linux_old1/tools/perf/builtin-kmem.c

1970 lines
44 KiB
C

#include "builtin.h"
#include "perf.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/util.h"
#include "util/cache.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/header.h"
#include "util/session.h"
#include "util/tool.h"
#include "util/callchain.h"
#include "util/parse-options.h"
#include "util/trace-event.h"
#include "util/data.h"
#include "util/cpumap.h"
#include "util/debug.h"
#include <linux/rbtree.h>
#include <linux/string.h>
#include <locale.h>
#include <regex.h>
static int kmem_slab;
static int kmem_page;
static long kmem_page_size;
static enum {
KMEM_SLAB,
KMEM_PAGE,
} kmem_default = KMEM_SLAB; /* for backward compatibility */
struct alloc_stat;
typedef int (*sort_fn_t)(void *, void *);
static int alloc_flag;
static int caller_flag;
static int alloc_lines = -1;
static int caller_lines = -1;
static bool raw_ip;
struct alloc_stat {
u64 call_site;
u64 ptr;
u64 bytes_req;
u64 bytes_alloc;
u32 hit;
u32 pingpong;
short alloc_cpu;
struct rb_node node;
};
static struct rb_root root_alloc_stat;
static struct rb_root root_alloc_sorted;
static struct rb_root root_caller_stat;
static struct rb_root root_caller_sorted;
static unsigned long total_requested, total_allocated;
static unsigned long nr_allocs, nr_cross_allocs;
static int insert_alloc_stat(unsigned long call_site, unsigned long ptr,
int bytes_req, int bytes_alloc, int cpu)
{
struct rb_node **node = &root_alloc_stat.rb_node;
struct rb_node *parent = NULL;
struct alloc_stat *data = NULL;
while (*node) {
parent = *node;
data = rb_entry(*node, struct alloc_stat, node);
if (ptr > data->ptr)
node = &(*node)->rb_right;
else if (ptr < data->ptr)
node = &(*node)->rb_left;
else
break;
}
if (data && data->ptr == ptr) {
data->hit++;
data->bytes_req += bytes_req;
data->bytes_alloc += bytes_alloc;
} else {
data = malloc(sizeof(*data));
if (!data) {
pr_err("%s: malloc failed\n", __func__);
return -1;
}
data->ptr = ptr;
data->pingpong = 0;
data->hit = 1;
data->bytes_req = bytes_req;
data->bytes_alloc = bytes_alloc;
rb_link_node(&data->node, parent, node);
rb_insert_color(&data->node, &root_alloc_stat);
}
data->call_site = call_site;
data->alloc_cpu = cpu;
return 0;
}
static int insert_caller_stat(unsigned long call_site,
int bytes_req, int bytes_alloc)
{
struct rb_node **node = &root_caller_stat.rb_node;
struct rb_node *parent = NULL;
struct alloc_stat *data = NULL;
while (*node) {
parent = *node;
data = rb_entry(*node, struct alloc_stat, node);
if (call_site > data->call_site)
node = &(*node)->rb_right;
else if (call_site < data->call_site)
node = &(*node)->rb_left;
else
break;
}
if (data && data->call_site == call_site) {
data->hit++;
data->bytes_req += bytes_req;
data->bytes_alloc += bytes_alloc;
} else {
data = malloc(sizeof(*data));
if (!data) {
pr_err("%s: malloc failed\n", __func__);
return -1;
}
data->call_site = call_site;
data->pingpong = 0;
data->hit = 1;
data->bytes_req = bytes_req;
data->bytes_alloc = bytes_alloc;
rb_link_node(&data->node, parent, node);
rb_insert_color(&data->node, &root_caller_stat);
}
return 0;
}
static int perf_evsel__process_alloc_event(struct perf_evsel *evsel,
struct perf_sample *sample)
{
unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr"),
call_site = perf_evsel__intval(evsel, sample, "call_site");
int bytes_req = perf_evsel__intval(evsel, sample, "bytes_req"),
bytes_alloc = perf_evsel__intval(evsel, sample, "bytes_alloc");
if (insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, sample->cpu) ||
insert_caller_stat(call_site, bytes_req, bytes_alloc))
return -1;
total_requested += bytes_req;
total_allocated += bytes_alloc;
nr_allocs++;
return 0;
}
static int perf_evsel__process_alloc_node_event(struct perf_evsel *evsel,
struct perf_sample *sample)
{
int ret = perf_evsel__process_alloc_event(evsel, sample);
