linux_old1/sound/pci/es1968.c

2954 lines
79 KiB
C

/*
* Driver for ESS Maestro 1/2/2E Sound Card (started 21.8.99)
* Copyright (c) by Matze Braun <MatzeBraun@gmx.de>.
* Takashi Iwai <tiwai@suse.de>
*
* Most of the driver code comes from Zach Brown(zab@redhat.com)
* Alan Cox OSS Driver
* Rewritted from card-es1938.c source.
*
* TODO:
* Perhaps Synth
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Notes from Zach Brown about the driver code
*
* Hardware Description
*
* A working Maestro setup contains the Maestro chip wired to a
* codec or 2. In the Maestro we have the APUs, the ASSP, and the
* Wavecache. The APUs can be though of as virtual audio routing
* channels. They can take data from a number of sources and perform
* basic encodings of the data. The wavecache is a storehouse for
* PCM data. Typically it deals with PCI and interracts with the
* APUs. The ASSP is a wacky DSP like device that ESS is loth
* to release docs on. Thankfully it isn't required on the Maestro
* until you start doing insane things like FM emulation and surround
* encoding. The codecs are almost always AC-97 compliant codecs,
* but it appears that early Maestros may have had PT101 (an ESS
* part?) wired to them. The only real difference in the Maestro
* families is external goop like docking capability, memory for
* the ASSP, and initialization differences.
*
* Driver Operation
*
* We only drive the APU/Wavecache as typical DACs and drive the
* mixers in the codecs. There are 64 APUs. We assign 6 to each
* /dev/dsp? device. 2 channels for output, and 4 channels for
* input.
*
* Each APU can do a number of things, but we only really use
* 3 basic functions. For playback we use them to convert PCM
* data fetched over PCI by the wavecahche into analog data that
* is handed to the codec. One APU for mono, and a pair for stereo.
* When in stereo, the combination of smarts in the APU and Wavecache
* decide which wavecache gets the left or right channel.
*
* For record we still use the old overly mono system. For each in
* coming channel the data comes in from the codec, through a 'input'
* APU, through another rate converter APU, and then into memory via
* the wavecache and PCI. If its stereo, we mash it back into LRLR in
* software. The pass between the 2 APUs is supposedly what requires us
* to have a 512 byte buffer sitting around in wavecache/memory.
*
* The wavecache makes our life even more fun. First off, it can
* only address the first 28 bits of PCI address space, making it
* useless on quite a few architectures. Secondly, its insane.
* It claims to fetch from 4 regions of PCI space, each 4 meg in length.
* But that doesn't really work. You can only use 1 region. So all our
* allocations have to be in 4meg of each other. Booo. Hiss.
* So we have a module parameter, dsps_order, that is the order of
* the number of dsps to provide. All their buffer space is allocated
* on open time. The sonicvibes OSS routines we inherited really want
* power of 2 buffers, so we have all those next to each other, then
* 512 byte regions for the recording wavecaches. This ends up
* wasting quite a bit of memory. The only fixes I can see would be
* getting a kernel allocator that could work in zones, or figuring out
* just how to coerce the WP into doing what we want.
*
* The indirection of the various registers means we have to spinlock
* nearly all register accesses. We have the main register indirection
* like the wave cache, maestro registers, etc. Then we have beasts
* like the APU interface that is indirect registers gotten at through
* the main maestro indirection. Ouch. We spinlock around the actual
* ports on a per card basis. This means spinlock activity at each IO
* operation, but the only IO operation clusters are in non critical
* paths and it makes the code far easier to follow. Interrupts are
* blocked while holding the locks because the int handler has to
* get at some of them :(. The mixer interface doesn't, however.
* We also have an OSS state lock that is thrown around in a few
* places.
*/
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/input.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/mpu401.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>
#ifdef CONFIG_SND_ES1968_RADIO
#include <media/tea575x.h>
#endif
#define CARD_NAME "ESS Maestro1/2"
#define DRIVER_NAME "ES1968"
MODULE_DESCRIPTION("ESS Maestro");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ESS,Maestro 2e},"
"{ESS,Maestro 2},"
"{ESS,Maestro 1},"
"{TerraTec,DMX}}");
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 1-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static int total_bufsize[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1024 };
static int pcm_substreams_p[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 4 };
static int pcm_substreams_c[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1 };
static int clock[SNDRV_CARDS];
static int use_pm[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
static int enable_mpu[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
#ifdef SUPPORT_JOYSTICK
static bool joystick[SNDRV_CARDS];
#endif
static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1};
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
module_param_array(total_bufsize, int, NULL, 0444);
MODULE_PARM_DESC(total_bufsize, "Total buffer size in kB.");
module_param_array(pcm_substreams_p, int, NULL, 0444);
MODULE_PARM_DESC(pcm_substreams_p, "PCM Playback substreams for " CARD_NAME " soundcard.");
module_param_array(pcm_substreams_c, int, NULL, 0444);
MODULE_PARM_DESC(pcm_substreams_c, "PCM Capture substreams for " CARD_NAME " soundcard.");
module_param_array(clock, int, NULL, 0444);
MODULE_PARM_DESC(clock, "Clock on " CARD_NAME " soundcard. (0 = auto-detect)");
module_param_array(use_pm, int, NULL, 0444);
MODULE_PARM_DESC(use_pm, "Toggle power-management. (0 = off, 1 = on, 2 = auto)");
module_param_array(enable_mpu, int, NULL, 0444);
MODULE_PARM_DESC(enable_mpu, "Enable MPU401. (0 = off, 1 = on, 2 = auto)");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick, bool, NULL, 0444);
MODULE_PARM_DESC(joystick, "Enable joystick.");
#endif
module_param_array(radio_nr, int, NULL, 0444);
MODULE_PARM_DESC(radio_nr, "Radio device numbers");
#define NR_APUS 64
#define NR_APU_REGS 16
/* NEC Versas ? */
#define NEC_VERSA_SUBID1 0x80581033
#define NEC_VERSA_SUBID2 0x803c1033
/* Mode Flags */
#define ESS_FMT_STEREO 0x01
#define ESS_FMT_16BIT 0x02
#define DAC_RUNNING 1
#define ADC_RUNNING 2
/* Values for the ESM_LEGACY_AUDIO_CONTROL */
#define ESS_DISABLE_AUDIO 0x8000
#define ESS_ENABLE_SERIAL_IRQ 0x4000
#define IO_ADRESS_ALIAS 0x0020
#define MPU401_IRQ_ENABLE 0x0010
#define MPU401_IO_ENABLE 0x0008
#define GAME_IO_ENABLE 0x0004
#define FM_IO_ENABLE 0x0002
#define SB_IO_ENABLE 0x0001
/* Values for the ESM_CONFIG_A */
#define PIC_SNOOP1 0x4000
#define PIC_SNOOP2 0x2000
#define SAFEGUARD 0x0800
#define DMA_CLEAR 0x0700
#define DMA_DDMA 0x0000
#define DMA_TDMA 0x0100
#define DMA_PCPCI 0x0200
#define POST_WRITE 0x0080
#define PCI_TIMING 0x0040
#define SWAP_LR 0x0020
#define SUBTR_DECODE 0x0002
/* Values for the ESM_CONFIG_B */
#define SPDIF_CONFB 0x0100
#define HWV_CONFB 0x0080
#define DEBOUNCE 0x0040
#define GPIO_CONFB 0x0020
#define CHI_CONFB 0x0010
#define IDMA_CONFB 0x0008 /*undoc */
#define MIDI_FIX 0x0004 /*undoc */
#define IRQ_TO_ISA 0x0001 /*undoc */
/* Values for Ring Bus Control B */
#define RINGB_2CODEC_ID_MASK 0x0003
#define RINGB_DIS_VALIDATION 0x0008
#define RINGB_EN_SPDIF 0x0010
#define RINGB_EN_2CODEC 0x0020
#define RINGB_SING_BIT_DUAL 0x0040
/* ****Port Addresses**** */
/* Write & Read */
#define ESM_INDEX 0x02
#define ESM_DATA 0x00
/* AC97 + RingBus */
#define ESM_AC97_INDEX 0x30
#define ESM_AC97_DATA 0x32
#define ESM_RING_BUS_DEST 0x34
#define ESM_RING_BUS_CONTR_A 0x36
#define ESM_RING_BUS_CONTR_B 0x38
#define ESM_RING_BUS_SDO 0x3A
/* WaveCache*/
#define WC_INDEX 0x10
#define WC_DATA 0x12
#define WC_CONTROL 0x14
/* ASSP*/
#define ASSP_INDEX 0x80
#define ASSP_MEMORY 0x82
#define ASSP_DATA 0x84
#define ASSP_CONTROL_A 0xA2
#define ASSP_CONTROL_B 0xA4
#define ASSP_CONTROL_C 0xA6
#define ASSP_HOSTW_INDEX 0xA8
#define ASSP_HOSTW_DATA 0xAA
#define ASSP_HOSTW_IRQ 0xAC
/* Midi */
#define ESM_MPU401_PORT 0x98
/* Others */
#define ESM_PORT_HOST_IRQ 0x18
#define IDR0_DATA_PORT 0x00
#define IDR1_CRAM_POINTER 0x01
#define IDR2_CRAM_DATA 0x02
#define IDR3_WAVE_DATA 0x03
#define IDR4_WAVE_PTR_LOW 0x04
#define IDR5_WAVE_PTR_HI 0x05
#define IDR6_TIMER_CTRL 0x06
#define IDR7_WAVE_ROMRAM 0x07
#define WRITEABLE_MAP 0xEFFFFF
#define READABLE_MAP 0x64003F
/* PCI Register */
#define ESM_LEGACY_AUDIO_CONTROL 0x40
#define ESM_ACPI_COMMAND 0x54
#define ESM_CONFIG_A 0x50
#define ESM_CONFIG_B 0x52
#define ESM_DDMA 0x60
/* Bob Bits */
#define ESM_BOB_ENABLE 0x0001
#define ESM_BOB_START 0x0001
/* Host IRQ Control Bits */
#define ESM_RESET_MAESTRO 0x8000
#define ESM_RESET_DIRECTSOUND 0x4000
#define ESM_HIRQ_ClkRun 0x0100
#define ESM_HIRQ_HW_VOLUME 0x0040
#define ESM_HIRQ_HARPO 0x0030 /* What's that? */
#define ESM_HIRQ_ASSP 0x0010
#define ESM_HIRQ_DSIE 0x0004
#define ESM_HIRQ_MPU401 0x0002
#define ESM_HIRQ_SB 0x0001
/* Host IRQ Status Bits */
#define ESM_MPU401_IRQ 0x02
#define ESM_SB_IRQ 0x01
#define ESM_SOUND_IRQ 0x04
#define ESM_ASSP_IRQ 0x10
