;
return(XFS_ERROR(EEXIST));
}
sfe = &sf->list[0];
for (i = sf->hdr.count-1; i >= 0; i--) {
if (sfe->namelen == args->namelen &&
sfe->name[0] == args->name[0] &&
memcmp(args->name, sfe->name, args->namelen) == 0) {
XFS_DIR_SF_GET_DIRINO(&sfe->inumber, &args->inumber);
return(XFS_ERROR(EEXIST));
}
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
}
ASSERT(args->oknoent);
return(XFS_ERROR(ENOENT));
}
/*
* Convert from using the shortform to the leaf.
*/
int
xfs_dir_shortform_to_leaf(xfs_da_args_t *iargs)
{
xfs_inode_t *dp;
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
xfs_da_args_t args;
xfs_ino_t inumber;
char *tmpbuffer;
int retval, i, size;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
dp = iargs->dp;
/*
* Catch the case where the conversion from shortform to leaf
* failed part way through.
*/
if (dp->i_d.di_size < sizeof(xfs_dir_sf_hdr_t)) {
ASSERT(XFS_FORCED_SHUTDOWN(dp->i_mount));
return XFS_ERROR(EIO);
}
ASSERT(dp->i_df.if_bytes == dp->i_d.di_size);
ASSERT(dp->i_df.if_u1.if_data != NULL);
size = dp->i_df.if_bytes;
tmpbuffer = kmem_alloc(size, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, dp->i_df.if_u1.if_data, size);
sf = (xfs_dir_shortform_t *)tmpbuffer;
XFS_DIR_SF_GET_DIRINO(&sf->hdr.parent, &inumber);
xfs_idata_realloc(dp, -size, XFS_DATA_FORK);
dp->i_d.di_size = 0;
xfs_trans_log_inode(iargs->trans, dp, XFS_ILOG_CORE);
retval = xfs_da_grow_inode(iargs, &blkno);
if (retval)
goto out;
ASSERT(blkno == 0);
retval = xfs_dir_leaf_create(iargs, blkno, &bp);
if (retval)
goto out;
xfs_da_buf_done(bp);
args.name = ".";
args.namelen = 1;
args.hashval = xfs_dir_hash_dot;
args.inumber = dp->i_ino;
args.dp = dp;
args.firstblock = iargs->firstblock;
args.flist = iargs->flist;
args.total = iargs->total;
args.whichfork = XFS_DATA_FORK;
args.trans = iargs->trans;
args.justcheck = 0;
args.addname = args.oknoent = 1;
retval = xfs_dir_leaf_addname(&args);
if (retval)
goto out;
args.name = "..";
args.namelen = 2;
args.hashval = xfs_dir_hash_dotdot;
args.inumber = inumber;
retval = xfs_dir_leaf_addname(&args);
if (retval)
goto out;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; i++) {
args.name = (char *)(sfe->name);
args.namelen = sfe->namelen;
args.hashval = xfs_da_hashname((char *)(sfe->name),
sfe->namelen);
XFS_DIR_SF_GET_DIRINO(&sfe->inumber, &args.inumber);
retval = xfs_dir_leaf_addname(&args);
if (retval)
goto out;
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
}
retval = 0;
out:
kmem_free(tmpbuffer, size);
return retval;
}
STATIC int
xfs_dir_shortform_compare(const void *a, const void *b)
{
xfs_dir_sf_sort_t *sa, *sb;
sa = (xfs_dir_sf_sort_t *)a;
sb = (xfs_dir_sf_sort_t *)b;
if (sa->hash < sb->hash)
return -1;
else if (sa->hash > sb->hash)
return 1;
else
return sa->entno - sb->entno;
}
/*
* Copy out directory entries for getdents(), for shortform directories.
*/
/*ARGSUSED*/
int
xfs_dir_shortform_getdents(xfs_inode_t *dp, uio_t *uio, int *eofp,
xfs_dirent_t *dbp, xfs_dir_put_t put)
{
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
int retval, i, sbsize, nsbuf, lastresid=0, want_entno;
xfs_mount_t *mp;
xfs_dahash_t cookhash, hash;
xfs_dir_put_args_t p;
xfs_dir_sf_sort_t *sbuf, *sbp;
mp = dp->i_mount;
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
cookhash = XFS_DA_COOKIE_HASH(mp, uio->uio_offset);
want_entno = XFS_DA_COOKIE_ENTRY(mp, uio->uio_offset);
nsbuf = sf->hdr.count + 2;
sbsize = (nsbuf + 1) * sizeof(*sbuf);
sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP);
xfs_dir_trace_g_du("sf: start", dp, uio);
/*
* Collect all the entries into the buffer.
* Entry 0 is .
*/
sbp->entno = 0;
sbp->seqno = 0;
sbp->hash = xfs_dir_hash_dot;
sbp->ino = dp->i_ino;
sbp->name = ".";
sbp->namelen = 1;
sbp++;
/*
* Entry 1 is ..
*/
sbp->entno = 1;
sbp->seqno = 0;
sbp->hash = xfs_dir_hash_dotdot;
sbp->ino = XFS_GET_DIR_INO8(sf->hdr.parent);
sbp->name = "..";
sbp->namelen = 2;
sbp++;
/*
* Scan the directory data for the rest of the entries.
*/
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
if (unlikely(
((char *)sfe < (char *)sf) ||
((char *)sfe >= ((char *)sf + dp->i_df.if_bytes)))) {
xfs_dir_trace_g_du("sf: corrupted", dp, uio);
XFS_CORRUPTION_ERROR("xfs_dir_shortform_getdents",
XFS_ERRLEVEL_LOW, mp, sfe);
kmem_free(sbuf, sbsize);
return XFS_ERROR(EFSCORRUPTED);
}
sbp->entno = i + 2;
sbp->seqno = 0;
sbp->hash = xfs_da_hashname((char *)sfe->name, sfe->namelen);
sbp->ino = XFS_GET_DIR_INO8(sfe->inumber);
sbp->name = (char *)sfe->name;
sbp->namelen = sfe->namelen;
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
sbp++;
}
/*
* Sort the entries on hash then entno.
*/
xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_dir_shortform_compare);
/*
* Stuff in last entry.
*/
sbp->entno = nsbuf;
sbp->hash = XFS_DA_MAXHASH;
sbp->seqno = 0;
/*
* Figure out the sequence numbers in case there's a hash duplicate.
*/
for (hash = sbuf->hash, sbp = sbuf + 1;
sbp < &sbuf[nsbuf + 1]; sbp++) {
if (sbp->hash == hash)
sbp->seqno = sbp[-1].seqno + 1;
else
hash = sbp->hash;
}
/*
* Set up put routine.
*/
p.dbp = dbp;
p.put = put;
p.uio = uio;
/*
* Find our place.
*/
for (sbp = sbuf; sbp < &sbuf[nsbuf + 1]; sbp++) {
if (sbp->hash > cookhash ||
(sbp->hash == cookhash && sbp->seqno >= want_entno))
break;
}
/*
* Did we fail to find anything? We stop at the last entry,
* the one we put maxhash into.
*/
if (sbp == &sbuf[nsbuf]) {
kmem_free(sbuf, sbsize);
xfs_dir_trace_g_du("sf: hash beyond end", dp, uio);
uio->uio_offset = XFS_DA_MAKE_COOKIE(mp, 0, 0, XFS_DA_MAXHASH);
*eofp = 1;
return 0;
}
/*
* Loop putting entries into the user buffer.
*/
while (sbp < &sbuf[nsbuf]) {
/*
* Save the first resid in a run of equal-hashval entries
* so that we can back them out if they don't all fit.
*/
if (sbp->seqno == 0 || sbp == sbuf)
lastresid = uio->uio_resid;
XFS_PUT_COOKIE(p.cook, mp, 0, sbp[1].seqno, sbp[1].hash);
p.ino = sbp->ino;
#if XFS_BIG_INUMS
p.ino += mp->m_inoadd;
#endif
p.name = sbp->name;
p.namelen = sbp->namelen;
retval = p.put(&p);
if (!p.done) {
uio->uio_offset =
XFS_DA_MAKE_COOKIE(mp, 0, 0, sbp->hash);
kmem_free(sbuf, sbsize);
uio->uio_resid = lastresid;
xfs_dir_trace_g_du("sf: E-O-B", dp, uio);
return retval;
}
sbp++;
}
kmem_free(sbuf, sbsize);
uio->uio_offset = p.cook.o;
*eofp = 1;
xfs_dir_trace_g_du("sf: E-O-F", dp, uio);
return 0;
}
/*
* Look up a name in a shortform directory structure, replace the inode number.