if (!ret) {
int node1 = cpu__get_node(sample->cpu),
node2 = perf_evsel__intval(evsel, sample, "node");
if (node1 != node2)
nr_cross_allocs++;
}
return ret;
}
static int ptr_cmp(void *, void *);
static int slab_callsite_cmp(void *, void *);
static struct alloc_stat *search_alloc_stat(unsigned long ptr,
unsigned long call_site,
struct rb_root *root,
sort_fn_t sort_fn)
{
struct rb_node *node = root->rb_node;
struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
while (node) {
struct alloc_stat *data;
int cmp;
data = rb_entry(node, struct alloc_stat, node);
cmp = sort_fn(&key, data);
if (cmp < 0)
node = node->rb_left;
else if (cmp > 0)
node = node->rb_right;
else
return data;
}
return NULL;
}
static int perf_evsel__process_free_event(struct perf_evsel *evsel,
struct perf_sample *sample)
{
unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr");
struct alloc_stat *s_alloc, *s_caller;
s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
if (!s_alloc)
return 0;
if ((short)sample->cpu != s_alloc->alloc_cpu) {
s_alloc->pingpong++;
s_caller = search_alloc_stat(0, s_alloc->call_site,
&root_caller_stat,
slab_callsite_cmp);
if (!s_caller)
return -1;
s_caller->pingpong++;
}
s_alloc->alloc_cpu = -1;
return 0;
}
static u64 total_page_alloc_bytes;
static u64 total_page_free_bytes;
static u64 total_page_nomatch_bytes;
static u64 total_page_fail_bytes;
static unsigned long nr_page_allocs;
static unsigned long nr_page_frees;
static unsigned long nr_page_fails;
static unsigned long nr_page_nomatch;
static bool use_pfn;
static bool live_page;
static struct perf_session *kmem_session;
#define MAX_MIGRATE_TYPES 6
#define MAX_PAGE_ORDER 11
static int order_stats[MAX_PAGE_ORDER][MAX_MIGRATE_TYPES];
struct page_stat {
struct rb_node node;
u64 page;
u64 callsite;
int order;
unsigned gfp_flags;
unsigned migrate_type;
u64 alloc_bytes;
u64 free_bytes;
int nr_alloc;
int nr_free;
};
static struct rb_root page_live_tree;
static struct rb_root page_alloc_tree;
static struct rb_root page_alloc_sorted;
static struct rb_root page_caller_tree;
static struct rb_root page_caller_sorted;
struct alloc_func {
u64 start;
u64 end;
char *name;
};
static int nr_alloc_funcs;
static struct alloc_func *alloc_func_list;
static int funcmp(const void *a, const void *b)
{
const struct alloc_func *fa = a;
const struct alloc_func *fb = b;
if (fa->start > fb->start)
return 1;
else
return -1;
}
static int callcmp(const void *a, const void *b)
{
const struct alloc_func *fa = a;
const struct alloc_func *fb = b;
if (fb->start <= fa->start && fa->end < fb->end)
return 0;
if (fa->start > fb->start)
return 1;
else
return -1;
}
static int build_alloc_func_list(void)
{
int ret;
struct map *kernel_map;
struct symbol *sym;
struct rb_node *node;
struct alloc_func *func;
struct machine *machine = &kmem_session->machines.host;
regex_t alloc_func_regex;
const char pattern[] = "^_?_?(alloc|get_free|get_zeroed)_pages?";
ret = regcomp(&alloc_func_regex, pattern, REG_EXTENDED);
if (ret) {
char err[BUFSIZ];
regerror(ret, &alloc_func_regex, err, sizeof(err));
pr_err("Invalid regex: %s\n%s", pattern, err);
return -EINVAL;
}
kernel_map = machine->vmlinux_maps[MAP__FUNCTION];
if (map__load(kernel_map, NULL) < 0) {
pr_err("cannot load kernel map\n");
return -ENOENT;
}
map__for_each_symbol(kernel_map, sym, node) {
if (regexec(&alloc_func_regex, sym->name, 0, NULL, 0))
continue;
func = realloc(alloc_func_list,
(nr_alloc_funcs + 1) * sizeof(*func));
if (func == NULL)
return -ENOMEM;
pr_debug("alloc func: %s\n", sym->name);
func[nr_alloc_funcs].start = sym->start;
func[nr_alloc_funcs].end = sym->end;
func[nr_alloc_funcs].name = sym->name;
alloc_func_list = func;
nr_alloc_funcs++;
}
qsort(alloc_func_list, nr_alloc_funcs, sizeof(*func), funcmp);
regfree(&alloc_func_regex);
return 0;
}
/*
* Find first non-memory allocation function from callchain.