#define ESM_HWVOL_IRQ 0x40
#define ESS_SYSCLK 50000000
#define ESM_BOB_FREQ 200
#define ESM_BOB_FREQ_MAX 800
#define ESM_FREQ_ESM1 (49152000L / 1024L) /* default rate 48000 */
#define ESM_FREQ_ESM2 (50000000L / 1024L)
/* APU Modes: reg 0x00, bit 4-7 */
#define ESM_APU_MODE_SHIFT 4
#define ESM_APU_MODE_MASK (0xf << 4)
#define ESM_APU_OFF 0x00
#define ESM_APU_16BITLINEAR 0x01 /* 16-Bit Linear Sample Player */
#define ESM_APU_16BITSTEREO 0x02 /* 16-Bit Stereo Sample Player */
#define ESM_APU_8BITLINEAR 0x03 /* 8-Bit Linear Sample Player */
#define ESM_APU_8BITSTEREO 0x04 /* 8-Bit Stereo Sample Player */
#define ESM_APU_8BITDIFF 0x05 /* 8-Bit Differential Sample Playrer */
#define ESM_APU_DIGITALDELAY 0x06 /* Digital Delay Line */
#define ESM_APU_DUALTAP 0x07 /* Dual Tap Reader */
#define ESM_APU_CORRELATOR 0x08 /* Correlator */
#define ESM_APU_INPUTMIXER 0x09 /* Input Mixer */
#define ESM_APU_WAVETABLE 0x0A /* Wave Table Mode */
#define ESM_APU_SRCONVERTOR 0x0B /* Sample Rate Convertor */
#define ESM_APU_16BITPINGPONG 0x0C /* 16-Bit Ping-Pong Sample Player */
#define ESM_APU_RESERVED1 0x0D /* Reserved 1 */
#define ESM_APU_RESERVED2 0x0E /* Reserved 2 */
#define ESM_APU_RESERVED3 0x0F /* Reserved 3 */
/* reg 0x00 */
#define ESM_APU_FILTER_Q_SHIFT 0
#define ESM_APU_FILTER_Q_MASK (3 << 0)
/* APU Filtey Q Control */
#define ESM_APU_FILTER_LESSQ 0x00
#define ESM_APU_FILTER_MOREQ 0x03
#define ESM_APU_FILTER_TYPE_SHIFT 2
#define ESM_APU_FILTER_TYPE_MASK (3 << 2)
#define ESM_APU_ENV_TYPE_SHIFT 8
#define ESM_APU_ENV_TYPE_MASK (3 << 8)
#define ESM_APU_ENV_STATE_SHIFT 10
#define ESM_APU_ENV_STATE_MASK (3 << 10)
#define ESM_APU_END_CURVE (1 << 12)
#define ESM_APU_INT_ON_LOOP (1 << 13)
#define ESM_APU_DMA_ENABLE (1 << 14)
/* reg 0x02 */
#define ESM_APU_SUBMIX_GROUP_SHIRT 0
#define ESM_APU_SUBMIX_GROUP_MASK (7 << 0)
#define ESM_APU_SUBMIX_MODE (1 << 3)
#define ESM_APU_6dB (1 << 4)
#define ESM_APU_DUAL_EFFECT (1 << 5)
#define ESM_APU_EFFECT_CHANNELS_SHIFT 6
#define ESM_APU_EFFECT_CHANNELS_MASK (3 << 6)
/* reg 0x03 */
#define ESM_APU_STEP_SIZE_MASK 0x0fff
/* reg 0x04 */
#define ESM_APU_PHASE_SHIFT 0
#define ESM_APU_PHASE_MASK (0xff << 0)
#define ESM_APU_WAVE64K_PAGE_SHIFT 8 /* most 8bit of wave start offset */
#define ESM_APU_WAVE64K_PAGE_MASK (0xff << 8)
/* reg 0x05 - wave start offset */
/* reg 0x06 - wave end offset */
/* reg 0x07 - wave loop length */
/* reg 0x08 */
#define ESM_APU_EFFECT_GAIN_SHIFT 0
#define ESM_APU_EFFECT_GAIN_MASK (0xff << 0)
#define ESM_APU_TREMOLO_DEPTH_SHIFT 8
#define ESM_APU_TREMOLO_DEPTH_MASK (0xf << 8)
#define ESM_APU_TREMOLO_RATE_SHIFT 12
#define ESM_APU_TREMOLO_RATE_MASK (0xf << 12)
/* reg 0x09 */
/* bit 0-7 amplitude dest? */
#define ESM_APU_AMPLITUDE_NOW_SHIFT 8
#define ESM_APU_AMPLITUDE_NOW_MASK (0xff << 8)
/* reg 0x0a */
#define ESM_APU_POLAR_PAN_SHIFT 0
#define ESM_APU_POLAR_PAN_MASK (0x3f << 0)
/* Polar Pan Control */
#define ESM_APU_PAN_CENTER_CIRCLE 0x00
#define ESM_APU_PAN_MIDDLE_RADIUS 0x01
#define ESM_APU_PAN_OUTSIDE_RADIUS 0x02
#define ESM_APU_FILTER_TUNING_SHIFT 8
#define ESM_APU_FILTER_TUNING_MASK (0xff << 8)
/* reg 0x0b */
#define ESM_APU_DATA_SRC_A_SHIFT 0
#define ESM_APU_DATA_SRC_A_MASK (0x7f << 0)
#define ESM_APU_INV_POL_A (1 << 7)
#define ESM_APU_DATA_SRC_B_SHIFT 8
#define ESM_APU_DATA_SRC_B_MASK (0x7f << 8)
#define ESM_APU_INV_POL_B (1 << 15)
#define ESM_APU_VIBRATO_RATE_SHIFT 0
#define ESM_APU_VIBRATO_RATE_MASK (0xf << 0)
#define ESM_APU_VIBRATO_DEPTH_SHIFT 4
#define ESM_APU_VIBRATO_DEPTH_MASK (0xf << 4)
#define ESM_APU_VIBRATO_PHASE_SHIFT 8
#define ESM_APU_VIBRATO_PHASE_MASK (0xff << 8)
/* reg 0x0c */
#define ESM_APU_RADIUS_SELECT (1 << 6)
/* APU Filter Control */
#define ESM_APU_FILTER_2POLE_LOPASS 0x00
#define ESM_APU_FILTER_2POLE_BANDPASS 0x01
#define ESM_APU_FILTER_2POLE_HIPASS 0x02
#define ESM_APU_FILTER_1POLE_LOPASS 0x03
#define ESM_APU_FILTER_1POLE_HIPASS 0x04
#define ESM_APU_FILTER_OFF 0x05
/* APU ATFP Type */
#define ESM_APU_ATFP_AMPLITUDE 0x00
#define ESM_APU_ATFP_TREMELO 0x01
#define ESM_APU_ATFP_FILTER 0x02
#define ESM_APU_ATFP_PAN 0x03
/* APU ATFP Flags */
#define ESM_APU_ATFP_FLG_OFF 0x00
#define ESM_APU_ATFP_FLG_WAIT 0x01
#define ESM_APU_ATFP_FLG_DONE 0x02
#define ESM_APU_ATFP_FLG_INPROCESS 0x03
/* capture mixing buffer size */
#define ESM_MEM_ALIGN 0x1000
#define ESM_MIXBUF_SIZE 0x400
#define ESM_MODE_PLAY 0
#define ESM_MODE_CAPTURE 1
/* APU use in the driver */
enum snd_enum_apu_type {
ESM_APU_PCM_PLAY,
ESM_APU_PCM_CAPTURE,
ESM_APU_PCM_RATECONV,
ESM_APU_FREE
};
/* chip type */
enum {
TYPE_MAESTRO, TYPE_MAESTRO2, TYPE_MAESTRO2E
};
/* DMA Hack! */
struct esm_memory {
struct snd_dma_buffer buf;
int empty; /* status */
struct list_head list;
};
/* Playback Channel */
struct esschan {
int running;
u8 apu[4];
u8 apu_mode[4];
/* playback/capture pcm buffer */
struct esm_memory *memory;
/* capture mixer buffer */
struct esm_memory *mixbuf;
unsigned int hwptr; /* current hw pointer in bytes */
unsigned int count; /* sample counter in bytes */
unsigned int dma_size; /* total buffer size in bytes */
unsigned int frag_size; /* period size in bytes */
unsigned int wav_shift;
u16 base[4]; /* offset for ptr */
/* stereo/16bit flag */
unsigned char fmt;
int mode; /* playback / capture */
int bob_freq; /* required timer frequency */
struct snd_pcm_substream *substream;
/* linked list */
struct list_head list;
#ifdef CONFIG_PM_SLEEP
u16 wc_map[4];
#endif
};
struct es1968 {
/* Module Config */
int total_bufsize; /* in bytes */
int playback_streams, capture_streams;
unsigned int clock; /* clock */
/* for clock measurement */
unsigned int in_measurement: 1;
unsigned int measure_apu;
unsigned int measure_lastpos;
unsigned int measure_count;
/* buffer */
struct snd_dma_buffer dma;
/* Resources... */
int irq;
unsigned long io_port;
int type;
struct pci_dev *pci;
struct snd_card *card;
struct snd_pcm *pcm;
int do_pm; /* power-management enabled */
/* DMA memory block */
struct list_head buf_list;
/* ALSA Stuff */
struct snd_ac97 *ac97;
struct snd_rawmidi *rmidi;
spinlock_t reg_lock;
unsigned int in_suspend;
/* Maestro Stuff */
u16 maestro_map[32];
int bobclient; /* active timer instancs */
int bob_freq; /* timer frequency */
struct mutex memory_mutex; /* memory lock */
/* APU states */
unsigned char apu[NR_APUS];
/* active substreams */
struct list_head substream_list;
spinlock_t substream_lock;
#ifdef CONFIG_PM_SLEEP
u16 apu_map[NR_APUS][NR_APU_REGS];
#endif
#ifdef SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
#ifdef CONFIG_SND_ES1968_INPUT
struct input_dev *input_dev;
char phys[64]; /* physical device path */
#else
struct snd_kcontrol *master_switch; /* for h/w volume control */
struct snd_kcontrol *master_volume;
#endif
struct work_struct hwvol_work;
#ifdef CONFIG_SND_ES1968_RADIO
struct v4l2_device v4l2_dev;
struct snd_tea575x tea;
unsigned int tea575x_tuner;
#endif
};
static irqreturn_t snd_es1968_interrupt(int irq, void *dev_id);
static DEFINE_PCI_DEVICE_TABLE(snd_es1968_ids) = {
/* Maestro 1 */
{ 0x1285, 0x0100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO },
/* Maestro 2 */
{ 0x125d, 0x1968, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO2 },
/* Maestro 2E */
{ 0x125d, 0x1978, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO2E },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_es1968_ids);
/* *********************
* Low Level Funcs! *
*********************/
/* no spinlock */
static void __maestro_write(struct es1968 *chip, u16 reg, u16 data)
{
outw(reg, chip->io_port + ESM_INDEX);
outw(data, chip->io_port + ESM_DATA);
chip->maestro_map[reg] = data;
}
static inline void maestro_write(struct es1968 *chip, u16 reg, u16 data)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
__maestro_write(chip, reg, data);
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
/* no spinlock */
static u16 __maestro_read(struct es1968 *chip, u16 reg)
{
if (READABLE_MAP & (1 << reg)) {
outw(reg, chip->io_port + ESM_INDEX);
chip->maestro_map[reg] = inw(chip->io_port + ESM_DATA);
}
return chip->maestro_map[reg];
}
static inline u16 maestro_read(struct es1968 *chip, u16 reg)
{
unsigned long flags;
u16 result;
spin_lock_irqsave(&chip->reg_lock, flags);
result = __maestro_read(chip, reg);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return result;
}
/* Wait for the codec bus to be free */
static int snd_es1968_ac97_wait(struct es1968 *chip)
{
int timeout = 100000;
while (timeout-- > 0) {
if (!(inb(chip->io_port + ESM_AC97_INDEX) & 1))
return 0;
cond_resched();
}
dev_dbg(chip->card->dev, "ac97 timeout\n");
return 1; /* timeout */
}
static int snd_es1968_ac97_wait_poll(struct es1968 *chip)
{
int timeout = 100000;
while (timeout-- > 0) {
if (!(inb(chip->io_port + ESM_AC97_INDEX) & 1))
return 0;
}
dev_dbg(chip->card->dev, "ac97 timeout\n");
return 1; /* timeout */
}
static void snd_es1968_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val)
{
struct es1968 *chip = ac97->private_data;
snd_es1968_ac97_wait(chip);
/* Write the bus */
outw(val, chip->io_port + ESM_AC97_DATA);
/*msleep(1);*/
outb(reg, chip->io_port + ESM_AC97_INDEX);
/*msleep(1);*/
}
static unsigned short snd_es1968_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
u16 data = 0;
struct es1968 *chip = ac97->private_data;
snd_es1968_ac97_wait(chip);
outb(reg | 0x80, chip->io_port + ESM_AC97_INDEX);