*/
int
xfs_dir_shortform_replace(xfs_da_args_t *args)
{
xfs_dir_shortform_t *sf;
xfs_dir_sf_entry_t *sfe;
xfs_inode_t *dp;
int i;
dp = args->dp;
ASSERT(dp->i_df.if_flags & XFS_IFINLINE);
/*
* Catch the case where the conversion from shortform to leaf
* failed part way through.
*/
if (dp->i_d.di_size < sizeof(xfs_dir_sf_hdr_t)) {
ASSERT(XFS_FORCED_SHUTDOWN(dp->i_mount));
return XFS_ERROR(EIO);
}
ASSERT(dp->i_df.if_bytes == dp->i_d.di_size);
ASSERT(dp->i_df.if_u1.if_data != NULL);
sf = (xfs_dir_shortform_t *)dp->i_df.if_u1.if_data;
if (args->namelen == 2 &&
args->name[0] == '.' && args->name[1] == '.') {
/* XXX - replace assert? */
XFS_DIR_SF_PUT_DIRINO(&args->inumber, &sf->hdr.parent);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_DDATA);
return 0;
}
ASSERT(args->namelen != 1 || args->name[0] != '.');
sfe = &sf->list[0];
for (i = sf->hdr.count-1; i >= 0; i--) {
if (sfe->namelen == args->namelen &&
sfe->name[0] == args->name[0] &&
memcmp(args->name, sfe->name, args->namelen) == 0) {
ASSERT(memcmp((char *)&args->inumber,
(char *)&sfe->inumber, sizeof(xfs_ino_t)));
XFS_DIR_SF_PUT_DIRINO(&args->inumber, &sfe->inumber);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_DDATA);
return 0;
}
sfe = XFS_DIR_SF_NEXTENTRY(sfe);
}
ASSERT(args->oknoent);
return XFS_ERROR(ENOENT);
}
/*
* Convert a leaf directory to shortform structure
*/
int
xfs_dir_leaf_to_shortform(xfs_da_args_t *iargs)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_hdr_t *hdr;
xfs_dir_leaf_entry_t *entry;
xfs_dir_leaf_name_t *namest;
xfs_da_args_t args;
xfs_inode_t *dp;
xfs_ino_t parent = 0;
char *tmpbuffer;
int retval, i;
xfs_dabuf_t *bp;
dp = iargs->dp;
tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
ASSERT(tmpbuffer != NULL);
retval = xfs_da_read_buf(iargs->trans, iargs->dp, 0, -1, &bp,
XFS_DATA_FORK);
if (retval)
goto out;
ASSERT(bp != NULL);
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount));
leaf = (xfs_dir_leafblock_t *)tmpbuffer;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
memset(bp->data, 0, XFS_LBSIZE(dp->i_mount));
/*
* Find and special case the parent inode number
*/
hdr = &leaf->hdr;
entry = &leaf->entries[0];
for (i = INT_GET(hdr->count, ARCH_CONVERT)-1; i >= 0; entry++, i--) {
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf, INT_GET(entry->nameidx, ARCH_CONVERT));
if ((entry->namelen == 2) &&
(namest->name[0] == '.') &&
(namest->name[1] == '.')) {
XFS_DIR_SF_GET_DIRINO(&namest->inumber, &parent);
entry->nameidx = 0;
} else if ((entry->namelen == 1) && (namest->name[0] == '.')) {
entry->nameidx = 0;
}
}
retval = xfs_da_shrink_inode(iargs, 0, bp);
if (retval)
goto out;
retval = xfs_dir_shortform_create(iargs, parent);
if (retval)
goto out;
/*
* Copy the rest of the filenames
*/
entry = &leaf->entries[0];
args.dp = dp;
args.firstblock = iargs->firstblock;
args.flist = iargs->flist;
args.total = iargs->total;
args.whichfork = XFS_DATA_FORK;
args.trans = iargs->trans;
args.justcheck = 0;
args.addname = args.oknoent = 1;
for (i = 0; i < INT_GET(hdr->count, ARCH_CONVERT); entry++, i++) {
if (!entry->nameidx)
continue;
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf, INT_GET(entry->nameidx, ARCH_CONVERT));
args.name = (char *)(namest->name);
args.namelen = entry->namelen;
args.hashval = INT_GET(entry->hashval, ARCH_CONVERT);
XFS_DIR_SF_GET_DIRINO(&namest->inumber, &args.inumber);
xfs_dir_shortform_addname(&args);
}
out:
kmem_free(tmpbuffer, XFS_LBSIZE(dp->i_mount));
return retval;
}
/*
* Convert from using a single leaf to a root node and a leaf.
*/
int
xfs_dir_leaf_to_node(xfs_da_args_t *args)
{
xfs_dir_leafblock_t *leaf;
xfs_da_intnode_t *node;
xfs_inode_t *dp;
xfs_dabuf_t *bp1, *bp2;
xfs_dablk_t blkno;
int retval;
dp = args->dp;
retval = xfs_da_grow_inode(args, &blkno);
ASSERT(blkno == 1);
if (retval)
return retval;
retval = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1,
XFS_DATA_FORK);
if (retval)
return retval;
ASSERT(bp1 != NULL);
retval = xfs_da_get_buf(args->trans, args->dp, 1, -1, &bp2,
XFS_DATA_FORK);
if (retval) {
xfs_da_buf_done(bp1);
return retval;
}
ASSERT(bp2 != NULL);
memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount));
xfs_da_buf_done(bp1);
xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1);
/*
* Set up the new root node.
*/
retval = xfs_da_node_create(args, 0, 1, &bp1, XFS_DATA_FORK);
if (retval) {
xfs_da_buf_done(bp2);
return retval;
}
node = bp1->data;
leaf = bp2->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
node->btree[0].hashval = cpu_to_be32(
INT_GET(leaf->entries[
INT_GET(leaf->hdr.count, ARCH_CONVERT)-1].hashval, ARCH_CONVERT));
xfs_da_buf_done(bp2);
node->btree[0].before = cpu_to_be32(blkno);
node->hdr.count = cpu_to_be16(1);
xfs_da_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(node, &node->btree[0], sizeof(node->btree[0])));
xfs_da_buf_done(bp1);
return retval;
}
/*========================================================================
* Routines used for growing the Btree.
*========================================================================*/
/*
* Create the initial contents of a leaf directory
* or a leaf in a node directory.
*/
STATIC int
xfs_dir_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_dabuf_t *bp;
int retval;
dp = args->dp;
ASSERT(dp != NULL);
retval = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp, XFS_DATA_FORK);
if (retval)
return retval;
ASSERT(bp != NULL);
leaf = bp->data;
memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount));
hdr = &leaf->hdr;
hdr->info.magic = cpu_to_be16(XFS_DIR_LEAF_MAGIC);
INT_SET(hdr->firstused, ARCH_CONVERT, XFS_LBSIZE(dp->i_mount));
if (!hdr->firstused)
INT_SET(hdr->firstused, ARCH_CONVERT, XFS_LBSIZE(dp->i_mount) - 1);
INT_SET(hdr->freemap[0].base, ARCH_CONVERT, sizeof(xfs_dir_leaf_hdr_t));
INT_SET(hdr->freemap[0].size, ARCH_CONVERT, INT_GET(hdr->firstused, ARCH_CONVERT) - INT_GET(hdr->freemap[0].base, ARCH_CONVERT));
xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1);
*bpp = bp;
return 0;
}
/*
* Split the leaf node, rebalance, then add the new entry.
*/
int
xfs_dir_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk,
xfs_da_state_blk_t *newblk)
{
xfs_dablk_t blkno;
xfs_da_args_t *args;
int error;
/*
* Allocate space for a new leaf node.
*/
args = state->args;
ASSERT(args != NULL);
ASSERT(oldblk->magic == XFS_DIR_LEAF_MAGIC);
error = xfs_da_grow_inode(args, &blkno);
if (error)
return error;
error = xfs_dir_leaf_create(args, blkno, &newblk->bp);
if (error)
return error;
newblk->blkno = blkno;
newblk->magic = XFS_DIR_LEAF_MAGIC;
/*
* Rebalance the entries across the two leaves.
*/
xfs_dir_leaf_rebalance(state, oldblk, newblk);
error = xfs_da_blk_link(state, oldblk, newblk);
if (error)
return error;
/*
* Insert the new entry in the correct block.
*/
if (state->inleaf) {
error = xfs_dir_leaf_add(oldblk->bp, args, oldblk->index);
} else {
error = xfs_dir_leaf_add(newblk->bp, args, newblk->index);
}
/*
* Update last hashval in each block since we added the name.