* The allocation functions are in the 'alloc_func_list'.
*/
static u64 find_callsite(struct perf_evsel *evsel, struct perf_sample *sample)
{
struct addr_location al;
struct machine *machine = &kmem_session->machines.host;
struct callchain_cursor_node *node;
if (alloc_func_list == NULL) {
if (build_alloc_func_list() < 0)
goto out;
}
al.thread = machine__findnew_thread(machine, sample->pid, sample->tid);
sample__resolve_callchain(sample, NULL, evsel, &al, 16);
callchain_cursor_commit(&callchain_cursor);
while (true) {
struct alloc_func key, *caller;
u64 addr;
node = callchain_cursor_current(&callchain_cursor);
if (node == NULL)
break;
key.start = key.end = node->ip;
caller = bsearch(&key, alloc_func_list, nr_alloc_funcs,
sizeof(key), callcmp);
if (!caller) {
/* found */
if (node->map)
addr = map__unmap_ip(node->map, node->ip);
else
addr = node->ip;
return addr;
} else
pr_debug3("skipping alloc function: %s\n", caller->name);
callchain_cursor_advance(&callchain_cursor);
}
out:
pr_debug2("unknown callsite: %"PRIx64 "\n", sample->ip);
return sample->ip;
}
struct sort_dimension {
const char name[20];
sort_fn_t cmp;
struct list_head list;
};
static LIST_HEAD(page_alloc_sort_input);
static LIST_HEAD(page_caller_sort_input);
static struct page_stat *
__page_stat__findnew_page(struct page_stat *pstat, bool create)
{
struct rb_node **node = &page_live_tree.rb_node;
struct rb_node *parent = NULL;
struct page_stat *data;
while (*node) {
s64 cmp;
parent = *node;
data = rb_entry(*node, struct page_stat, node);
cmp = data->page - pstat->page;
if (cmp < 0)
node = &parent->rb_left;
else if (cmp > 0)
node = &parent->rb_right;
else
return data;
}
if (!create)
return NULL;
data = zalloc(sizeof(*data));
if (data != NULL) {
data->page = pstat->page;
data->order = pstat->order;
data->gfp_flags = pstat->gfp_flags;
data->migrate_type = pstat->migrate_type;
rb_link_node(&data->node, parent, node);
rb_insert_color(&data->node, &page_live_tree);
}
return data;
}
static struct page_stat *page_stat__find_page(struct page_stat *pstat)
{
return __page_stat__findnew_page(pstat, false);
}
static struct page_stat *page_stat__findnew_page(struct page_stat *pstat)
{
return __page_stat__findnew_page(pstat, true);
}
static struct page_stat *
__page_stat__findnew_alloc(struct page_stat *pstat, bool create)
{
struct rb_node **node = &page_alloc_tree.rb_node;
struct rb_node *parent = NULL;
struct page_stat *data;
struct sort_dimension *sort;
while (*node) {
int cmp = 0;
parent = *node;
data = rb_entry(*node, struct page_stat, node);
list_for_each_entry(sort, &page_alloc_sort_input, list) {
cmp = sort->cmp(pstat, data);
if (cmp)
break;
}
if (cmp < 0)
node = &parent->rb_left;
else if (cmp > 0)
node = &parent->rb_right;
else
return data;
}
if (!create)
return NULL;
data = zalloc(sizeof(*data));
if (data != NULL) {
data->page = pstat->page;
data->order = pstat->order;
data->gfp_flags = pstat->gfp_flags;
data->migrate_type = pstat->migrate_type;
rb_link_node(&data->node, parent, node);
rb_insert_color(&data->node, &page_alloc_tree);
}
return data;
}
static struct page_stat *page_stat__find_alloc(struct page_stat *pstat)
{
return __page_stat__findnew_alloc(pstat, false);
}
static struct page_stat *page_stat__findnew_alloc(struct page_stat *pstat)
{
return __page_stat__findnew_alloc(pstat, true);
}
static struct page_stat *
__page_stat__findnew_caller(struct page_stat *pstat, bool create)
{
struct rb_node **node = &page_caller_tree.rb_node;
struct rb_node *parent = NULL;
struct page_stat *data;
struct sort_dimension *sort;
while (*node) {
int cmp = 0;