/*msleep(1);*/
if (!snd_es1968_ac97_wait_poll(chip)) {
data = inw(chip->io_port + ESM_AC97_DATA);
/*msleep(1);*/
}
return data;
}
/* no spinlock */
static void apu_index_set(struct es1968 *chip, u16 index)
{
int i;
__maestro_write(chip, IDR1_CRAM_POINTER, index);
for (i = 0; i < 1000; i++)
if (__maestro_read(chip, IDR1_CRAM_POINTER) == index)
return;
dev_dbg(chip->card->dev, "APU register select failed. (Timeout)\n");
}
/* no spinlock */
static void apu_data_set(struct es1968 *chip, u16 data)
{
int i;
for (i = 0; i < 1000; i++) {
if (__maestro_read(chip, IDR0_DATA_PORT) == data)
return;
__maestro_write(chip, IDR0_DATA_PORT, data);
}
dev_dbg(chip->card->dev, "APU register set probably failed (Timeout)!\n");
}
/* no spinlock */
static void __apu_set_register(struct es1968 *chip, u16 channel, u8 reg, u16 data)
{
if (snd_BUG_ON(channel >= NR_APUS))
return;
#ifdef CONFIG_PM_SLEEP
chip->apu_map[channel][reg] = data;
#endif
reg |= (channel << 4);
apu_index_set(chip, reg);
apu_data_set(chip, data);
}
static void apu_set_register(struct es1968 *chip, u16 channel, u8 reg, u16 data)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
__apu_set_register(chip, channel, reg, data);
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static u16 __apu_get_register(struct es1968 *chip, u16 channel, u8 reg)
{
if (snd_BUG_ON(channel >= NR_APUS))
return 0;
reg |= (channel << 4);
apu_index_set(chip, reg);
return __maestro_read(chip, IDR0_DATA_PORT);
}
static u16 apu_get_register(struct es1968 *chip, u16 channel, u8 reg)
{
unsigned long flags;
u16 v;
spin_lock_irqsave(&chip->reg_lock, flags);
v = __apu_get_register(chip, channel, reg);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return v;
}
#if 0 /* ASSP is not supported */
static void assp_set_register(struct es1968 *chip, u32 reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
outl(reg, chip->io_port + ASSP_INDEX);
outl(value, chip->io_port + ASSP_DATA);
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static u32 assp_get_register(struct es1968 *chip, u32 reg)
{
unsigned long flags;
u32 value;
spin_lock_irqsave(&chip->reg_lock, flags);
outl(reg, chip->io_port + ASSP_INDEX);
value = inl(chip->io_port + ASSP_DATA);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return value;
}
#endif
static void wave_set_register(struct es1968 *chip, u16 reg, u16 value)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
outw(reg, chip->io_port + WC_INDEX);
outw(value, chip->io_port + WC_DATA);
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static u16 wave_get_register(struct es1968 *chip, u16 reg)
{
unsigned long flags;
u16 value;
spin_lock_irqsave(&chip->reg_lock, flags);
outw(reg, chip->io_port + WC_INDEX);
value = inw(chip->io_port + WC_DATA);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return value;
}
/* *******************
* Bob the Timer! *
*******************/
static void snd_es1968_bob_stop(struct es1968 *chip)
{
u16 reg;
reg = __maestro_read(chip, 0x11);
reg &= ~ESM_BOB_ENABLE;
__maestro_write(chip, 0x11, reg);
reg = __maestro_read(chip, 0x17);
reg &= ~ESM_BOB_START;
__maestro_write(chip, 0x17, reg);
}
static void snd_es1968_bob_start(struct es1968 *chip)
{
int prescale;
int divide;
/* compute ideal interrupt frequency for buffer size & play rate */
/* first, find best prescaler value to match freq */
for (prescale = 5; prescale < 12; prescale++)
if (chip->bob_freq > (ESS_SYSCLK >> (prescale + 9)))
break;
/* next, back off prescaler whilst getting divider into optimum range */
divide = 1;
while ((prescale > 5) && (divide < 32)) {
prescale--;
divide <<= 1;
}
divide >>= 1;
/* now fine-tune the divider for best match */
for (; divide < 31; divide++)
if (chip->bob_freq >
((ESS_SYSCLK >> (prescale + 9)) / (divide + 1))) break;
/* divide = 0 is illegal, but don't let prescale = 4! */
if (divide == 0) {
divide++;
if (prescale > 5)
prescale--;
} else if (divide > 1)
divide--;
__maestro_write(chip, 6, 0x9000 | (prescale << 5) | divide); /* set reg */
/* Now set IDR 11/17 */
__maestro_write(chip, 0x11, __maestro_read(chip, 0x11) | 1);
__maestro_write(chip, 0x17, __maestro_read(chip, 0x17) | 1);
}
/* call with substream spinlock */
static void snd_es1968_bob_inc(struct es1968 *chip, int freq)
{
chip->bobclient++;
if (chip->bobclient == 1) {
chip->bob_freq = freq;
snd_es1968_bob_start(chip);
} else if (chip->bob_freq < freq) {
snd_es1968_bob_stop(chip);
chip->bob_freq = freq;
snd_es1968_bob_start(chip);
}
}
/* call with substream spinlock */
static void snd_es1968_bob_dec(struct es1968 *chip)
{
chip->bobclient--;
if (chip->bobclient <= 0)
snd_es1968_bob_stop(chip);
else if (chip->bob_freq > ESM_BOB_FREQ) {
/* check reduction of timer frequency */
int max_freq = ESM_BOB_FREQ;
struct esschan *es;
list_for_each_entry(es, &chip->substream_list, list) {
if (max_freq < es->bob_freq)
max_freq = es->bob_freq;
}
if (max_freq != chip->bob_freq) {
snd_es1968_bob_stop(chip);
chip->bob_freq = max_freq;
snd_es1968_bob_start(chip);
}
}
}
static int
snd_es1968_calc_bob_rate(struct es1968 *chip, struct esschan *es,
struct snd_pcm_runtime *runtime)
{
/* we acquire 4 interrupts per period for precise control.. */
int freq = runtime->rate * 4;
if (es->fmt & ESS_FMT_STEREO)
freq <<= 1;
if (es->fmt & ESS_FMT_16BIT)
freq <<= 1;
freq /= es->frag_size;
if (freq < ESM_BOB_FREQ)
freq = ESM_BOB_FREQ;
else if (freq > ESM_BOB_FREQ_MAX)
freq = ESM_BOB_FREQ_MAX;
return freq;
}
/*************
* PCM Part *
*************/
static u32 snd_es1968_compute_rate(struct es1968 *chip, u32 freq)
{
u32 rate = (freq << 16) / chip->clock;
#if 0 /* XXX: do we need this? */
if (rate > 0x10000)
rate = 0x10000;
#endif
return rate;
}
/* get current pointer */
static inline unsigned int
snd_es1968_get_dma_ptr(struct es1968 *chip, struct esschan *es)
{
unsigned int offset;
offset = apu_get_register(chip, es->apu[0], 5);
offset -= es->base[0];
return (offset & 0xFFFE); /* hardware is in words */
}
static void snd_es1968_apu_set_freq(struct es1968 *chip, int apu, int freq)
{
apu_set_register(chip, apu, 2,
(apu_get_register(chip, apu, 2) & 0x00FF) |
((freq & 0xff) << 8) | 0x10);
apu_set_register(chip, apu, 3, freq >> 8);
}
/* spin lock held */
static inline void snd_es1968_trigger_apu(struct es1968 *esm, int apu, int mode)
{
/* set the APU mode */
__apu_set_register(esm, apu, 0,
(__apu_get_register(esm, apu, 0) & 0xff0f) |
(mode << 4));
}
static void snd_es1968_pcm_start(struct es1968 *chip, struct esschan *es)
{
spin_lock(&chip->reg_lock);
__apu_set_register(chip, es->apu[0], 5, es->base[0]);
snd_es1968_trigger_apu(chip, es->apu[0], es->apu_mode[0]);
if (es->mode == ESM_MODE_CAPTURE) {
__apu_set_register(chip, es->apu[2], 5, es->base[2]);
snd_es1968_trigger_apu(chip, es->apu[2], es->apu_mode[2]);
}
if (es->fmt & ESS_FMT_STEREO) {
__apu_set_register(chip, es->apu[1], 5, es->base[1]);
snd_es1968_trigger_apu(chip, es->apu[1], es->apu_mode[1]);
if (es->mode == ESM_MODE_CAPTURE) {
__apu_set_register(chip, es->apu[3], 5, es->base[3]);
snd_es1968_trigger_apu(chip, es->apu[3], es->apu_mode[3]);
}
}
spin_unlock(&chip->reg_lock);
}
static void snd_es1968_pcm_stop(struct es1968 *chip, struct esschan *es)
{
spin_lock(&chip->reg_lock);
snd_es1968_trigger_apu(chip, es->apu[0], 0);
snd_es1968_trigger_apu(chip, es->apu[1], 0);
if (es->mode == ESM_MODE_CAPTURE) {
snd_es1968_trigger_apu(chip, es->apu[2], 0);
snd_es1968_trigger_apu(chip, es->apu[3], 0);
}
spin_unlock(&chip->reg_lock);
}
/* set the wavecache control reg */
static void snd_es1968_program_wavecache(struct es1968 *chip, struct esschan *es,
int channel, u32 addr, int capture)
{
u32 tmpval = (addr - 0x10) & 0xFFF8;
if (! capture) {
if (!(es->fmt & ESS_FMT_16BIT))
tmpval |= 4; /* 8bit */
if (es->fmt & ESS_FMT_STEREO)
tmpval |= 2; /* stereo */
}
/* set the wavecache control reg */
wave_set_register(chip, es->apu[channel] << 3, tmpval);
#ifdef CONFIG_PM_SLEEP
es->wc_map[channel] = tmpval;
#endif
}
static void snd_es1968_playback_setup(struct es1968 *chip, struct esschan *es,
struct snd_pcm_runtime *runtime)
{
u32 pa;
int high_apu = 0;
int channel, apu;
int i, size;
unsigned long flags;
u32 freq;
size = es->dma_size >> es->wav_shift;
if (es->fmt & ESS_FMT_STEREO)
high_apu++;
for (channel = 0; channel <= high_apu; channel++) {
apu = es->apu[channel];
snd_es1968_program_wavecache(chip, es, channel, es->memory->buf.addr, 0);
/* Offset to PCMBAR */
pa = es->memory->buf.addr;
pa -= chip->dma.addr;
pa >>= 1; /* words */
pa |= 0x00400000; /* System RAM (Bit 22) */
if (es->fmt & ESS_FMT_STEREO) {
/* Enable stereo */
if (channel)
pa |= 0x00800000; /* (Bit 23) */
if (es->fmt & ESS_FMT_16BIT)
pa >>= 1;
}
/* base offset of dma calcs when reading the pointer
on this left one */
es->base[channel] = pa & 0xFFFF;
for (i = 0; i < 16; i++)
apu_set_register(chip, apu, i, 0x0000);
/* Load the buffer into the wave engine */
apu_set_register(chip, apu, 4, ((pa >> 16) & 0xFF) << 8);
apu_set_register(chip, apu, 5, pa & 0xFFFF);
apu_set_register(chip, apu, 6, (pa + size) & 0xFFFF);
/* setting loop == sample len */
apu_set_register(chip, apu, 7, size);
/* clear effects/env.. */
apu_set_register(chip, apu, 8, 0x0000);
/* set amp now to 0xd0 (?), low byte is 'amplitude dest'? */
apu_set_register(chip, apu, 9, 0xD000);
/* clear routing stuff */
apu_set_register(chip, apu, 11, 0x0000);
/* dma on, no envelopes, filter to all 1s) */