*/
oldblk->hashval = xfs_dir_leaf_lasthash(oldblk->bp, NULL);
newblk->hashval = xfs_dir_leaf_lasthash(newblk->bp, NULL);
return error;
}
/*
* Add a name to the leaf directory structure.
*
* Must take into account fragmented leaves and leaves where spacemap has
* lost some freespace information (ie: holes).
*/
int
xfs_dir_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args, int index)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_hdr_t *hdr;
xfs_dir_leaf_map_t *map;
int tablesize, entsize, sum, i, tmp, error;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
ASSERT((index >= 0) && (index <= INT_GET(leaf->hdr.count, ARCH_CONVERT)));
hdr = &leaf->hdr;
entsize = XFS_DIR_LEAF_ENTSIZE_BYNAME(args->namelen);
/*
* Search through freemap for first-fit on new name length.
* (may need to figure in size of entry struct too)
*/
tablesize = (INT_GET(hdr->count, ARCH_CONVERT) + 1) * (uint)sizeof(xfs_dir_leaf_entry_t)
+ (uint)sizeof(xfs_dir_leaf_hdr_t);
map = &hdr->freemap[XFS_DIR_LEAF_MAPSIZE-1];
for (sum = 0, i = XFS_DIR_LEAF_MAPSIZE-1; i >= 0; map--, i--) {
if (tablesize > INT_GET(hdr->firstused, ARCH_CONVERT)) {
sum += INT_GET(map->size, ARCH_CONVERT);
continue;
}
if (!map->size)
continue; /* no space in this map */
tmp = entsize;
if (INT_GET(map->base, ARCH_CONVERT) < INT_GET(hdr->firstused, ARCH_CONVERT))
tmp += (uint)sizeof(xfs_dir_leaf_entry_t);
if (INT_GET(map->size, ARCH_CONVERT) >= tmp) {
if (!args->justcheck)
xfs_dir_leaf_add_work(bp, args, index, i);
return 0;
}
sum += INT_GET(map->size, ARCH_CONVERT);
}
/*
* If there are no holes in the address space of the block,
* and we don't have enough freespace, then compaction will do us
* no good and we should just give up.
*/
if (!hdr->holes && (sum < entsize))
return XFS_ERROR(ENOSPC);
/*
* Compact the entries to coalesce free space.
* Pass the justcheck flag so the checking pass can return
* an error, without changing anything, if it won't fit.
*/
error = xfs_dir_leaf_compact(args->trans, bp,
args->total == 0 ?
entsize +
(uint)sizeof(xfs_dir_leaf_entry_t) : 0,
args->justcheck);
if (error)
return error;
/*
* After compaction, the block is guaranteed to have only one
* free region, in freemap[0]. If it is not big enough, give up.
*/
if (INT_GET(hdr->freemap[0].size, ARCH_CONVERT) <
(entsize + (uint)sizeof(xfs_dir_leaf_entry_t)))
return XFS_ERROR(ENOSPC);
if (!args->justcheck)
xfs_dir_leaf_add_work(bp, args, index, 0);
return 0;
}
/*
* Add a name to a leaf directory structure.
*/
STATIC void
xfs_dir_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int index,
int mapindex)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_hdr_t *hdr;
xfs_dir_leaf_entry_t *entry;
xfs_dir_leaf_name_t *namest;
xfs_dir_leaf_map_t *map;
/* REFERENCED */
xfs_mount_t *mp;
int tmp, i;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
hdr = &leaf->hdr;
ASSERT((mapindex >= 0) && (mapindex < XFS_DIR_LEAF_MAPSIZE));
ASSERT((index >= 0) && (index <= INT_GET(hdr->count, ARCH_CONVERT)));
/*
* Force open some space in the entry array and fill it in.
*/
entry = &leaf->entries[index];
if (index < INT_GET(hdr->count, ARCH_CONVERT)) {
tmp = INT_GET(hdr->count, ARCH_CONVERT) - index;
tmp *= (uint)sizeof(xfs_dir_leaf_entry_t);
memmove(entry + 1, entry, tmp);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + (uint)sizeof(*entry)));
}
INT_MOD(hdr->count, ARCH_CONVERT, +1);
/*
* Allocate space for the new string (at the end of the run).
*/
map = &hdr->freemap[mapindex];
mp = args->trans->t_mountp;
ASSERT(INT_GET(map->base, ARCH_CONVERT) < XFS_LBSIZE(mp));
ASSERT(INT_GET(map->size, ARCH_CONVERT) >= XFS_DIR_LEAF_ENTSIZE_BYNAME(args->namelen));
ASSERT(INT_GET(map->size, ARCH_CONVERT) < XFS_LBSIZE(mp));
INT_MOD(map->size, ARCH_CONVERT, -(XFS_DIR_LEAF_ENTSIZE_BYNAME(args->namelen)));
INT_SET(entry->nameidx, ARCH_CONVERT, INT_GET(map->base, ARCH_CONVERT) + INT_GET(map->size, ARCH_CONVERT));
INT_SET(entry->hashval, ARCH_CONVERT, args->hashval);
entry->namelen = args->namelen;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
/*
* Copy the string and inode number into the new space.
*/
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf, INT_GET(entry->nameidx, ARCH_CONVERT));
XFS_DIR_SF_PUT_DIRINO(&args->inumber, &namest->inumber);
memcpy(namest->name, args->name, args->namelen);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, namest, XFS_DIR_LEAF_ENTSIZE_BYENTRY(entry)));
/*
* Update the control info for this leaf node
*/
if (INT_GET(entry->nameidx, ARCH_CONVERT) < INT_GET(hdr->firstused, ARCH_CONVERT))
INT_COPY(hdr->firstused, entry->nameidx, ARCH_CONVERT);
ASSERT(INT_GET(hdr->firstused, ARCH_CONVERT) >= ((INT_GET(hdr->count, ARCH_CONVERT)*sizeof(*entry))+sizeof(*hdr)));
tmp = (INT_GET(hdr->count, ARCH_CONVERT)-1) * (uint)sizeof(xfs_dir_leaf_entry_t)
+ (uint)sizeof(xfs_dir_leaf_hdr_t);
map = &hdr->freemap[0];
for (i = 0; i < XFS_DIR_LEAF_MAPSIZE; map++, i++) {
if (INT_GET(map->base, ARCH_CONVERT) == tmp) {
INT_MOD(map->base, ARCH_CONVERT, (uint)sizeof(xfs_dir_leaf_entry_t));
INT_MOD(map->size, ARCH_CONVERT, -((uint)sizeof(xfs_dir_leaf_entry_t)));
}
}
INT_MOD(hdr->namebytes, ARCH_CONVERT, args->namelen);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
}
/*
* Garbage collect a leaf directory block by copying it to a new buffer.
*/
STATIC int
xfs_dir_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp, int musthave,
int justcheck)
{
xfs_dir_leafblock_t *leaf_s, *leaf_d;
xfs_dir_leaf_hdr_t *hdr_s, *hdr_d;
xfs_mount_t *mp;
char *tmpbuffer;
char *tmpbuffer2=NULL;
int rval;
int lbsize;
mp = trans->t_mountp;
lbsize = XFS_LBSIZE(mp);
tmpbuffer = kmem_alloc(lbsize, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, bp->data, lbsize);
/*
* Make a second copy in case xfs_dir_leaf_moveents()
* below destroys the original.
*/
if (musthave || justcheck) {
tmpbuffer2 = kmem_alloc(lbsize, KM_SLEEP);
memcpy(tmpbuffer2, bp->data, lbsize);
}
memset(bp->data, 0, lbsize);
/*
* Copy basic information
*/
leaf_s = (xfs_dir_leafblock_t *)tmpbuffer;
leaf_d = bp->data;
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
hdr_d->info = hdr_s->info; /* struct copy */
INT_SET(hdr_d->firstused, ARCH_CONVERT, lbsize);
if (!hdr_d->firstused)
INT_SET(hdr_d->firstused, ARCH_CONVERT, lbsize - 1);
hdr_d->namebytes = 0;
hdr_d->count = 0;
hdr_d->holes = 0;
INT_SET(hdr_d->freemap[0].base, ARCH_CONVERT, sizeof(xfs_dir_leaf_hdr_t));
INT_SET(hdr_d->freemap[0].size, ARCH_CONVERT, INT_GET(hdr_d->firstused, ARCH_CONVERT) - INT_GET(hdr_d->freemap[0].base, ARCH_CONVERT));
/*
* Copy all entry's in the same (sorted) order,
* but allocate filenames packed and in sequence.
* This changes the source (leaf_s) as well.