parent = *node;
data = rb_entry(*node, struct page_stat, node);
list_for_each_entry(sort, &page_caller_sort_input, list) {
cmp = sort->cmp(pstat, data);
if (cmp)
break;
}
if (cmp < 0)
node = &parent->rb_left;
else if (cmp > 0)
node = &parent->rb_right;
else
return data;
}
if (!create)
return NULL;
data = zalloc(sizeof(*data));
if (data != NULL) {
data->callsite = pstat->callsite;
data->order = pstat->order;
data->gfp_flags = pstat->gfp_flags;
data->migrate_type = pstat->migrate_type;
rb_link_node(&data->node, parent, node);
rb_insert_color(&data->node, &page_caller_tree);
}
return data;
}
static struct page_stat *page_stat__find_caller(struct page_stat *pstat)
{
return __page_stat__findnew_caller(pstat, false);
}
static struct page_stat *page_stat__findnew_caller(struct page_stat *pstat)
{
return __page_stat__findnew_caller(pstat, true);
}
static bool valid_page(u64 pfn_or_page)
{
if (use_pfn && pfn_or_page == -1UL)
return false;
if (!use_pfn && pfn_or_page == 0)
return false;
return true;
}
struct gfp_flag {
unsigned int flags;
char *compact_str;
char *human_readable;
};
static struct gfp_flag *gfps;
static int nr_gfps;
static int gfpcmp(const void *a, const void *b)
{
const struct gfp_flag *fa = a;
const struct gfp_flag *fb = b;
return fa->flags - fb->flags;
}
/* see include/trace/events/gfpflags.h */
static const struct {
const char *original;
const char *compact;
} gfp_compact_table[] = {
{ "GFP_TRANSHUGE", "THP" },
{ "GFP_HIGHUSER_MOVABLE", "HUM" },
{ "GFP_HIGHUSER", "HU" },
{ "GFP_USER", "U" },
{ "GFP_TEMPORARY", "TMP" },
{ "GFP_KERNEL", "K" },
{ "GFP_NOFS", "NF" },
{ "GFP_ATOMIC", "A" },
{ "GFP_NOIO", "NI" },
{ "GFP_HIGH", "H" },
{ "GFP_WAIT", "W" },
{ "GFP_IO", "I" },
{ "GFP_COLD", "CO" },
{ "GFP_NOWARN", "NWR" },
{ "GFP_REPEAT", "R" },
{ "GFP_NOFAIL", "NF" },
{ "GFP_NORETRY", "NR" },
{ "GFP_COMP", "C" },
{ "GFP_ZERO", "Z" },
{ "GFP_NOMEMALLOC", "NMA" },
{ "GFP_MEMALLOC", "MA" },
{ "GFP_HARDWALL", "HW" },
{ "GFP_THISNODE", "TN" },
{ "GFP_RECLAIMABLE", "RC" },
{ "GFP_MOVABLE", "M" },
{ "GFP_NOTRACK", "NT" },
{ "GFP_NO_KSWAPD", "NK" },
{ "GFP_OTHER_NODE", "ON" },
{ "GFP_NOWAIT", "NW" },
};
static size_t max_gfp_len;
static char *compact_gfp_flags(char *gfp_flags)
{
char *orig_flags = strdup(gfp_flags);
char *new_flags = NULL;
char *str, *pos = NULL;
size_t len = 0;
if (orig_flags == NULL)
return NULL;
str = strtok_r(orig_flags, "|", &pos);
while (str) {
size_t i;
char *new;
const char *cpt;
for (i = 0; i < ARRAY_SIZE(gfp_compact_table); i++) {
if (strcmp(gfp_compact_table[i].original, str))
continue;
cpt = gfp_compact_table[i].compact;
new = realloc(new_flags, len + strlen(cpt) + 2);
if (new == NULL) {
free(new_flags);
return NULL;
}
new_flags = new;
if (!len) {
strcpy(new_flags, cpt);
} else {
strcat(new_flags, "|");
strcat(new_flags, cpt);
len++;
}
len += strlen(cpt);
}
str = strtok_r(NULL, "|", &pos);
}
if (max_gfp_len < len)
max_gfp_len = len;
free(orig_flags);
return new_flags;
}
static char *compact_gfp_string(unsigned long gfp_flags)
{
struct gfp_flag key = {
.flags = gfp_flags,
};
struct gfp_flag *gfp;
gfp = bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp);
if (gfp)
return gfp->compact_str;
return NULL;
}
static int parse_gfp_flags(struct perf_evsel *evsel, struct perf_sample *sample,
unsigned int gfp_flags)
{
struct pevent_record record = {
.cpu = sample->cpu,
.data = sample->raw_data,
.size = sample->raw_size,
};
struct trace_seq seq;
char *str, *pos = NULL;
if (nr_gfps) {
struct gfp_flag key = {
.flags = gfp_flags,
};
if (bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp))