apu_set_register(chip, apu, 0, 0x400F);
if (es->fmt & ESS_FMT_16BIT)
es->apu_mode[channel] = ESM_APU_16BITLINEAR;
else
es->apu_mode[channel] = ESM_APU_8BITLINEAR;
if (es->fmt & ESS_FMT_STEREO) {
/* set panning: left or right */
/* Check: different panning. On my Canyon 3D Chipset the
Channels are swapped. I don't know, about the output
to the SPDif Link. Perhaps you have to change this
and not the APU Regs 4-5. */
apu_set_register(chip, apu, 10,
0x8F00 | (channel ? 0 : 0x10));
es->apu_mode[channel] += 1; /* stereo */
} else
apu_set_register(chip, apu, 10, 0x8F08);
}
spin_lock_irqsave(&chip->reg_lock, flags);
/* clear WP interrupts */
outw(1, chip->io_port + 0x04);
/* enable WP ints */
outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ);
spin_unlock_irqrestore(&chip->reg_lock, flags);
freq = runtime->rate;
/* set frequency */
if (freq > 48000)
freq = 48000;
if (freq < 4000)
freq = 4000;
/* hmmm.. */
if (!(es->fmt & ESS_FMT_16BIT) && !(es->fmt & ESS_FMT_STEREO))
freq >>= 1;
freq = snd_es1968_compute_rate(chip, freq);
/* Load the frequency, turn on 6dB */
snd_es1968_apu_set_freq(chip, es->apu[0], freq);
snd_es1968_apu_set_freq(chip, es->apu[1], freq);
}
static void init_capture_apu(struct es1968 *chip, struct esschan *es, int channel,
unsigned int pa, unsigned int bsize,
int mode, int route)
{
int i, apu = es->apu[channel];
es->apu_mode[channel] = mode;
/* set the wavecache control reg */
snd_es1968_program_wavecache(chip, es, channel, pa, 1);
/* Offset to PCMBAR */
pa -= chip->dma.addr;
pa >>= 1; /* words */
/* base offset of dma calcs when reading the pointer
on this left one */
es->base[channel] = pa & 0xFFFF;
pa |= 0x00400000; /* bit 22 -> System RAM */
/* Begin loading the APU */
for (i = 0; i < 16; i++)
apu_set_register(chip, apu, i, 0x0000);
/* need to enable subgroups.. and we should probably
have different groups for different /dev/dsps.. */
apu_set_register(chip, apu, 2, 0x8);
/* Load the buffer into the wave engine */
apu_set_register(chip, apu, 4, ((pa >> 16) & 0xFF) << 8);
apu_set_register(chip, apu, 5, pa & 0xFFFF);
apu_set_register(chip, apu, 6, (pa + bsize) & 0xFFFF);
apu_set_register(chip, apu, 7, bsize);
/* clear effects/env.. */
apu_set_register(chip, apu, 8, 0x00F0);
/* amplitude now? sure. why not. */
apu_set_register(chip, apu, 9, 0x0000);
/* set filter tune, radius, polar pan */
apu_set_register(chip, apu, 10, 0x8F08);
/* route input */
apu_set_register(chip, apu, 11, route);
/* dma on, no envelopes, filter to all 1s) */
apu_set_register(chip, apu, 0, 0x400F);
}
static void snd_es1968_capture_setup(struct es1968 *chip, struct esschan *es,
struct snd_pcm_runtime *runtime)
{
int size;
u32 freq;
unsigned long flags;
size = es->dma_size >> es->wav_shift;
/* APU assignments:
0 = mono/left SRC
1 = right SRC
2 = mono/left Input Mixer
3 = right Input Mixer
*/
/* data seems to flow from the codec, through an apu into
the 'mixbuf' bit of page, then through the SRC apu
and out to the real 'buffer'. ok. sure. */
/* input mixer (left/mono) */
/* parallel in crap, see maestro reg 0xC [8-11] */
init_capture_apu(chip, es, 2,
es->mixbuf->buf.addr, ESM_MIXBUF_SIZE/4, /* in words */
ESM_APU_INPUTMIXER, 0x14);
/* SRC (left/mono); get input from inputing apu */
init_capture_apu(chip, es, 0, es->memory->buf.addr, size,
ESM_APU_SRCONVERTOR, es->apu[2]);
if (es->fmt & ESS_FMT_STEREO) {
/* input mixer (right) */
init_capture_apu(chip, es, 3,
es->mixbuf->buf.addr + ESM_MIXBUF_SIZE/2,
ESM_MIXBUF_SIZE/4, /* in words */
ESM_APU_INPUTMIXER, 0x15);
/* SRC (right) */
init_capture_apu(chip, es, 1,
es->memory->buf.addr + size*2, size,
ESM_APU_SRCONVERTOR, es->apu[3]);
}
freq = runtime->rate;
/* Sample Rate conversion APUs don't like 0x10000 for their rate */
if (freq > 47999)
freq = 47999;
if (freq < 4000)
freq = 4000;
freq = snd_es1968_compute_rate(chip, freq);
/* Load the frequency, turn on 6dB */
snd_es1968_apu_set_freq(chip, es->apu[0], freq);
snd_es1968_apu_set_freq(chip, es->apu[1], freq);
/* fix mixer rate at 48khz. and its _must_ be 0x10000. */
freq = 0x10000;
snd_es1968_apu_set_freq(chip, es->apu[2], freq);
snd_es1968_apu_set_freq(chip, es->apu[3], freq);
spin_lock_irqsave(&chip->reg_lock, flags);
/* clear WP interrupts */
outw(1, chip->io_port + 0x04);
/* enable WP ints */
outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ);
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
/*******************
* ALSA Interface *
*******************/
static int snd_es1968_pcm_prepare(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct esschan *es = runtime->private_data;
es->dma_size = snd_pcm_lib_buffer_bytes(substream);
es->frag_size = snd_pcm_lib_period_bytes(substream);
es->wav_shift = 1; /* maestro handles always 16bit */
es->fmt = 0;
if (snd_pcm_format_width(runtime->format) == 16)
es->fmt |= ESS_FMT_16BIT;
if (runtime->channels > 1) {
es->fmt |= ESS_FMT_STEREO;
if (es->fmt & ESS_FMT_16BIT) /* 8bit is already word shifted */
es->wav_shift++;
}
es->bob_freq = snd_es1968_calc_bob_rate(chip, es, runtime);
switch (es->mode) {
case ESM_MODE_PLAY:
snd_es1968_playback_setup(chip, es, runtime);
break;
case ESM_MODE_CAPTURE:
snd_es1968_capture_setup(chip, es, runtime);
break;
}
return 0;
}
static int snd_es1968_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct esschan *es = substream->runtime->private_data;
spin_lock(&chip->substream_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (es->running)
break;
snd_es1968_bob_inc(chip, es->bob_freq);
es->count = 0;
es->hwptr = 0;
snd_es1968_pcm_start(chip, es);
es->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (! es->running)
break;
snd_es1968_pcm_stop(chip, es);
es->running = 0;
snd_es1968_bob_dec(chip);
break;
}
spin_unlock(&chip->substream_lock);
return 0;
}
static snd_pcm_uframes_t snd_es1968_pcm_pointer(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct esschan *es = substream->runtime->private_data;
unsigned int ptr;
ptr = snd_es1968_get_dma_ptr(chip, es) << es->wav_shift;
return bytes_to_frames(substream->runtime, ptr % es->dma_size);
}
static struct snd_pcm_hardware snd_es1968_playback = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
/*SNDRV_PCM_INFO_PAUSE |*/
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 256,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_es1968_capture = {
.info = (SNDRV_PCM_INFO_NONINTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
/*SNDRV_PCM_INFO_PAUSE |*/
SNDRV_PCM_INFO_RESUME),
.formats = /*SNDRV_PCM_FMTBIT_U8 |*/ SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 256,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/* *************************
* DMA memory management *
*************************/
/* Because the Maestro can only take addresses relative to the PCM base address
register :( */
static int calc_available_memory_size(struct es1968 *chip)
{
int max_size = 0;
struct esm_memory *buf;
mutex_lock(&chip->memory_mutex);
list_for_each_entry(buf, &chip->buf_list, list) {
if (buf->empty && buf->buf.bytes > max_size)
max_size = buf->buf.bytes;
}
mutex_unlock(&chip->memory_mutex);
if (max_size >= 128*1024)
max_size = 127*1024;
return max_size;
}
/* allocate a new memory chunk with the specified size */
static struct esm_memory *snd_es1968_new_memory(struct es1968 *chip, int size)
{
struct esm_memory *buf;
size = ALIGN(size, ESM_MEM_ALIGN);
mutex_lock(&chip->memory_mutex);
list_for_each_entry(buf, &chip->buf_list, list) {
if (buf->empty && buf->buf.bytes >= size)
goto __found;
}
mutex_unlock(&chip->memory_mutex);
return NULL;
__found:
if (buf->buf.bytes > size) {
struct esm_memory *chunk = kmalloc(sizeof(*chunk), GFP_KERNEL);
if (chunk == NULL) {
mutex_unlock(&chip->memory_mutex);
return NULL;
}
chunk->buf = buf->buf;
chunk->buf.bytes -= size;
chunk->buf.area += size;
chunk->buf.addr += size;
chunk->empty = 1;
buf->buf.bytes = size;
list_add(&chunk->list, &buf->list);
}
buf->empty = 0;
mutex_unlock(&chip->memory_mutex);
return buf;
}
/* free a memory chunk */
static void snd_es1968_free_memory(struct es1968 *chip, struct esm_memory *buf)
{
struct esm_memory *chunk;
mutex_lock(&chip->memory_mutex);
buf->empty = 1;
if (buf->list.prev != &chip->buf_list) {
chunk = list_entry(buf->list.prev, struct esm_memory, list);
if (chunk->empty) {
chunk->buf.bytes += buf->buf.bytes;
list_del(&buf->list);
kfree(buf);
buf = chunk;
}
}
if (buf->list.next != &chip->buf_list) {
chunk = list_entry(buf->list.next, struct esm_memory, list);
if (chunk->empty) {
buf->buf.bytes += chunk->buf.bytes;
list_del(&chunk->list);
kfree(chunk);
}
}
mutex_unlock(&chip->memory_mutex);
}
static void snd_es1968_free_dmabuf(struct es1968 *chip)
{
struct list_head *p;
if (! chip->dma.area)
return;
snd_dma_free_pages(&chip->dma);
while ((p = chip->buf_list.next) != &chip->buf_list) {
struct esm_memory *chunk = list_entry(p, struct esm_memory, list);
list_del(p);
kfree(chunk);
}
}
static int
snd_es1968_init_dmabuf(struct es1968 *chip)
{
int err;
struct esm_memory *chunk;
chip->dma.dev.type = SNDRV_DMA_TYPE_DEV;
chip->dma.dev.dev = snd_dma_pci_data(chip->pci);
err = snd_dma_alloc_pages_fallback(SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci),
chip->total_bufsize, &chip->dma);
if (err < 0 || ! chip->dma.area) {
dev_err(chip->card->dev,
"can't allocate dma pages for size %d\n",
chip->total_bufsize);
return -ENOMEM;