*/
xfs_dir_leaf_moveents(leaf_s, 0, leaf_d, 0, (int)INT_GET(hdr_s->count, ARCH_CONVERT), mp);
if (musthave && INT_GET(hdr_d->freemap[0].size, ARCH_CONVERT) < musthave)
rval = XFS_ERROR(ENOSPC);
else
rval = 0;
if (justcheck || rval == ENOSPC) {
ASSERT(tmpbuffer2);
memcpy(bp->data, tmpbuffer2, lbsize);
} else {
xfs_da_log_buf(trans, bp, 0, lbsize - 1);
}
kmem_free(tmpbuffer, lbsize);
if (musthave || justcheck)
kmem_free(tmpbuffer2, lbsize);
return rval;
}
/*
* Redistribute the directory entries between two leaf nodes,
* taking into account the size of the new entry.
*
* NOTE: if new block is empty, then it will get the upper half of old block.
*/
STATIC void
xfs_dir_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2)
{
xfs_da_state_blk_t *tmp_blk;
xfs_dir_leafblock_t *leaf1, *leaf2;
xfs_dir_leaf_hdr_t *hdr1, *hdr2;
int count, totallen, max, space, swap;
/*
* Set up environment.
*/
ASSERT(blk1->magic == XFS_DIR_LEAF_MAGIC);
ASSERT(blk2->magic == XFS_DIR_LEAF_MAGIC);
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
/*
* Check ordering of blocks, reverse if it makes things simpler.
*/
swap = 0;
if (xfs_dir_leaf_order(blk1->bp, blk2->bp)) {
tmp_blk = blk1;
blk1 = blk2;
blk2 = tmp_blk;
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
swap = 1;
}
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum. Then get
* the direction to copy and the number of elements to move.
*/
state->inleaf = xfs_dir_leaf_figure_balance(state, blk1, blk2,
&count, &totallen);
if (swap)
state->inleaf = !state->inleaf;
/*
* Move any entries required from leaf to leaf:
*/
if (count < INT_GET(hdr1->count, ARCH_CONVERT)) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
count = INT_GET(hdr1->count, ARCH_CONVERT) - count; /* number entries being moved */
space = INT_GET(hdr1->namebytes, ARCH_CONVERT) - totallen;
space += count * ((uint)sizeof(xfs_dir_leaf_name_t)-1);
space += count * (uint)sizeof(xfs_dir_leaf_entry_t);
/*
* leaf2 is the destination, compact it if it looks tight.
*/
max = INT_GET(hdr2->firstused, ARCH_CONVERT) - (uint)sizeof(xfs_dir_leaf_hdr_t);
max -= INT_GET(hdr2->count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t);
if (space > max) {
xfs_dir_leaf_compact(state->args->trans, blk2->bp,
0, 0);
}
/*
* Move high entries from leaf1 to low end of leaf2.
*/
xfs_dir_leaf_moveents(leaf1, INT_GET(hdr1->count, ARCH_CONVERT) - count,
leaf2, 0, count, state->mp);
xfs_da_log_buf(state->args->trans, blk1->bp, 0,
state->blocksize-1);
xfs_da_log_buf(state->args->trans, blk2->bp, 0,
state->blocksize-1);
} else if (count > INT_GET(hdr1->count, ARCH_CONVERT)) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
count -= INT_GET(hdr1->count, ARCH_CONVERT); /* number entries being moved */
space = totallen - INT_GET(hdr1->namebytes, ARCH_CONVERT);
space += count * ((uint)sizeof(xfs_dir_leaf_name_t)-1);
space += count * (uint)sizeof(xfs_dir_leaf_entry_t);
/*
* leaf1 is the destination, compact it if it looks tight.
*/
max = INT_GET(hdr1->firstused, ARCH_CONVERT) - (uint)sizeof(xfs_dir_leaf_hdr_t);
max -= INT_GET(hdr1->count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t);
if (space > max) {
xfs_dir_leaf_compact(state->args->trans, blk1->bp,
0, 0);
}
/*
* Move low entries from leaf2 to high end of leaf1.
*/
xfs_dir_leaf_moveents(leaf2, 0, leaf1, (int)INT_GET(hdr1->count, ARCH_CONVERT),
count, state->mp);
xfs_da_log_buf(state->args->trans, blk1->bp, 0,
state->blocksize-1);
xfs_da_log_buf(state->args->trans, blk2->bp, 0,
state->blocksize-1);
}
/*
* Copy out last hashval in each block for B-tree code.
*/
blk1->hashval = INT_GET(leaf1->entries[ INT_GET(leaf1->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT);
blk2->hashval = INT_GET(leaf2->entries[ INT_GET(leaf2->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT);
/*
* Adjust the expected index for insertion.
* GROT: this doesn't work unless blk2 was originally empty.
*/
if (!state->inleaf) {
blk2->index = blk1->index - INT_GET(leaf1->hdr.count, ARCH_CONVERT);
}
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
* GROT: Is this really necessary? With other than a 512 byte blocksize,
* GROT: there will always be enough room in either block for a new entry.
* GROT: Do a double-split for this case?
*/
STATIC int
xfs_dir_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2,
int *countarg, int *namebytesarg)
{
xfs_dir_leafblock_t *leaf1, *leaf2;
xfs_dir_leaf_hdr_t *hdr1, *hdr2;
xfs_dir_leaf_entry_t *entry;
int count, max, totallen, half;
int lastdelta, foundit, tmp;
/*
* Set up environment.
*/
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
foundit = 0;
totallen = 0;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
*/
max = INT_GET(hdr1->count, ARCH_CONVERT) + INT_GET(hdr2->count, ARCH_CONVERT);
half = (max+1) * (uint)(sizeof(*entry)+sizeof(xfs_dir_leaf_entry_t)-1);
half += INT_GET(hdr1->namebytes, ARCH_CONVERT) + INT_GET(hdr2->namebytes, ARCH_CONVERT) + state->args->namelen;
half /= 2;
lastdelta = state->blocksize;
entry = &leaf1->entries[0];
for (count = 0; count < max; entry++, count++) {
#define XFS_DIR_ABS(A) (((A) < 0) ? -(A) : (A))
/*
* The new entry is in the first block, account for it.
*/
if (count == blk1->index) {
tmp = totallen + (uint)sizeof(*entry)
+ XFS_DIR_LEAF_ENTSIZE_BYNAME(state->args->namelen);
if (XFS_DIR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_DIR_ABS(half - tmp);
totallen = tmp;
foundit = 1;
}
/*
* Wrap around into the second block if necessary.
*/
if (count == INT_GET(hdr1->count, ARCH_CONVERT)) {
leaf1 = leaf2;
entry = &leaf1->entries[0];
}
/*
* Figure out if next leaf entry would be too much.
*/
tmp = totallen + (uint)sizeof(*entry)
+ XFS_DIR_LEAF_ENTSIZE_BYENTRY(entry);
if (XFS_DIR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_DIR_ABS(half - tmp);
totallen = tmp;
#undef XFS_DIR_ABS
}
/*
* Calculate the number of namebytes that will end up in lower block.
* If new entry not in lower block, fix up the count.
*/
totallen -=
count * (uint)(sizeof(*entry)+sizeof(xfs_dir_leaf_entry_t)-1);
if (foundit) {
totallen -= (sizeof(*entry)+sizeof(xfs_dir_leaf_entry_t)-1) +
state->args->namelen;
}
*countarg = count;
*namebytesarg = totallen;
return foundit;
}
/*========================================================================
* Routines used for shrinking the Btree.
*========================================================================*/
/*
* Check a leaf block and its neighbors to see if the block should be
* collapsed into one or the other neighbor. Always keep the block
* with the smaller block number.
* If the current block is over 50% full, don't try to join it, return 0.
* If the block is empty, fill in the state structure and return 2.
* If it can be collapsed, fill in the state structure and return 1.
* If nothing can be done, return 0.
*/
int
xfs_dir_leaf_toosmall(xfs_da_state_t *state, int *action)
{
xfs_dir_leafblock_t *leaf;
xfs_da_state_blk_t *blk;
xfs_da_blkinfo_t *info;
int count, bytes, forward, error, retval, i;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
/*
* Check for the degenerate case of the block being over 50% full.
* If so, it's not worth even looking to see if we might be able
* to coalesce with a sibling.