return 0;
}
trace_seq_init(&seq);
pevent_event_info(&seq, evsel->tp_format, &record);
str = strtok_r(seq.buffer, " ", &pos);
while (str) {
if (!strncmp(str, "gfp_flags=", 10)) {
struct gfp_flag *new;
new = realloc(gfps, (nr_gfps + 1) * sizeof(*gfps));
if (new == NULL)
return -ENOMEM;
gfps = new;
new += nr_gfps++;
new->flags = gfp_flags;
new->human_readable = strdup(str + 10);
new->compact_str = compact_gfp_flags(str + 10);
if (!new->human_readable || !new->compact_str)
return -ENOMEM;
qsort(gfps, nr_gfps, sizeof(*gfps), gfpcmp);
}
str = strtok_r(NULL, " ", &pos);
}
trace_seq_destroy(&seq);
return 0;
}
static int perf_evsel__process_page_alloc_event(struct perf_evsel *evsel,
struct perf_sample *sample)
{
u64 page;
unsigned int order = perf_evsel__intval(evsel, sample, "order");
unsigned int gfp_flags = perf_evsel__intval(evsel, sample, "gfp_flags");
unsigned int migrate_type = perf_evsel__intval(evsel, sample,
"migratetype");
u64 bytes = kmem_page_size << order;
u64 callsite;
struct page_stat *pstat;
struct page_stat this = {
.order = order,
.gfp_flags = gfp_flags,
.migrate_type = migrate_type,
};
if (use_pfn)
page = perf_evsel__intval(evsel, sample, "pfn");
else
page = perf_evsel__intval(evsel, sample, "page");
nr_page_allocs++;
total_page_alloc_bytes += bytes;
if (!valid_page(page)) {
nr_page_fails++;
total_page_fail_bytes += bytes;
return 0;
}
if (parse_gfp_flags(evsel, sample, gfp_flags) < 0)
return -1;
callsite = find_callsite(evsel, sample);
/*
* This is to find the current page (with correct gfp flags and
* migrate type) at free event.
*/
this.page = page;
pstat = page_stat__findnew_page(&this);
if (pstat == NULL)
return -ENOMEM;
pstat->nr_alloc++;
pstat->alloc_bytes += bytes;
pstat->callsite = callsite;
if (!live_page) {
pstat = page_stat__findnew_alloc(&this);
if (pstat == NULL)
return -ENOMEM;
pstat->nr_alloc++;
pstat->alloc_bytes += bytes;
pstat->callsite = callsite;
}
this.callsite = callsite;
pstat = page_stat__findnew_caller(&this);
if (pstat == NULL)
return -ENOMEM;
pstat->nr_alloc++;
pstat->alloc_bytes += bytes;
order_stats[order][migrate_type]++;
return 0;
}
static int perf_evsel__process_page_free_event(struct perf_evsel *evsel,
struct perf_sample *sample)
{
u64 page;
unsigned int order = perf_evsel__intval(evsel, sample, "order");
u64 bytes = kmem_page_size << order;
struct page_stat *pstat;
struct page_stat this = {
.order = order,
};
if (use_pfn)
page = perf_evsel__intval(evsel, sample, "pfn");
else
page = perf_evsel__intval(evsel, sample, "page");
nr_page_frees++;
total_page_free_bytes += bytes;
this.page = page;
pstat = page_stat__find_page(&this);
if (pstat == NULL) {
pr_debug2("missing free at page %"PRIx64" (order: %d)\n",
page, order);
nr_page_nomatch++;
total_page_nomatch_bytes += bytes;
return 0;
}
this.gfp_flags = pstat->gfp_flags;
this.migrate_type = pstat->migrate_type;
this.callsite = pstat->callsite;
rb_erase(&pstat->node, &page_live_tree);
free(pstat);
if (live_page) {
order_stats[this.order][this.migrate_type]--;
} else {
pstat = page_stat__find_alloc(&this);
if (pstat == NULL)
return -ENOMEM;
pstat->nr_free++;
pstat->free_bytes += bytes;
}
pstat = page_stat__find_caller(&this);
if (pstat == NULL)
return -ENOENT;
pstat->nr_free++;
pstat->free_bytes += bytes;
if (live_page) {
pstat->nr_alloc--;
pstat->alloc_bytes -= bytes;
if (pstat->nr_alloc == 0) {
rb_erase(&pstat->node, &page_caller_tree);
free(pstat);
}
}
return 0;
}
typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
struct perf_sample *sample);
static int process_sample_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample,