}
if ((chip->dma.addr + chip->dma.bytes - 1) & ~((1 << 28) - 1)) {
snd_dma_free_pages(&chip->dma);
dev_err(chip->card->dev, "DMA buffer beyond 256MB.\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&chip->buf_list);
/* allocate an empty chunk */
chunk = kmalloc(sizeof(*chunk), GFP_KERNEL);
if (chunk == NULL) {
snd_es1968_free_dmabuf(chip);
return -ENOMEM;
}
memset(chip->dma.area, 0, ESM_MEM_ALIGN);
chunk->buf = chip->dma;
chunk->buf.area += ESM_MEM_ALIGN;
chunk->buf.addr += ESM_MEM_ALIGN;
chunk->buf.bytes -= ESM_MEM_ALIGN;
chunk->empty = 1;
list_add(&chunk->list, &chip->buf_list);
return 0;
}
/* setup the dma_areas */
/* buffer is extracted from the pre-allocated memory chunk */
static int snd_es1968_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct esschan *chan = runtime->private_data;
int size = params_buffer_bytes(hw_params);
if (chan->memory) {
if (chan->memory->buf.bytes >= size) {
runtime->dma_bytes = size;
return 0;
}
snd_es1968_free_memory(chip, chan->memory);
}
chan->memory = snd_es1968_new_memory(chip, size);
if (chan->memory == NULL) {
dev_dbg(chip->card->dev,
"cannot allocate dma buffer: size = %d\n", size);
return -ENOMEM;
}
snd_pcm_set_runtime_buffer(substream, &chan->memory->buf);
return 1; /* area was changed */
}
/* remove dma areas if allocated */
static int snd_es1968_hw_free(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct esschan *chan;
if (runtime->private_data == NULL)
return 0;
chan = runtime->private_data;
if (chan->memory) {
snd_es1968_free_memory(chip, chan->memory);
chan->memory = NULL;
}
return 0;
}
/*
* allocate APU pair
*/
static int snd_es1968_alloc_apu_pair(struct es1968 *chip, int type)
{
int apu;
for (apu = 0; apu < NR_APUS; apu += 2) {
if (chip->apu[apu] == ESM_APU_FREE &&
chip->apu[apu + 1] == ESM_APU_FREE) {
chip->apu[apu] = chip->apu[apu + 1] = type;
return apu;
}
}
return -EBUSY;
}
/*
* release APU pair
*/
static void snd_es1968_free_apu_pair(struct es1968 *chip, int apu)
{
chip->apu[apu] = chip->apu[apu + 1] = ESM_APU_FREE;
}
/******************
* PCM open/close *
******************/
static int snd_es1968_playback_open(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct esschan *es;
int apu1;
/* search 2 APUs */
apu1 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_PLAY);
if (apu1 < 0)
return apu1;
es = kzalloc(sizeof(*es), GFP_KERNEL);
if (!es) {
snd_es1968_free_apu_pair(chip, apu1);
return -ENOMEM;
}
es->apu[0] = apu1;
es->apu[1] = apu1 + 1;
es->apu_mode[0] = 0;
es->apu_mode[1] = 0;
es->running = 0;
es->substream = substream;
es->mode = ESM_MODE_PLAY;
runtime->private_data = es;
runtime->hw = snd_es1968_playback;
runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max =
calc_available_memory_size(chip);
spin_lock_irq(&chip->substream_lock);
list_add(&es->list, &chip->substream_list);
spin_unlock_irq(&chip->substream_lock);
return 0;
}
static int snd_es1968_capture_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct esschan *es;
int apu1, apu2;
apu1 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_CAPTURE);
if (apu1 < 0)
return apu1;
apu2 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_RATECONV);
if (apu2 < 0) {
snd_es1968_free_apu_pair(chip, apu1);
return apu2;
}
es = kzalloc(sizeof(*es), GFP_KERNEL);
if (!es) {
snd_es1968_free_apu_pair(chip, apu1);
snd_es1968_free_apu_pair(chip, apu2);
return -ENOMEM;
}
es->apu[0] = apu1;
es->apu[1] = apu1 + 1;
es->apu[2] = apu2;
es->apu[3] = apu2 + 1;
es->apu_mode[0] = 0;
es->apu_mode[1] = 0;
es->apu_mode[2] = 0;
es->apu_mode[3] = 0;
es->running = 0;
es->substream = substream;
es->mode = ESM_MODE_CAPTURE;
/* get mixbuffer */
if ((es->mixbuf = snd_es1968_new_memory(chip, ESM_MIXBUF_SIZE)) == NULL) {
snd_es1968_free_apu_pair(chip, apu1);
snd_es1968_free_apu_pair(chip, apu2);
kfree(es);
return -ENOMEM;
}
memset(es->mixbuf->buf.area, 0, ESM_MIXBUF_SIZE);
runtime->private_data = es;
runtime->hw = snd_es1968_capture;
runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max =
calc_available_memory_size(chip) - 1024; /* keep MIXBUF size */
snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES);
spin_lock_irq(&chip->substream_lock);
list_add(&es->list, &chip->substream_list);
spin_unlock_irq(&chip->substream_lock);
return 0;
}
static int snd_es1968_playback_close(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct esschan *es;
if (substream->runtime->private_data == NULL)
return 0;
es = substream->runtime->private_data;
spin_lock_irq(&chip->substream_lock);
list_del(&es->list);
spin_unlock_irq(&chip->substream_lock);
snd_es1968_free_apu_pair(chip, es->apu[0]);
kfree(es);
return 0;
}
static int snd_es1968_capture_close(struct snd_pcm_substream *substream)
{
struct es1968 *chip = snd_pcm_substream_chip(substream);
struct esschan *es;
if (substream->runtime->private_data == NULL)
return 0;
es = substream->runtime->private_data;
spin_lock_irq(&chip->substream_lock);
list_del(&es->list);
spin_unlock_irq(&chip->substream_lock);
snd_es1968_free_memory(chip, es->mixbuf);
snd_es1968_free_apu_pair(chip, es->apu[0]);
snd_es1968_free_apu_pair(chip, es->apu[2]);
kfree(es);
return 0;
}
static struct snd_pcm_ops snd_es1968_playback_ops = {
.open = snd_es1968_playback_open,
.close = snd_es1968_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_es1968_hw_params,
.hw_free = snd_es1968_hw_free,
.prepare = snd_es1968_pcm_prepare,
.trigger = snd_es1968_pcm_trigger,
.pointer = snd_es1968_pcm_pointer,
};
static struct snd_pcm_ops snd_es1968_capture_ops = {
.open = snd_es1968_capture_open,
.close = snd_es1968_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_es1968_hw_params,
.hw_free = snd_es1968_hw_free,
.prepare = snd_es1968_pcm_prepare,
.trigger = snd_es1968_pcm_trigger,
.pointer = snd_es1968_pcm_pointer,
};
/*
* measure clock
*/
#define CLOCK_MEASURE_BUFSIZE 16768 /* enough large for a single shot */
static void es1968_measure_clock(struct es1968 *chip)
{
int i, apu;
unsigned int pa, offset, t;
struct esm_memory *memory;
struct timeval start_time, stop_time;
if (chip->clock == 0)
chip->clock = 48000; /* default clock value */
/* search 2 APUs (although one apu is enough) */
if ((apu = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_PLAY)) < 0) {
dev_err(chip->card->dev, "Hmm, cannot find empty APU pair!?\n");
return;
}
if ((memory = snd_es1968_new_memory(chip, CLOCK_MEASURE_BUFSIZE)) == NULL) {
dev_warn(chip->card->dev,
"cannot allocate dma buffer - using default clock %d\n",
chip->clock);
snd_es1968_free_apu_pair(chip, apu);
return;
}
memset(memory->buf.area, 0, CLOCK_MEASURE_BUFSIZE);
wave_set_register(chip, apu << 3, (memory->buf.addr - 0x10) & 0xfff8);
pa = (unsigned int)((memory->buf.addr - chip->dma.addr) >> 1);
pa |= 0x00400000; /* System RAM (Bit 22) */
/* initialize apu */
for (i = 0; i < 16; i++)
apu_set_register(chip, apu, i, 0x0000);
apu_set_register(chip, apu, 0, 0x400f);
apu_set_register(chip, apu, 4, ((pa >> 16) & 0xff) << 8);
apu_set_register(chip, apu, 5, pa & 0xffff);
apu_set_register(chip, apu, 6, (pa + CLOCK_MEASURE_BUFSIZE/2) & 0xffff);
apu_set_register(chip, apu, 7, CLOCK_MEASURE_BUFSIZE/2);
apu_set_register(chip, apu, 8, 0x0000);
apu_set_register(chip, apu, 9, 0xD000);
apu_set_register(chip, apu, 10, 0x8F08);
apu_set_register(chip, apu, 11, 0x0000);
spin_lock_irq(&chip->reg_lock);
outw(1, chip->io_port + 0x04); /* clear WP interrupts */
outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ); /* enable WP ints */
spin_unlock_irq(&chip->reg_lock);
snd_es1968_apu_set_freq(chip, apu, ((unsigned int)48000 << 16) / chip->clock); /* 48000 Hz */
chip->in_measurement = 1;
chip->measure_apu = apu;
spin_lock_irq(&chip->reg_lock);
snd_es1968_bob_inc(chip, ESM_BOB_FREQ);
__apu_set_register(chip, apu, 5, pa & 0xffff);
snd_es1968_trigger_apu(chip, apu, ESM_APU_16BITLINEAR);
do_gettimeofday(&start_time);
spin_unlock_irq(&chip->reg_lock);
msleep(50);
spin_lock_irq(&chip->reg_lock);
offset = __apu_get_register(chip, apu, 5);
do_gettimeofday(&stop_time);
snd_es1968_trigger_apu(chip, apu, 0); /* stop */
snd_es1968_bob_dec(chip);
chip->in_measurement = 0;
spin_unlock_irq(&chip->reg_lock);
/* check the current position */
offset -= (pa & 0xffff);
offset &= 0xfffe;
offset += chip->measure_count * (CLOCK_MEASURE_BUFSIZE/2);
t = stop_time.tv_sec - start_time.tv_sec;
t *= 1000000;
if (stop_time.tv_usec < start_time.tv_usec)
t -= start_time.tv_usec - stop_time.tv_usec;
else
t += stop_time.tv_usec - start_time.tv_usec;
if (t == 0) {
dev_err(chip->card->dev, "?? calculation error..\n");
} else {
offset *= 1000;
offset = (offset / t) * 1000 + ((offset % t) * 1000) / t;
if (offset < 47500 || offset > 48500) {
if (offset >= 40000 && offset <= 50000)
chip->clock = (chip->clock * offset) / 48000;
}
dev_info(chip->card->dev, "clocking to %d\n", chip->clock);
}
snd_es1968_free_memory(chip, memory);
snd_es1968_free_apu_pair(chip, apu);
}
/*
*/
static void snd_es1968_pcm_free(struct snd_pcm *pcm)
{
struct es1968 *esm = pcm->private_data;
snd_es1968_free_dmabuf(esm);
esm->pcm = NULL;
}
static int
snd_es1968_pcm(struct es1968 *chip, int device)
{
struct snd_pcm *pcm;
int err;
/* get DMA buffer */
if ((err = snd_es1968_init_dmabuf(chip)) < 0)
return err;
/* set PCMBAR */
wave_set_register(chip, 0x01FC, chip->dma.addr >> 12);
wave_set_register(chip, 0x01FD, chip->dma.addr >> 12);