*/
blk = &state->path.blk[ state->path.active-1 ];
info = blk->bp->data;
ASSERT(be16_to_cpu(info->magic) == XFS_DIR_LEAF_MAGIC);
leaf = (xfs_dir_leafblock_t *)info;
count = INT_GET(leaf->hdr.count, ARCH_CONVERT);
bytes = (uint)sizeof(xfs_dir_leaf_hdr_t) +
count * (uint)sizeof(xfs_dir_leaf_entry_t) +
count * ((uint)sizeof(xfs_dir_leaf_name_t)-1) +
INT_GET(leaf->hdr.namebytes, ARCH_CONVERT);
if (bytes > (state->blocksize >> 1)) {
*action = 0; /* blk over 50%, don't try to join */
return 0;
}
/*
* Check for the degenerate case of the block being empty.
* If the block is empty, we'll simply delete it, no need to
* coalesce it with a sibling block. We choose (aribtrarily)
* to merge with the forward block unless it is NULL.
*/
if (count == 0) {
/*
* Make altpath point to the block we want to keep and
* path point to the block we want to drop (this one).
*/
forward = (info->forw != 0);
memcpy(&state->altpath, &state->path, sizeof(state->path));
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 2;
}
return 0;
}
/*
* Examine each sibling block to see if we can coalesce with
* at least 25% free space to spare. We need to figure out
* whether to merge with the forward or the backward block.
* We prefer coalescing with the lower numbered sibling so as
* to shrink a directory over time.
*/
forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back)); /* start with smaller blk num */
for (i = 0; i < 2; forward = !forward, i++) {
if (forward)
blkno = be32_to_cpu(info->forw);
else
blkno = be32_to_cpu(info->back);
if (blkno == 0)
continue;
error = xfs_da_read_buf(state->args->trans, state->args->dp,
blkno, -1, &bp,
XFS_DATA_FORK);
if (error)
return error;
ASSERT(bp != NULL);
leaf = (xfs_dir_leafblock_t *)info;
count = INT_GET(leaf->hdr.count, ARCH_CONVERT);
bytes = state->blocksize - (state->blocksize>>2);
bytes -= INT_GET(leaf->hdr.namebytes, ARCH_CONVERT);
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
count += INT_GET(leaf->hdr.count, ARCH_CONVERT);
bytes -= INT_GET(leaf->hdr.namebytes, ARCH_CONVERT);
bytes -= count * ((uint)sizeof(xfs_dir_leaf_name_t) - 1);
bytes -= count * (uint)sizeof(xfs_dir_leaf_entry_t);
bytes -= (uint)sizeof(xfs_dir_leaf_hdr_t);
if (bytes >= 0)
break; /* fits with at least 25% to spare */
xfs_da_brelse(state->args->trans, bp);
}
if (i >= 2) {
*action = 0;
return 0;
}
xfs_da_buf_done(bp);
/*
* Make altpath point to the block we want to keep (the lower
* numbered block) and path point to the block we want to drop.
*/
memcpy(&state->altpath, &state->path, sizeof(state->path));
if (blkno < blk->blkno) {
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
} else {
error = xfs_da_path_shift(state, &state->path, forward,
0, &retval);
}
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 1;
}
return 0;
}
/*
* Remove a name from the leaf directory structure.
*
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
* If two leaves are 37% full, when combined they will leave 25% free.
*/
int
xfs_dir_leaf_remove(xfs_trans_t *trans, xfs_dabuf_t *bp, int index)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_hdr_t *hdr;
xfs_dir_leaf_map_t *map;
xfs_dir_leaf_entry_t *entry;
xfs_dir_leaf_name_t *namest;
int before, after, smallest, entsize;
int tablesize, tmp, i;
xfs_mount_t *mp;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
hdr = &leaf->hdr;
mp = trans->t_mountp;
ASSERT((INT_GET(hdr->count, ARCH_CONVERT) > 0) && (INT_GET(hdr->count, ARCH_CONVERT) < (XFS_LBSIZE(mp)/8)));
ASSERT((index >= 0) && (index < INT_GET(hdr->count, ARCH_CONVERT)));
ASSERT(INT_GET(hdr->firstused, ARCH_CONVERT) >= ((INT_GET(hdr->count, ARCH_CONVERT)*sizeof(*entry))+sizeof(*hdr)));
entry = &leaf->entries[index];
ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) >= INT_GET(hdr->firstused, ARCH_CONVERT));
ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) < XFS_LBSIZE(mp));
/*
* Scan through free region table:
* check for adjacency of free'd entry with an existing one,
* find smallest free region in case we need to replace it,
* adjust any map that borders the entry table,
*/
tablesize = INT_GET(hdr->count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t)
+ (uint)sizeof(xfs_dir_leaf_hdr_t);
map = &hdr->freemap[0];
tmp = INT_GET(map->size, ARCH_CONVERT);
before = after = -1;
smallest = XFS_DIR_LEAF_MAPSIZE - 1;
entsize = XFS_DIR_LEAF_ENTSIZE_BYENTRY(entry);
for (i = 0; i < XFS_DIR_LEAF_MAPSIZE; map++, i++) {
ASSERT(INT_GET(map->base, ARCH_CONVERT) < XFS_LBSIZE(mp));
ASSERT(INT_GET(map->size, ARCH_CONVERT) < XFS_LBSIZE(mp));
if (INT_GET(map->base, ARCH_CONVERT) == tablesize) {
INT_MOD(map->base, ARCH_CONVERT, -((uint)sizeof(xfs_dir_leaf_entry_t)));
INT_MOD(map->size, ARCH_CONVERT, (uint)sizeof(xfs_dir_leaf_entry_t));
}
if ((INT_GET(map->base, ARCH_CONVERT) + INT_GET(map->size, ARCH_CONVERT)) == INT_GET(entry->nameidx, ARCH_CONVERT)) {
before = i;
} else if (INT_GET(map->base, ARCH_CONVERT) == (INT_GET(entry->nameidx, ARCH_CONVERT) + entsize)) {
after = i;
} else if (INT_GET(map->size, ARCH_CONVERT) < tmp) {
tmp = INT_GET(map->size, ARCH_CONVERT);
smallest = i;
}
}
/*
* Coalesce adjacent freemap regions,
* or replace the smallest region.
*/
if ((before >= 0) || (after >= 0)) {
if ((before >= 0) && (after >= 0)) {
map = &hdr->freemap[before];
INT_MOD(map->size, ARCH_CONVERT, entsize);
INT_MOD(map->size, ARCH_CONVERT, INT_GET(hdr->freemap[after].size, ARCH_CONVERT));
hdr->freemap[after].base = 0;
hdr->freemap[after].size = 0;
} else if (before >= 0) {
map = &hdr->freemap[before];
INT_MOD(map->size, ARCH_CONVERT, entsize);
} else {
map = &hdr->freemap[after];
INT_COPY(map->base, entry->nameidx, ARCH_CONVERT);
INT_MOD(map->size, ARCH_CONVERT, entsize);
}
} else {
/*
* Replace smallest region (if it is smaller than free'd entry)
*/
map = &hdr->freemap[smallest];
if (INT_GET(map->size, ARCH_CONVERT) < entsize) {
INT_COPY(map->base, entry->nameidx, ARCH_CONVERT);
INT_SET(map->size, ARCH_CONVERT, entsize);
}
}
/*
* Did we remove the first entry?
*/
if (INT_GET(entry->nameidx, ARCH_CONVERT) == INT_GET(hdr->firstused, ARCH_CONVERT))
smallest = 1;
else
smallest = 0;
/*
* Compress the remaining entries and zero out the removed stuff.
*/
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf, INT_GET(entry->nameidx, ARCH_CONVERT));
memset((char *)namest, 0, entsize);
xfs_da_log_buf(trans, bp, XFS_DA_LOGRANGE(leaf, namest, entsize));
INT_MOD(hdr->namebytes, ARCH_CONVERT, -(entry->namelen));
tmp = (INT_GET(hdr->count, ARCH_CONVERT) - index) * (uint)sizeof(xfs_dir_leaf_entry_t);
memmove(entry, entry + 1, tmp);
INT_MOD(hdr->count, ARCH_CONVERT, -1);
xfs_da_log_buf(trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + (uint)sizeof(*entry)));
entry = &leaf->entries[INT_GET(hdr->count, ARCH_CONVERT)];
memset((char *)entry, 0, sizeof(xfs_dir_leaf_entry_t));
/*
* If we removed the first entry, re-find the first used byte
* in the name area. Note that if the entry was the "firstused",
* then we don't have a "hole" in our block resulting from
* removing the name.
*/
if (smallest) {
tmp = XFS_LBSIZE(mp);
entry = &leaf->entries[0];
for (i = INT_GET(hdr->count, ARCH_CONVERT)-1; i >= 0; entry++, i--) {
ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) >= INT_GET(hdr->firstused, ARCH_CONVERT));
ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) < XFS_LBSIZE(mp));
if (INT_GET(entry->nameidx, ARCH_CONVERT) < tmp)
tmp = INT_GET(entry->nameidx, ARCH_CONVERT);
}
INT_SET(hdr->firstused, ARCH_CONVERT, tmp);
if (!hdr->firstused)
INT_SET(hdr->firstused, ARCH_CONVERT, tmp - 1);
} else {
hdr->holes = 1; /* mark as needing compaction */
}
xfs_da_log_buf(trans, bp, XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
/*
* Check if leaf is less than 50% full, caller may want to
* "join" the leaf with a sibling if so.
*/
tmp = (uint)sizeof(xfs_dir_leaf_hdr_t);
tmp += INT_GET(leaf->hdr.count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t);
tmp += INT_GET(leaf->hdr.count, ARCH_CONVERT) * ((uint)sizeof(xfs_dir_leaf_name_t) - 1);
tmp += INT_GET(leaf->hdr.namebytes, ARCH_CONVERT);
if (tmp < mp->m_dir_magicpct)
return 1; /* leaf is < 37% full */
return 0;
}
/*
* Move all the directory entries from drop_leaf into save_leaf.
*/
void
xfs_dir_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk,
xfs_da_state_blk_t *save_blk)
{
xfs_dir_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf;
xfs_dir_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr;
xfs_mount_t *mp;
char *tmpbuffer;
/*
* Set up environment.
*/
mp = state->mp;
ASSERT(drop_blk->magic == XFS_DIR_LEAF_MAGIC);
ASSERT(save_blk->magic == XFS_DIR_LEAF_MAGIC);
drop_leaf = drop_blk->bp->data;
save_leaf = save_blk->bp->data;
ASSERT(be16_to_cpu(drop_leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
ASSERT(be16_to_cpu(save_leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
drop_hdr = &drop_leaf->hdr;
save_hdr = &save_leaf->hdr;
/*
* Save last hashval from dying block for later Btree fixup.
*/
drop_blk->hashval = INT_GET(drop_leaf->entries[ drop_leaf->hdr.count-1 ].hashval, ARCH_CONVERT);
/*
* Check if we need a temp buffer, or can we do it in place.
* Note that we don't check "leaf" for holes because we will
* always be dropping it, toosmall() decided that for us already.
*/
if (save_hdr->holes == 0) {
/*
* dest leaf has no holes, so we add there. May need
* to make some room in the entry array.
*/
if (xfs_dir_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_dir_leaf_moveents(drop_leaf, 0, save_leaf, 0,
(int)INT_GET(drop_hdr->count, ARCH_CONVERT), mp);
} else {
xfs_dir_leaf_moveents(drop_leaf, 0,
save_leaf, INT_GET(save_hdr->count, ARCH_CONVERT),
(int)INT_GET(drop_hdr->count, ARCH_CONVERT), mp);
}
} else {
/*
* Destination has holes, so we make a temporary copy
* of the leaf and add them both to that.
*/
tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memset(tmpbuffer, 0, state->blocksize);
tmp_leaf = (xfs_dir_leafblock_t *)tmpbuffer;
tmp_hdr = &tmp_leaf->hdr;
tmp_hdr->info = save_hdr->info; /* struct copy */
tmp_hdr->count = 0;
INT_SET(tmp_hdr->firstused, ARCH_CONVERT, state->blocksize);
if (!tmp_hdr->firstused)
INT_SET(tmp_hdr->firstused, ARCH_CONVERT, state->blocksize - 1);
tmp_hdr->namebytes = 0;
if (xfs_dir_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_dir_leaf_moveents(drop_leaf, 0, tmp_leaf, 0,
(int)INT_GET(drop_hdr->count, ARCH_CONVERT), mp);
xfs_dir_leaf_moveents(save_leaf, 0,
tmp_leaf, INT_GET(tmp_leaf->hdr.count, ARCH_CONVERT),
(int)INT_GET(save_hdr->count, ARCH_CONVERT), mp);
} else {
xfs_dir_leaf_moveents(save_leaf, 0, tmp_leaf, 0,
(int)INT_GET(save_hdr->count, ARCH_CONVERT), mp);
xfs_dir_leaf_moveents(drop_leaf, 0,
tmp_leaf, INT_GET(tmp_leaf->hdr.count, ARCH_CONVERT),
(int)INT_GET(drop_hdr->count, ARCH_CONVERT), mp);
}
memcpy(save_leaf, tmp_leaf, state->blocksize);
kmem_free(tmpbuffer, state->blocksize);
}
xfs_da_log_buf(state->args->trans, save_blk->bp, 0,
state->blocksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
save_blk->hashval = INT_GET(save_leaf->entries[ INT_GET(save_leaf->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT);
}
/*========================================================================
* Routines used for finding things in the Btree.
*========================================================================*/
/*
* Look up a name in a leaf directory structure.
* This is the internal routine, it uses the caller's buffer.
*
* Note that duplicate keys are allowed, but only check within the
* current leaf node. The Btree code must check in adjacent leaf nodes.
*
* Return in *index the index into the entry[] array of either the found
* entry, or where the entry should have been (insert before that entry).
*
* Don't change the args->inumber unless we find the filename.
*/
int
xfs_dir_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args, int *index)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_entry_t *entry;
xfs_dir_leaf_name_t *namest;
int probe, span;
xfs_dahash_t hashval;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
ASSERT(INT_GET(leaf->hdr.count, ARCH_CONVERT) < (XFS_LBSIZE(args->dp->i_mount)/8));
/*
* Binary search. (note: small blocks will skip this loop)
*/
hashval = args->hashval;
probe = span = INT_GET(leaf->hdr.count, ARCH_CONVERT) / 2;
for (entry = &leaf->entries[probe]; span > 4;
entry = &leaf->entries[probe]) {
span /= 2;
if (INT_GET(entry->hashval, ARCH_CONVERT) < hashval)
probe += span;
else if (INT_GET(entry->hashval, ARCH_CONVERT) > hashval)
probe -= span;
else
break;
}
ASSERT((probe >= 0) && \
((!leaf->hdr.count) || (probe < INT_GET(leaf->hdr.count, ARCH_CONVERT))));
ASSERT((span <= 4) || (INT_GET(entry->hashval, ARCH_CONVERT) == hashval));
/*
* Since we may have duplicate hashval's, find the first matching
* hashval in the leaf.
*/
while ((probe > 0) && (INT_GET(entry->hashval, ARCH_CONVERT) >= hashval)) {
entry--;
probe--;
}
while ((probe < INT_GET(leaf->hdr.count, ARCH_CONVERT)) && (INT_GET(entry->hashval, ARCH_CONVERT) < hashval)) {
entry++;
probe++;
}
if ((probe == INT_GET(leaf->hdr.count, ARCH_CONVERT)) || (INT_GET(entry->hashval, ARCH_CONVERT) != hashval)) {
*index = probe;
ASSERT(args->oknoent);
return XFS_ERROR(ENOENT);
}
/*
* Duplicate keys may be present, so search all of them for a match.
*/
while ((probe < INT_GET(leaf->hdr.count, ARCH_CONVERT)) && (INT_GET(entry->hashval, ARCH_CONVERT) == hashval)) {
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf, INT_GET(entry->nameidx, ARCH_CONVERT));
if (entry->namelen == args->namelen &&
namest->name[0] == args->name[0] &&
memcmp(args->name, namest->name, args->namelen) == 0) {
XFS_DIR_SF_GET_DIRINO(&namest->inumber, &args->inumber);
*index = probe;
return XFS_ERROR(EEXIST);
}
entry++;
probe++;
}
*index = probe;
ASSERT(probe == INT_GET(leaf->hdr.count, ARCH_CONVERT) || args->oknoent);
return XFS_ERROR(ENOENT);
}
/*========================================================================
* Utility routines.
*========================================================================*/
/*
* Move the indicated entries from one leaf to another.
* NOTE: this routine modifies both source and destination leaves.
*/
/* ARGSUSED */
STATIC void
xfs_dir_leaf_moveents(xfs_dir_leafblock_t *leaf_s, int start_s,
xfs_dir_leafblock_t *leaf_d, int start_d,
int count, xfs_mount_t *mp)
{
xfs_dir_leaf_hdr_t *hdr_s, *hdr_d;
xfs_dir_leaf_entry_t *entry_s, *entry_d;
int tmp, i;
/*
* Check for nothing to do.
*/
if (count == 0)
return;
/*
* Set up environment.