wave_set_register(chip, 0x01FE, chip->dma.addr >> 12);
wave_set_register(chip, 0x01FF, chip->dma.addr >> 12);
if ((err = snd_pcm_new(chip->card, "ESS Maestro", device,
chip->playback_streams,
chip->capture_streams, &pcm)) < 0)
return err;
pcm->private_data = chip;
pcm->private_free = snd_es1968_pcm_free;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_es1968_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_es1968_capture_ops);
pcm->info_flags = 0;
strcpy(pcm->name, "ESS Maestro");
chip->pcm = pcm;
return 0;
}
/*
* suppress jitter on some maestros when playing stereo
*/
static void snd_es1968_suppress_jitter(struct es1968 *chip, struct esschan *es)
{
unsigned int cp1;
unsigned int cp2;
unsigned int diff;
cp1 = __apu_get_register(chip, 0, 5);
cp2 = __apu_get_register(chip, 1, 5);
diff = (cp1 > cp2 ? cp1 - cp2 : cp2 - cp1);
if (diff > 1)
__maestro_write(chip, IDR0_DATA_PORT, cp1);
}
/*
* update pointer
*/
static void snd_es1968_update_pcm(struct es1968 *chip, struct esschan *es)
{
unsigned int hwptr;
unsigned int diff;
struct snd_pcm_substream *subs = es->substream;
if (subs == NULL || !es->running)
return;
hwptr = snd_es1968_get_dma_ptr(chip, es) << es->wav_shift;
hwptr %= es->dma_size;
diff = (es->dma_size + hwptr - es->hwptr) % es->dma_size;
es->hwptr = hwptr;
es->count += diff;
if (es->count > es->frag_size) {
spin_unlock(&chip->substream_lock);
snd_pcm_period_elapsed(subs);
spin_lock(&chip->substream_lock);
es->count %= es->frag_size;
}
}
/* The hardware volume works by incrementing / decrementing 2 counters
(without wrap around) in response to volume button presses and then
generating an interrupt. The pair of counters is stored in bits 1-3 and 5-7
of a byte wide register. The meaning of bits 0 and 4 is unknown. */
static void es1968_update_hw_volume(struct work_struct *work)
{
struct es1968 *chip = container_of(work, struct es1968, hwvol_work);
int x, val;
/* Figure out which volume control button was pushed,
based on differences from the default register
values. */
x = inb(chip->io_port + 0x1c) & 0xee;
/* Reset the volume control registers. */
outb(0x88, chip->io_port + 0x1c);
outb(0x88, chip->io_port + 0x1d);
outb(0x88, chip->io_port + 0x1e);
outb(0x88, chip->io_port + 0x1f);
if (chip->in_suspend)
return;
#ifndef CONFIG_SND_ES1968_INPUT
if (! chip->master_switch || ! chip->master_volume)
return;
val = snd_ac97_read(chip->ac97, AC97_MASTER);
switch (x) {
case 0x88:
/* mute */
val ^= 0x8000;
break;
case 0xaa:
/* volume up */
if ((val & 0x7f) > 0)
val--;
if ((val & 0x7f00) > 0)
val -= 0x0100;
break;
case 0x66:
/* volume down */
if ((val & 0x7f) < 0x1f)
val++;
if ((val & 0x7f00) < 0x1f00)
val += 0x0100;
break;
}
if (snd_ac97_update(chip->ac97, AC97_MASTER, val))
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->master_volume->id);
#else
if (!chip->input_dev)
return;
val = 0;
switch (x) {
case 0x88:
/* The counters have not changed, yet we've received a HV
interrupt. According to tests run by various people this
happens when pressing the mute button. */
val = KEY_MUTE;
break;
case 0xaa:
/* counters increased by 1 -> volume up */
val = KEY_VOLUMEUP;
break;
case 0x66:
/* counters decreased by 1 -> volume down */
val = KEY_VOLUMEDOWN;
break;
}
if (val) {
input_report_key(chip->input_dev, val, 1);
input_sync(chip->input_dev);
input_report_key(chip->input_dev, val, 0);
input_sync(chip->input_dev);
}
#endif
}
/*
* interrupt handler
*/
static irqreturn_t snd_es1968_interrupt(int irq, void *dev_id)
{
struct es1968 *chip = dev_id;
u32 event;
if (!(event = inb(chip->io_port + 0x1A)))
return IRQ_NONE;
outw(inw(chip->io_port + 4) & 1, chip->io_port + 4);
if (event & ESM_HWVOL_IRQ)
schedule_work(&chip->hwvol_work);
/* else ack 'em all, i imagine */
outb(0xFF, chip->io_port + 0x1A);
if ((event & ESM_MPU401_IRQ) && chip->rmidi) {
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
}
if (event & ESM_SOUND_IRQ) {
struct esschan *es;
spin_lock(&chip->substream_lock);
list_for_each_entry(es, &chip->substream_list, list) {
if (es->running) {
snd_es1968_update_pcm(chip, es);
if (es->fmt & ESS_FMT_STEREO)
snd_es1968_suppress_jitter(chip, es);
}
}
spin_unlock(&chip->substream_lock);
if (chip->in_measurement) {
unsigned int curp = __apu_get_register(chip, chip->measure_apu, 5);
if (curp < chip->measure_lastpos)
chip->measure_count++;
chip->measure_lastpos = curp;
}
}
return IRQ_HANDLED;
}
/*
* Mixer stuff
*/
static int
snd_es1968_mixer(struct es1968 *chip)
{
struct snd_ac97_bus *pbus;
struct snd_ac97_template ac97;
#ifndef CONFIG_SND_ES1968_INPUT
struct snd_ctl_elem_id elem_id;
#endif
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_es1968_ac97_write,
.read = snd_es1968_ac97_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
return err;
pbus->no_vra = 1; /* ES1968 doesn't need VRA */
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
if ((err = snd_ac97_mixer(pbus, &ac97, &chip->ac97)) < 0)
return err;
#ifndef CONFIG_SND_ES1968_INPUT
/* attach master switch / volumes for h/w volume control */
memset(&elem_id, 0, sizeof(elem_id));
elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
strcpy(elem_id.name, "Master Playback Switch");
chip->master_switch = snd_ctl_find_id(chip->card, &elem_id);
memset(&elem_id, 0, sizeof(elem_id));
elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
strcpy(elem_id.name, "Master Playback Volume");
chip->master_volume = snd_ctl_find_id(chip->card, &elem_id);
#endif
return 0;
}
/*
* reset ac97 codec
*/
static void snd_es1968_ac97_reset(struct es1968 *chip)
{
unsigned long ioaddr = chip->io_port;
unsigned short save_ringbus_a;
unsigned short save_68;
unsigned short w;
unsigned int vend;
/* save configuration */
save_ringbus_a = inw(ioaddr + 0x36);
//outw(inw(ioaddr + 0x38) & 0xfffc, ioaddr + 0x38); /* clear second codec id? */
/* set command/status address i/o to 1st codec */
outw(inw(ioaddr + 0x3a) & 0xfffc, ioaddr + 0x3a);
outw(inw(ioaddr + 0x3c) & 0xfffc, ioaddr + 0x3c);
/* disable ac link */
outw(0x0000, ioaddr + 0x36);
save_68 = inw(ioaddr + 0x68);
pci_read_config_word(chip->pci, 0x58, &w); /* something magical with gpio and bus arb. */
pci_read_config_dword(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
if (w & 1)
save_68 |= 0x10;
outw(0xfffe, ioaddr + 0x64); /* unmask gpio 0 */
outw(0x0001, ioaddr + 0x68); /* gpio write */
outw(0x0000, ioaddr + 0x60); /* write 0 to gpio 0 */
udelay(20);
outw(0x0001, ioaddr + 0x60); /* write 1 to gpio 1 */
msleep(20);
outw(save_68 | 0x1, ioaddr + 0x68); /* now restore .. */
outw((inw(ioaddr + 0x38) & 0xfffc) | 0x1, ioaddr + 0x38);
outw((inw(ioaddr + 0x3a) & 0xfffc) | 0x1, ioaddr + 0x3a);
outw((inw(ioaddr + 0x3c) & 0xfffc) | 0x1, ioaddr + 0x3c);
/* now the second codec */
/* disable ac link */
outw(0x0000, ioaddr + 0x36);
outw(0xfff7, ioaddr + 0x64); /* unmask gpio 3 */
save_68 = inw(ioaddr + 0x68);
outw(0x0009, ioaddr + 0x68); /* gpio write 0 & 3 ?? */
outw(0x0001, ioaddr + 0x60); /* write 1 to gpio */
udelay(20);
outw(0x0009, ioaddr + 0x60); /* write 9 to gpio */
msleep(500);
//outw(inw(ioaddr + 0x38) & 0xfffc, ioaddr + 0x38);
outw(inw(ioaddr + 0x3a) & 0xfffc, ioaddr + 0x3a);
outw(inw(ioaddr + 0x3c) & 0xfffc, ioaddr + 0x3c);
#if 0 /* the loop here needs to be much better if we want it.. */
dev_info(chip->card->dev, "trying software reset\n");
/* try and do a software reset */
outb(0x80 | 0x7c, ioaddr + 0x30);
for (w = 0;; w++) {
if ((inw(ioaddr + 0x30) & 1) == 0) {
if (inb(ioaddr + 0x32) != 0)
break;
outb(0x80 | 0x7d, ioaddr + 0x30);
if (((inw(ioaddr + 0x30) & 1) == 0)
&& (inb(ioaddr + 0x32) != 0))
break;
outb(0x80 | 0x7f, ioaddr + 0x30);
if (((inw(ioaddr + 0x30) & 1) == 0)
&& (inb(ioaddr + 0x32) != 0))
break;
}
if (w > 10000) {
outb(inb(ioaddr + 0x37) | 0x08, ioaddr + 0x37); /* do a software reset */
msleep(500); /* oh my.. */
outb(inb(ioaddr + 0x37) & ~0x08,
ioaddr + 0x37);
udelay(1);
outw(0x80, ioaddr + 0x30);
for (w = 0; w < 10000; w++) {
if ((inw(ioaddr + 0x30) & 1) == 0)
break;
}
}
}
#endif
if (vend == NEC_VERSA_SUBID1 || vend == NEC_VERSA_SUBID2) {
/* turn on external amp? */
outw(0xf9ff, ioaddr + 0x64);
outw(inw(ioaddr + 0x68) | 0x600, ioaddr + 0x68);
outw(0x0209, ioaddr + 0x60);
}
/* restore.. */
outw(save_ringbus_a, ioaddr + 0x36);
/* Turn on the 978 docking chip.
First frob the "master output enable" bit,
then set most of the playback volume control registers to max. */
outb(inb(ioaddr+0xc0)|(1<<5), ioaddr+0xc0);
outb(0xff, ioaddr+0xc3);
outb(0xff, ioaddr+0xc4);
outb(0xff, ioaddr+0xc6);
outb(0xff, ioaddr+0xc8);
outb(0x3f, ioaddr+0xcf);
outb(0x3f, ioaddr+0xd0);
}
static void snd_es1968_reset(struct es1968 *chip)
{
/* Reset */
outw(ESM_RESET_MAESTRO | ESM_RESET_DIRECTSOUND,
chip->io_port + ESM_PORT_HOST_IRQ);
udelay(10);
outw(0x0000, chip->io_port + ESM_PORT_HOST_IRQ);
udelay(10);
}
/*
* initialize maestro chip
*/
static void snd_es1968_chip_init(struct es1968 *chip)
{
struct pci_dev *pci = chip->pci;
int i;
unsigned long iobase = chip->io_port;
u16 w;
u32 n;
/* We used to muck around with pci config space that
* we had no business messing with. We don't know enough
* about the machine to know which DMA mode is appropriate,
* etc. We were guessing wrong on some machines and making
* them unhappy. We now trust in the BIOS to do things right,
* which almost certainly means a new host of problems will
* arise with broken BIOS implementations. screw 'em.