*/
ASSERT(be16_to_cpu(leaf_s->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf_d->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
ASSERT((INT_GET(hdr_s->count, ARCH_CONVERT) > 0) && (INT_GET(hdr_s->count, ARCH_CONVERT) < (XFS_LBSIZE(mp)/8)));
ASSERT(INT_GET(hdr_s->firstused, ARCH_CONVERT) >=
((INT_GET(hdr_s->count, ARCH_CONVERT)*sizeof(*entry_s))+sizeof(*hdr_s)));
ASSERT(INT_GET(hdr_d->count, ARCH_CONVERT) < (XFS_LBSIZE(mp)/8));
ASSERT(INT_GET(hdr_d->firstused, ARCH_CONVERT) >=
((INT_GET(hdr_d->count, ARCH_CONVERT)*sizeof(*entry_d))+sizeof(*hdr_d)));
ASSERT(start_s < INT_GET(hdr_s->count, ARCH_CONVERT));
ASSERT(start_d <= INT_GET(hdr_d->count, ARCH_CONVERT));
ASSERT(count <= INT_GET(hdr_s->count, ARCH_CONVERT));
/*
* Move the entries in the destination leaf up to make a hole?
*/
if (start_d < INT_GET(hdr_d->count, ARCH_CONVERT)) {
tmp = INT_GET(hdr_d->count, ARCH_CONVERT) - start_d;
tmp *= (uint)sizeof(xfs_dir_leaf_entry_t);
entry_s = &leaf_d->entries[start_d];
entry_d = &leaf_d->entries[start_d + count];
memcpy(entry_d, entry_s, tmp);
}
/*
* Copy all entry's in the same (sorted) order,
* but allocate filenames packed and in sequence.
*/
entry_s = &leaf_s->entries[start_s];
entry_d = &leaf_d->entries[start_d];
for (i = 0; i < count; entry_s++, entry_d++, i++) {
ASSERT(INT_GET(entry_s->nameidx, ARCH_CONVERT) >= INT_GET(hdr_s->firstused, ARCH_CONVERT));
tmp = XFS_DIR_LEAF_ENTSIZE_BYENTRY(entry_s);
INT_MOD(hdr_d->firstused, ARCH_CONVERT, -(tmp));
entry_d->hashval = entry_s->hashval; /* INT_: direct copy */
INT_COPY(entry_d->nameidx, hdr_d->firstused, ARCH_CONVERT);
entry_d->namelen = entry_s->namelen;
ASSERT(INT_GET(entry_d->nameidx, ARCH_CONVERT) + tmp <= XFS_LBSIZE(mp));
memcpy(XFS_DIR_LEAF_NAMESTRUCT(leaf_d, INT_GET(entry_d->nameidx, ARCH_CONVERT)),
XFS_DIR_LEAF_NAMESTRUCT(leaf_s, INT_GET(entry_s->nameidx, ARCH_CONVERT)), tmp);
ASSERT(INT_GET(entry_s->nameidx, ARCH_CONVERT) + tmp <= XFS_LBSIZE(mp));
memset((char *)XFS_DIR_LEAF_NAMESTRUCT(leaf_s, INT_GET(entry_s->nameidx, ARCH_CONVERT)),
0, tmp);
INT_MOD(hdr_s->namebytes, ARCH_CONVERT, -(entry_d->namelen));
INT_MOD(hdr_d->namebytes, ARCH_CONVERT, entry_d->namelen);
INT_MOD(hdr_s->count, ARCH_CONVERT, -1);
INT_MOD(hdr_d->count, ARCH_CONVERT, +1);
tmp = INT_GET(hdr_d->count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t)
+ (uint)sizeof(xfs_dir_leaf_hdr_t);
ASSERT(INT_GET(hdr_d->firstused, ARCH_CONVERT) >= tmp);
}
/*
* Zero out the entries we just copied.
*/
if (start_s == INT_GET(hdr_s->count, ARCH_CONVERT)) {
tmp = count * (uint)sizeof(xfs_dir_leaf_entry_t);
entry_s = &leaf_s->entries[start_s];
ASSERT((char *)entry_s + tmp <= (char *)leaf_s + XFS_LBSIZE(mp));
memset((char *)entry_s, 0, tmp);
} else {
/*
* Move the remaining entries down to fill the hole,
* then zero the entries at the top.
*/
tmp = INT_GET(hdr_s->count, ARCH_CONVERT) - count;
tmp *= (uint)sizeof(xfs_dir_leaf_entry_t);
entry_s = &leaf_s->entries[start_s + count];
entry_d = &leaf_s->entries[start_s];
memcpy(entry_d, entry_s, tmp);
tmp = count * (uint)sizeof(xfs_dir_leaf_entry_t);
entry_s = &leaf_s->entries[INT_GET(hdr_s->count, ARCH_CONVERT)];
ASSERT((char *)entry_s + tmp <= (char *)leaf_s + XFS_LBSIZE(mp));
memset((char *)entry_s, 0, tmp);
}
/*
* Fill in the freemap information
*/
INT_SET(hdr_d->freemap[0].base, ARCH_CONVERT, (uint)sizeof(xfs_dir_leaf_hdr_t));
INT_MOD(hdr_d->freemap[0].base, ARCH_CONVERT, INT_GET(hdr_d->count, ARCH_CONVERT) * (uint)sizeof(xfs_dir_leaf_entry_t));
INT_SET(hdr_d->freemap[0].size, ARCH_CONVERT, INT_GET(hdr_d->firstused, ARCH_CONVERT) - INT_GET(hdr_d->freemap[0].base, ARCH_CONVERT));
INT_SET(hdr_d->freemap[1].base, ARCH_CONVERT, (hdr_d->freemap[2].base = 0));
INT_SET(hdr_d->freemap[1].size, ARCH_CONVERT, (hdr_d->freemap[2].size = 0));
hdr_s->holes = 1; /* leaf may not be compact */
}
/*
* Compare two leaf blocks "order".
*/
int
xfs_dir_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp)
{
xfs_dir_leafblock_t *leaf1, *leaf2;
leaf1 = leaf1_bp->data;
leaf2 = leaf2_bp->data;
ASSERT((be16_to_cpu(leaf1->hdr.info.magic) == XFS_DIR_LEAF_MAGIC) &&
(be16_to_cpu(leaf2->hdr.info.magic) == XFS_DIR_LEAF_MAGIC));
if ((INT_GET(leaf1->hdr.count, ARCH_CONVERT) > 0) && (INT_GET(leaf2->hdr.count, ARCH_CONVERT) > 0) &&
((INT_GET(leaf2->entries[ 0 ].hashval, ARCH_CONVERT) <
INT_GET(leaf1->entries[ 0 ].hashval, ARCH_CONVERT)) ||
(INT_GET(leaf2->entries[ INT_GET(leaf2->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT) <
INT_GET(leaf1->entries[ INT_GET(leaf1->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT)))) {
return 1;
}
return 0;
}
/*
* Pick up the last hashvalue from a leaf block.
*/
xfs_dahash_t
xfs_dir_leaf_lasthash(xfs_dabuf_t *bp, int *count)
{
xfs_dir_leafblock_t *leaf;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_DIR_LEAF_MAGIC);
if (count)
*count = INT_GET(leaf->hdr.count, ARCH_CONVERT);
if (!leaf->hdr.count)
return(0);
return(INT_GET(leaf->entries[ INT_GET(leaf->hdr.count, ARCH_CONVERT)-1 ].hashval, ARCH_CONVERT));
}
/*
* Copy out directory entries for getdents(), for leaf directories.
*/
int
xfs_dir_leaf_getdents_int(
xfs_dabuf_t *bp,
xfs_inode_t *dp,
xfs_dablk_t bno,
uio_t *uio,
int *eobp,
xfs_dirent_t *dbp,
xfs_dir_put_t put,
xfs_daddr_t nextda)
{
xfs_dir_leafblock_t *leaf;
xfs_dir_leaf_entry_t *entry;
xfs_dir_leaf_name_t *namest;
int entno, want_entno, i, nextentno;
xfs_mount_t *mp;
xfs_dahash_t cookhash;
xfs_dahash_t nexthash = 0;
#if (BITS_PER_LONG == 32)
xfs_dahash_t lasthash = XFS_DA_MAXHASH;
#endif
xfs_dir_put_args_t p;
mp = dp->i_mount;
leaf = bp->data;
if (be16_to_cpu(leaf->hdr.info.magic) != XFS_DIR_LEAF_MAGIC) {
*eobp = 1;
return XFS_ERROR(ENOENT); /* XXX wrong code */
}
want_entno = XFS_DA_COOKIE_ENTRY(mp, uio->uio_offset);
cookhash = XFS_DA_COOKIE_HASH(mp, uio->uio_offset);
xfs_dir_trace_g_dul("leaf: start", dp, uio, leaf);
/*
* Re-find our place.