* We're already intolerant of machines that don't assign
* IRQs.
*/
/* Config Reg A */
pci_read_config_word(pci, ESM_CONFIG_A, &w);
w &= ~DMA_CLEAR; /* Clear DMA bits */
w &= ~(PIC_SNOOP1 | PIC_SNOOP2); /* Clear Pic Snoop Mode Bits */
w &= ~SAFEGUARD; /* Safeguard off */
w |= POST_WRITE; /* Posted write */
w |= PCI_TIMING; /* PCI timing on */
/* XXX huh? claims to be reserved.. */
w &= ~SWAP_LR; /* swap left/right
seems to only have effect on SB
Emulation */
w &= ~SUBTR_DECODE; /* Subtractive decode off */
pci_write_config_word(pci, ESM_CONFIG_A, w);
/* Config Reg B */
pci_read_config_word(pci, ESM_CONFIG_B, &w);
w &= ~(1 << 15); /* Turn off internal clock multiplier */
/* XXX how do we know which to use? */
w &= ~(1 << 14); /* External clock */
w &= ~SPDIF_CONFB; /* disable S/PDIF output */
w |= HWV_CONFB; /* HWV on */
w |= DEBOUNCE; /* Debounce off: easier to push the HW buttons */
w &= ~GPIO_CONFB; /* GPIO 4:5 */
w |= CHI_CONFB; /* Disconnect from the CHI. Enabling this made a dell 7500 work. */
w &= ~IDMA_CONFB; /* IDMA off (undocumented) */
w &= ~MIDI_FIX; /* MIDI fix off (undoc) */
w &= ~(1 << 1); /* reserved, always write 0 */
w &= ~IRQ_TO_ISA; /* IRQ to ISA off (undoc) */
pci_write_config_word(pci, ESM_CONFIG_B, w);
/* DDMA off */
pci_read_config_word(pci, ESM_DDMA, &w);
w &= ~(1 << 0);
pci_write_config_word(pci, ESM_DDMA, w);
/*
* Legacy mode
*/
pci_read_config_word(pci, ESM_LEGACY_AUDIO_CONTROL, &w);
w |= ESS_DISABLE_AUDIO; /* Disable Legacy Audio */
w &= ~ESS_ENABLE_SERIAL_IRQ; /* Disable SIRQ */
w &= ~(0x1f); /* disable mpu irq/io, game port, fm, SB */
pci_write_config_word(pci, ESM_LEGACY_AUDIO_CONTROL, w);
/* Set up 978 docking control chip. */
pci_read_config_word(pci, 0x58, &w);
w|=1<<2; /* Enable 978. */
w|=1<<3; /* Turn on 978 hardware volume control. */
w&=~(1<<11); /* Turn on 978 mixer volume control. */
pci_write_config_word(pci, 0x58, w);
/* Sound Reset */
snd_es1968_reset(chip);
/*
* Ring Bus Setup
*/
/* setup usual 0x34 stuff.. 0x36 may be chip specific */
outw(0xC090, iobase + ESM_RING_BUS_DEST); /* direct sound, stereo */
udelay(20);
outw(0x3000, iobase + ESM_RING_BUS_CONTR_A); /* enable ringbus/serial */
udelay(20);
/*
* Reset the CODEC
*/
snd_es1968_ac97_reset(chip);
/* Ring Bus Control B */
n = inl(iobase + ESM_RING_BUS_CONTR_B);
n &= ~RINGB_EN_SPDIF; /* SPDIF off */
//w |= RINGB_EN_2CODEC; /* enable 2nd codec */
outl(n, iobase + ESM_RING_BUS_CONTR_B);
/* Set hardware volume control registers to midpoints.
We can tell which button was pushed based on how they change. */
outb(0x88, iobase+0x1c);
outb(0x88, iobase+0x1d);
outb(0x88, iobase+0x1e);
outb(0x88, iobase+0x1f);
/* it appears some maestros (dell 7500) only work if these are set,
regardless of whether we use the assp or not. */
outb(0, iobase + ASSP_CONTROL_B);
outb(3, iobase + ASSP_CONTROL_A); /* M: Reserved bits... */
outb(0, iobase + ASSP_CONTROL_C); /* M: Disable ASSP, ASSP IRQ's and FM Port */
/*
* set up wavecache
*/
for (i = 0; i < 16; i++) {
/* Write 0 into the buffer area 0x1E0->1EF */
outw(0x01E0 + i, iobase + WC_INDEX);
outw(0x0000, iobase + WC_DATA);
/* The 1.10 test program seem to write 0 into the buffer area
* 0x1D0-0x1DF too.*/
outw(0x01D0 + i, iobase + WC_INDEX);
outw(0x0000, iobase + WC_DATA);
}
wave_set_register(chip, IDR7_WAVE_ROMRAM,
(wave_get_register(chip, IDR7_WAVE_ROMRAM) & 0xFF00));
wave_set_register(chip, IDR7_WAVE_ROMRAM,
wave_get_register(chip, IDR7_WAVE_ROMRAM) | 0x100);
wave_set_register(chip, IDR7_WAVE_ROMRAM,
wave_get_register(chip, IDR7_WAVE_ROMRAM) & ~0x200);
wave_set_register(chip, IDR7_WAVE_ROMRAM,
wave_get_register(chip, IDR7_WAVE_ROMRAM) | ~0x400);
maestro_write(chip, IDR2_CRAM_DATA, 0x0000);
/* Now back to the DirectSound stuff */
/* audio serial configuration.. ? */
maestro_write(chip, 0x08, 0xB004);
maestro_write(chip, 0x09, 0x001B);
maestro_write(chip, 0x0A, 0x8000);
maestro_write(chip, 0x0B, 0x3F37);
maestro_write(chip, 0x0C, 0x0098);
/* parallel in, has something to do with recording :) */
maestro_write(chip, 0x0C,
(maestro_read(chip, 0x0C) & ~0xF000) | 0x8000);
/* parallel out */
maestro_write(chip, 0x0C,
(maestro_read(chip, 0x0C) & ~0x0F00) | 0x0500);
maestro_write(chip, 0x0D, 0x7632);
/* Wave cache control on - test off, sg off,
enable, enable extra chans 1Mb */
w = inw(iobase + WC_CONTROL);
w &= ~0xFA00; /* Seems to be reserved? I don't know */
w |= 0xA000; /* reserved... I don't know */
w &= ~0x0200; /* Channels 56,57,58,59 as Extra Play,Rec Channel enable
Seems to crash the Computer if enabled... */
w |= 0x0100; /* Wave Cache Operation Enabled */
w |= 0x0080; /* Channels 60/61 as Placback/Record enabled */
w &= ~0x0060; /* Clear Wavtable Size */
w |= 0x0020; /* Wavetable Size : 1MB */
/* Bit 4 is reserved */
w &= ~0x000C; /* DMA Stuff? I don't understand what the datasheet means */
/* Bit 1 is reserved */
w &= ~0x0001; /* Test Mode off */
outw(w, iobase + WC_CONTROL);
/* Now clear the APU control ram */
for (i = 0; i < NR_APUS; i++) {
for (w = 0; w < NR_APU_REGS; w++)
apu_set_register(chip, i, w, 0);
}
}
/* Enable IRQ's */
static void snd_es1968_start_irq(struct es1968 *chip)
{
unsigned short w;
w = ESM_HIRQ_DSIE | ESM_HIRQ_HW_VOLUME;
if (chip->rmidi)
w |= ESM_HIRQ_MPU401;
outb(w, chip->io_port + 0x1A);
outw(w, chip->io_port + ESM_PORT_HOST_IRQ);
}
#ifdef CONFIG_PM_SLEEP
/*
* PM support
*/
static int es1968_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct es1968 *chip = card->private_data;
if (! chip->do_pm)
return 0;
chip->in_suspend = 1;
cancel_work_sync(&chip->hwvol_work);
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_ac97_suspend(chip->ac97);
snd_es1968_bob_stop(chip);
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, PCI_D3hot);
return 0;
}
static int es1968_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct es1968 *chip = card->private_data;
struct esschan *es;
if (! chip->do_pm)
return 0;
/* restore all our config */
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
dev_err(dev, "pci_enable_device failed, disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
snd_es1968_chip_init(chip);
/* need to restore the base pointers.. */
if (chip->dma.addr) {
/* set PCMBAR */
wave_set_register(chip, 0x01FC, chip->dma.addr >> 12);
}
snd_es1968_start_irq(chip);
/* restore ac97 state */
snd_ac97_resume(chip->ac97);
list_for_each_entry(es, &chip->substream_list, list) {
switch (es->mode) {
case ESM_MODE_PLAY:
snd_es1968_playback_setup(chip, es, es->substream->runtime);
break;
case ESM_MODE_CAPTURE:
snd_es1968_capture_setup(chip, es, es->substream->runtime);
break;
}
}
/* start timer again */
if (chip->bobclient)
snd_es1968_bob_start(chip);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
chip->in_suspend = 0;
return 0;
}
static SIMPLE_DEV_PM_OPS(es1968_pm, es1968_suspend, es1968_resume);
#define ES1968_PM_OPS &es1968_pm
#else
#define ES1968_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
#ifdef SUPPORT_JOYSTICK
#define JOYSTICK_ADDR 0x200
static int snd_es1968_create_gameport(struct es1968 *chip, int dev)
{
struct gameport *gp;
struct resource *r;
u16 val;
if (!joystick[dev])
return -ENODEV;
r = request_region(JOYSTICK_ADDR, 8, "ES1968 gameport");
if (!r)
return -EBUSY;
chip->gameport = gp = gameport_allocate_port();
if (!gp) {
dev_err(chip->card->dev,
"cannot allocate memory for gameport\n");
release_and_free_resource(r);
return -ENOMEM;
}
pci_read_config_word(chip->pci, ESM_LEGACY_AUDIO_CONTROL, &val);
pci_write_config_word(chip->pci, ESM_LEGACY_AUDIO_CONTROL, val | 0x04);
gameport_set_name(gp, "ES1968 Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci));
gameport_set_dev_parent(gp, &chip->pci->dev);
gp->io = JOYSTICK_ADDR;
gameport_set_port_data(gp, r);
gameport_register_port(gp);
return 0;
}
static void snd_es1968_free_gameport(struct es1968 *chip)
{
if (chip->gameport) {
struct resource *r = gameport_get_port_data(chip->gameport);
gameport_unregister_port(chip->gameport);
chip->gameport = NULL;
release_and_free_resource(r);
}
}
#else
static inline int snd_es1968_create_gameport(struct es1968 *chip, int dev) { return -ENOSYS; }
static inline void snd_es1968_free_gameport(struct es1968 *chip) { }
#endif
#ifdef CONFIG_SND_ES1968_INPUT
static int snd_es1968_input_register(struct es1968 *chip)
{
struct input_dev *input_dev;
int err;
input_dev = input_allocate_device();
if (!input_dev)
return -ENOMEM;
snprintf(chip->phys, sizeof(chip->phys), "pci-%s/input0",
pci_name(chip->pci));
input_dev->name = chip->card->driver;
input_dev->phys = chip->phys;
input_dev->id.bustype = BUS_PCI;
input_dev->id.vendor = chip->pci->vendor;
input_dev->id.product = chip->pci->device;
input_dev->dev.parent = &chip->pci->dev;
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(KEY_MUTE, input_dev->keybit);
__set_bit(KEY_VOLUMEDOWN, input_dev->keybit);
__set_bit(KEY_VOLUMEUP, input_dev->keybit);
err = input_register_device(input_dev);
if (err) {
input_free_device(input_dev);
return err;
}
chip->input_dev = input_dev;
return 0;
}
#endif /* CONFIG_SND_ES1968_INPUT */
#ifdef CONFIG_SND_ES1968_RADIO
#define GPIO_DATA 0x60
#define IO_MASK 4 /* mask register offset from GPIO_DATA
bits 1=unmask write to given bit */
#define IO_DIR 8 /* direction register offset from GPIO_DATA
bits 0/1=read/write direction */
/* GPIO to TEA575x maps */
struct snd_es1968_tea575x_gpio {
u8 data, clk, wren, most;
char *name;
};
static struct snd_es1968_tea575x_gpio snd_es1968_tea575x_gpios[] = {
{ .data = 6, .clk = 7, .wren = 8, .most = 9, .name = "SF64-PCE2" },
{ .data = 7, .clk = 8, .wren = 6, .most = 10, .name = "M56VAP" },
};
#define get_tea575x_gpio(chip) \
(&snd_es1968_tea575x_gpios[(chip)->tea575x_tuner])
static void snd_es1968_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
{
struct es1968 *chip = tea->private_data;
struct snd_es1968_tea575x_gpio gpio = *get_tea575x_gpio(chip);
u16 val = 0;
val |= (pins & TEA575X_DATA) ? (1 << gpio.data) : 0;
val |= (pins & TEA575X_CLK) ? (1 << gpio.clk) : 0;
val |= (pins & TEA575X_WREN) ? (1 << gpio.wren) : 0;
outw(val, chip->io_port + GPIO_DATA);
}
static u8 snd_es1968_tea575x_get_pins(struct snd_tea575x *tea)
{
struct es1968 *chip = tea->private_data;
struct snd_es1968_tea575x_gpio gpio = *get_tea575x_gpio(chip);
u16 val = inw(chip->io_port + GPIO_DATA);
u8 ret = 0;
if (val & (1 << gpio.data))
ret |= TEA575X_DATA;
if (val & (1 << gpio.most))
ret |= TEA575X_MOST;
return ret;
}
static void snd_es1968_tea575x_set_direction(struct snd_tea575x *tea, bool output)
{
struct es1968 *chip = tea->private_data;
unsigned long io = chip->io_port + GPIO_DATA;
u16 odir = inw(io + IO_DIR);
struct snd_es1968_tea575x_gpio gpio = *get_tea575x_gpio(chip);
if (output) {
outw(~((1 << gpio.data) | (1 << gpio.clk) | (1 << gpio.wren)),
io + IO_MASK);
outw(odir | (1 << gpio.data) | (1 << gpio.clk) | (1 << gpio.wren),
io + IO_DIR);
} else {
outw(~((1 << gpio.clk) | (1 << gpio.wren) | (1 << gpio.data) | (1 << gpio.most)),
io + IO_MASK);
outw((odir & ~((1 << gpio.data) | (1 << gpio.most)))
| (1 << gpio.clk) | (1 << gpio.wren), io + IO_DIR);
}
}
static struct snd_tea575x_ops snd_es1968_tea_ops = {
.set_pins = snd_es1968_tea575x_set_pins,
.get_pins = snd_es1968_tea575x_get_pins,
.set_direction = snd_es1968_tea575x_set_direction,
};
#endif
static int snd_es1968_free(struct es1968 *chip)
{
cancel_work_sync(&chip->hwvol_work);
#ifdef CONFIG_SND_ES1968_INPUT
if (chip->input_dev)
input_unregister_device(chip->input_dev);
#endif
if (chip->io_port) {
if (chip->irq >= 0)
synchronize_irq(chip->irq);
outw(1, chip->io_port + 0x04); /* clear WP interrupts */
outw(0, chip->io_port + ESM_PORT_HOST_IRQ); /* disable IRQ */
}
#ifdef CONFIG_SND_ES1968_RADIO
snd_tea575x_exit(&chip->tea);
v4l2_device_unregister(&chip->v4l2_dev);
#endif
if (chip->irq >= 0)
free_irq(chip->irq, chip);
snd_es1968_free_gameport(chip);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_es1968_dev_free(struct snd_device *device)
{
struct es1968 *chip = device->device_data;
return snd_es1968_free(chip);
}
struct ess_device_list {
unsigned short type; /* chip type */
unsigned short vendor; /* subsystem vendor id */
};
static struct ess_device_list pm_whitelist[] = {
{ TYPE_MAESTRO2E, 0x0e11 }, /* Compaq Armada */
{ TYPE_MAESTRO2E, 0x1028 },
{ TYPE_MAESTRO2E, 0x103c },
{ TYPE_MAESTRO2E, 0x1179 },
{ TYPE_MAESTRO2E, 0x14c0 }, /* HP omnibook 4150 */
{ TYPE_MAESTRO2E, 0x1558 },
{ TYPE_MAESTRO2E, 0x125d }, /* a PCI card, e.g. Terratec DMX */
{ TYPE_MAESTRO2, 0x125d }, /* a PCI card, e.g. SF64-PCE2 */
};
static struct ess_device_list mpu_blacklist[] = {
{ TYPE_MAESTRO2, 0x125d },
};
static int snd_es1968_create(struct snd_card *card,
struct pci_dev *pci,
int total_bufsize,
int play_streams,
int capt_streams,
int chip_type,
int do_pm,
int radio_nr,
struct es1968 **chip_ret)
{
static struct snd_device_ops ops = {
.dev_free = snd_es1968_dev_free,
};
struct es1968 *chip;
int i, err;
*chip_ret = NULL;
/* enable PCI device */
if ((err = pci_enable_device(pci)) < 0)
return err;
/* check, if we can restrict PCI DMA transfers to 28 bits */
if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
dev_err(card->dev,
"architecture does not support 28bit PCI busmaster DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (! chip) {
pci_disable_device(pci);
return -ENOMEM;
}
/* Set Vars */
chip->type = chip_type;
spin_lock_init(&chip->reg_lock);
spin_lock_init(&chip->substream_lock);
INIT_LIST_HEAD(&chip->buf_list);
INIT_LIST_HEAD(&chip->substream_list);
mutex_init(&chip->memory_mutex);
INIT_WORK(&chip->hwvol_work, es1968_update_hw_volume);
chip->card = card;
chip->pci = pci;
chip->irq = -1;
chip->total_bufsize = total_bufsize; /* in bytes */
chip->playback_streams = play_streams;
chip->capture_streams = capt_streams;
if ((err = pci_request_regions(pci, "ESS Maestro")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->io_port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_es1968_interrupt, IRQF_SHARED,
KBUILD_MODNAME, chip)) {
dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
snd_es1968_free(chip);
return -EBUSY;
}
chip->irq = pci->irq;
/* Clear Maestro_map */
for (i = 0; i < 32; i++)
chip->maestro_map[i] = 0;
/* Clear Apu Map */
for (i = 0; i < NR_APUS; i++)
chip->apu[i] = ESM_APU_FREE;
/* just to be sure */
pci_set_master(pci);
if (do_pm > 1) {
/* disable power-management if not on the whitelist */
unsigned short vend;
pci_read_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
for (i = 0; i < (int)ARRAY_SIZE(pm_whitelist); i++) {
if (chip->type == pm_whitelist[i].type &&
vend == pm_whitelist[i].vendor) {
do_pm = 1;
break;
}
}
if (do_pm > 1) {
/* not matched; disabling pm */
dev_info(card->dev, "not attempting power management.\n");
do_pm = 0;
}
}
chip->do_pm = do_pm;
snd_es1968_chip_init(chip);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_es1968_free(chip);
return err;
}
#ifdef CONFIG_SND_ES1968_RADIO
/* don't play with GPIOs on laptops */
if (chip->pci->subsystem_vendor != 0x125d)
goto no_radio;
err = v4l2_device_register(&pci->dev, &chip->v4l2_dev);
if (err < 0) {
snd_es1968_free(chip);
return err;
}
chip->tea.v4l2_dev = &chip->v4l2_dev;
chip->tea.private_data = chip;
chip->tea.radio_nr = radio_nr;
chip->tea.ops = &snd_es1968_tea_ops;
sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
for (i = 0; i < ARRAY_SIZE(snd_es1968_tea575x_gpios); i++) {
chip->tea575x_tuner = i;
if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) {
dev_info(card->dev, "detected TEA575x radio type %s\n",
get_tea575x_gpio(chip)->name);
strlcpy(chip->tea.card, get_tea575x_gpio(chip)->name,
sizeof(chip->tea.card));
break;
}
}
no_radio:
#endif
*chip_ret = chip;
return 0;
}
/*
*/
static int snd_es1968_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct es1968 *chip;
unsigned int i;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
0, &card);
if (err < 0)
return err;
if (total_bufsize[dev] < 128)
total_bufsize[dev] = 128;
if (total_bufsize[dev] > 4096)
total_bufsize[dev] = 4096;
if ((err = snd_es1968_create(card, pci,
total_bufsize[dev] * 1024, /* in bytes */
pcm_substreams_p[dev],
pcm_substreams_c[dev],
pci_id->driver_data,
use_pm[dev],
radio_nr[dev],
&chip)) < 0) {
snd_card_free(card);
return err;
}
card->private_data = chip;
switch (chip->type) {
case TYPE_MAESTRO2E:
strcpy(card->driver, "ES1978");
strcpy(card->shortname, "ESS ES1978 (Maestro 2E)");
break;
case TYPE_MAESTRO2:
strcpy(card->driver, "ES1968");
strcpy(card->shortname, "ESS ES1968 (Maestro 2)");
break;
case TYPE_MAESTRO:
strcpy(card->driver, "ESM1");
strcpy(card->shortname, "ESS Maestro 1");
break;
}
if ((err = snd_es1968_pcm(chip, 0)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_es1968_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if (enable_mpu[dev] == 2) {
/* check the black list */
unsigned short vend;
pci_read_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
for (i = 0; i < ARRAY_SIZE(mpu_blacklist); i++) {
if (chip->type == mpu_blacklist[i].type &&
vend == mpu_blacklist[i].vendor) {
enable_mpu[dev] = 0;
break;
}
}
}
if (enable_mpu[dev]) {
if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401,
chip->io_port + ESM_MPU401_PORT,
MPU401_INFO_INTEGRATED |
MPU401_INFO_IRQ_HOOK,
-1, &chip->rmidi)) < 0) {
dev_warn(card->dev, "skipping MPU-401 MIDI support..\n");
}
}
snd_es1968_create_gameport(chip, dev);
#ifdef CONFIG_SND_ES1968_INPUT
err = snd_es1968_input_register(chip);
if (err)
dev_warn(card->dev,
"Input device registration failed with error %i", err);
#endif
snd_es1968_start_irq(chip);
chip->clock = clock[dev];
if (! chip->clock)
es1968_measure_clock(chip);
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, chip->io_port, chip->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void snd_es1968_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
static struct pci_driver es1968_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_es1968_ids,
.probe = snd_es1968_probe,
.remove = snd_es1968_remove,
.driver = {
.pm = ES1968_PM_OPS,
},
};
module_pci_driver(es1968_driver);