*/
for (i = entno = 0, entry = &leaf->entries[0];
i < INT_GET(leaf->hdr.count, ARCH_CONVERT);
entry++, i++) {
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf,
INT_GET(entry->nameidx, ARCH_CONVERT));
if (unlikely(
((char *)namest < (char *)leaf) ||
((char *)namest >= (char *)leaf + XFS_LBSIZE(mp)))) {
XFS_CORRUPTION_ERROR("xfs_dir_leaf_getdents_int(1)",
XFS_ERRLEVEL_LOW, mp, leaf);
xfs_dir_trace_g_du("leaf: corrupted", dp, uio);
return XFS_ERROR(EFSCORRUPTED);
}
if (INT_GET(entry->hashval, ARCH_CONVERT) >= cookhash) {
if ( entno < want_entno
&& INT_GET(entry->hashval, ARCH_CONVERT)
== cookhash) {
/*
* Trying to get to a particular offset in a
* run of equal-hashval entries.
*/
entno++;
} else if ( want_entno > 0
&& entno == want_entno
&& INT_GET(entry->hashval, ARCH_CONVERT)
== cookhash) {
break;
} else {
entno = 0;
break;
}
}
}
if (i == INT_GET(leaf->hdr.count, ARCH_CONVERT)) {
xfs_dir_trace_g_du("leaf: hash not found", dp, uio);
if (!leaf->hdr.info.forw)
uio->uio_offset =
XFS_DA_MAKE_COOKIE(mp, 0, 0, XFS_DA_MAXHASH);
/*
* Don't set uio_offset if there's another block:
* the node code will be setting uio_offset anyway.
*/
*eobp = 0;
return 0;
}
xfs_dir_trace_g_due("leaf: hash found", dp, uio, entry);
p.dbp = dbp;
p.put = put;
p.uio = uio;
/*
* We're synchronized, start copying entries out to the user.
*/
for (; entno >= 0 && i < INT_GET(leaf->hdr.count, ARCH_CONVERT);
entry++, i++, (entno = nextentno)) {
int lastresid=0, retval;
xfs_dircook_t lastoffset;
xfs_dahash_t thishash;
/*
* Check for a damaged directory leaf block and pick up
* the inode number from this entry.
*/
namest = XFS_DIR_LEAF_NAMESTRUCT(leaf,
INT_GET(entry->nameidx, ARCH_CONVERT));
if (unlikely(
((char *)namest < (char *)leaf) ||
((char *)namest >= (char *)leaf + XFS_LBSIZE(mp)))) {
XFS_CORRUPTION_ERROR("xfs_dir_leaf_getdents_int(2)",
XFS_ERRLEVEL_LOW, mp, leaf);
xfs_dir_trace_g_du("leaf: corrupted", dp, uio);
return XFS_ERROR(EFSCORRUPTED);
}
xfs_dir_trace_g_duc("leaf: middle cookie ",
dp, uio, p.cook.o);
if (i < (INT_GET(leaf->hdr.count, ARCH_CONVERT) - 1)) {
nexthash = INT_GET(entry[1].hashval, ARCH_CONVERT);
if (nexthash == INT_GET(entry->hashval, ARCH_CONVERT))
nextentno = entno + 1;
else
nextentno = 0;
XFS_PUT_COOKIE(p.cook, mp, bno, nextentno, nexthash);
xfs_dir_trace_g_duc("leaf: middle cookie ",
dp, uio, p.cook.o);
} else if ((thishash = be32_to_cpu(leaf->hdr.info.forw))) {
xfs_dabuf_t *bp2;
xfs_dir_leafblock_t *leaf2;
ASSERT(nextda != -1);
retval = xfs_da_read_buf(dp->i_transp, dp, thishash,
nextda, &bp2, XFS_DATA_FORK);
if (retval)
return retval;
ASSERT(bp2 != NULL);
leaf2 = bp2->data;
if (unlikely(
(be16_to_cpu(leaf2->hdr.info.magic)
!= XFS_DIR_LEAF_MAGIC)
|| (be32_to_cpu(leaf2->hdr.info.back)
!= bno))) { /* GROT */
XFS_CORRUPTION_ERROR("xfs_dir_leaf_getdents_int(3)",
XFS_ERRLEVEL_LOW, mp,
leaf2);
xfs_da_brelse(dp->i_transp, bp2);
return XFS_ERROR(EFSCORRUPTED);
}
nexthash = INT_GET(leaf2->entries[0].hashval,
ARCH_CONVERT);
nextentno = -1;
XFS_PUT_COOKIE(p.cook, mp, thishash, 0, nexthash);
xfs_da_brelse(dp->i_transp, bp2);
xfs_dir_trace_g_duc("leaf: next blk cookie",
dp, uio, p.cook.o);
} else {
nextentno = -1;
XFS_PUT_COOKIE(p.cook, mp, 0, 0, XFS_DA_MAXHASH);
}
/*
* Save off the cookie so we can fall back should the
* 'put' into the outgoing buffer fails. To handle a run
* of equal-hashvals, the off_t structure on 64bit
* builds has entno built into the cookie to ID the
* entry. On 32bit builds, we only have space for the
* hashval so we can't ID specific entries within a group
* of same hashval entries. For this, lastoffset is set
* to the first in the run of equal hashvals so we don't
* include any entries unless we can include all entries
* that share the same hashval. Hopefully the buffer
* provided is big enough to handle it (see pv763517).
*/
#if (BITS_PER_LONG == 32)
if ((thishash = INT_GET(entry->hashval, ARCH_CONVERT))
!= lasthash) {
XFS_PUT_COOKIE(lastoffset, mp, bno, entno, thishash);
lastresid = uio->uio_resid;
lasthash = thishash;
} else {
xfs_dir_trace_g_duc("leaf: DUP COOKIES, skipped",
dp, uio, p.cook.o);
}
#else
thishash = INT_GET(entry->hashval, ARCH_CONVERT);
XFS_PUT_COOKIE(lastoffset, mp, bno, entno, thishash);
lastresid = uio->uio_resid;
#endif /* BITS_PER_LONG == 32 */
/*
* Put the current entry into the outgoing buffer. If we fail
* then restore the UIO to the first entry in the current
* run of equal-hashval entries (probably one 1 entry long).
*/
p.ino = XFS_GET_DIR_INO8(namest->inumber);
#if XFS_BIG_INUMS
p.ino += mp->m_inoadd;
#endif
p.name = (char *)namest->name;
p.namelen = entry->namelen;
retval = p.put(&p);
if (!p.done) {
uio->uio_offset = lastoffset.o;
uio->uio_resid = lastresid;
*eobp = 1;
xfs_dir_trace_g_du("leaf: E-O-B", dp, uio);
return retval;
}
}
uio->uio_offset = p.cook.o;
*eobp = 0;
xfs_dir_trace_g_du("leaf: E-O-F", dp, uio);
return 0;
}
/*
* Format a dirent64 structure and copy it out the the user's buffer.
*/
int
xfs_dir_put_dirent64_direct(xfs_dir_put_args_t *pa)
{
iovec_t *iovp;
int reclen, namelen;
xfs_dirent_t *idbp;
uio_t *uio;
namelen = pa->namelen;
reclen = DIRENTSIZE(namelen);
uio = pa->uio;
if (reclen > uio->uio_resid) {
pa->done = 0;
return 0;
}
iovp = uio->uio_iov;
idbp = (xfs_dirent_t *)iovp->iov_base;
iovp->iov_base = (char *)idbp + reclen;
iovp->iov_len -= reclen;
uio->uio_resid -= reclen;
idbp->d_reclen = reclen;
idbp->d_ino = pa->ino;
idbp->d_off = pa->cook.o;
idbp->d_name[namelen] = '\0';
pa->done = 1;
memcpy(idbp->d_name, pa->name, namelen);
return 0;
}
/*
* Format a dirent64 structure and copy it out the the user's buffer.
*/
int
xfs_dir_put_dirent64_uio(xfs_dir_put_args_t *pa)
{
int retval, reclen, namelen;
xfs_dirent_t *idbp;
uio_t *uio;
namelen = pa->namelen;
reclen = DIRENTSIZE(namelen);
uio = pa->uio;
if (reclen > uio->uio_resid) {
pa->done = 0;
return 0;
}
idbp = pa->dbp;
idbp->d_reclen = reclen;
idbp->d_ino = pa->ino;
idbp->d_off = pa->cook.o;
idbp->d_name[namelen] = '\0';
memcpy(idbp->d_name, pa->name, namelen);
retval = uio_read((caddr_t)idbp, reclen, uio);
pa->done = (retval == 0);
return retval;
}