struct perf_evsel *evsel,
struct machine *machine)
{
int err = 0;
struct thread *thread = machine__findnew_thread(machine, sample->pid,
sample->tid);
if (thread == NULL) {
pr_debug("problem processing %d event, skipping it.\n",
event->header.type);
return -1;
}
dump_printf(" ... thread: %s:%d\n", thread__comm_str(thread), thread->tid);
if (evsel->handler != NULL) {
tracepoint_handler f = evsel->handler;
err = f(evsel, sample);
}
thread__put(thread);
return err;
}
static struct perf_tool perf_kmem = {
.sample = process_sample_event,
.comm = perf_event__process_comm,
.mmap = perf_event__process_mmap,
.mmap2 = perf_event__process_mmap2,
.ordered_events = true,
};
static double fragmentation(unsigned long n_req, unsigned long n_alloc)
{
if (n_alloc == 0)
return 0.0;
else
return 100.0 - (100.0 * n_req / n_alloc);
}
static void __print_slab_result(struct rb_root *root,
struct perf_session *session,
int n_lines, int is_caller)
{
struct rb_node *next;
struct machine *machine = &session->machines.host;
printf("%.105s\n", graph_dotted_line);
printf(" %-34s |", is_caller ? "Callsite": "Alloc Ptr");
printf(" Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag\n");
printf("%.105s\n", graph_dotted_line);
next = rb_first(root);
while (next && n_lines--) {
struct alloc_stat *data = rb_entry(next, struct alloc_stat,
node);
struct symbol *sym = NULL;
struct map *map;
char buf[BUFSIZ];
u64 addr;
if (is_caller) {
addr = data->call_site;
if (!raw_ip)
sym = machine__find_kernel_function(machine, addr, &map, NULL);
} else
addr = data->ptr;
if (sym != NULL)
snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
addr - map->unmap_ip(map, sym->start));
else
snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
printf(" %-34s |", buf);
printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %9lu | %6.3f%%\n",
(unsigned long long)data->bytes_alloc,
(unsigned long)data->bytes_alloc / data->hit,
(unsigned long long)data->bytes_req,
(unsigned long)data->bytes_req / data->hit,
(unsigned long)data->hit,
(unsigned long)data->pingpong,
fragmentation(data->bytes_req, data->bytes_alloc));
next = rb_next(next);
}
if (n_lines == -1)
printf(" ... | ... | ... | ... | ... | ... \n");
printf("%.105s\n", graph_dotted_line);
}
static const char * const migrate_type_str[] = {
"UNMOVABL",
"RECLAIM",
"MOVABLE",
"RESERVED",
"CMA/ISLT",
"UNKNOWN",
};
static void __print_page_alloc_result(struct perf_session *session, int n_lines)
{
struct rb_node *next = rb_first(&page_alloc_sorted);
struct machine *machine = &session->machines.host;
const char *format;
int gfp_len = max(strlen("GFP flags"), max_gfp_len);
printf("\n%.105s\n", graph_dotted_line);
printf(" %-16s | %5s alloc (KB) | Hits | Order | Mig.type | %-*s | Callsite\n",
use_pfn ? "PFN" : "Page", live_page ? "Live" : "Total",
gfp_len, "GFP flags");
printf("%.105s\n", graph_dotted_line);
if (use_pfn)
format = " %16llu | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
else
format = " %016llx | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
while (next && n_lines--) {
struct page_stat *data;
struct symbol *sym;
struct map *map;
char buf[32];
char *caller = buf;
data = rb_entry(next, struct page_stat, node);
sym = machine__find_kernel_function(machine, data->callsite,
&map, NULL);
if (sym && sym->name)
caller = sym->name;
else
scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
printf(format, (unsigned long long)data->page,
(unsigned long long)data->alloc_bytes / 1024,
data->nr_alloc, data->order,
migrate_type_str[data->migrate_type],
gfp_len, compact_gfp_string(data->gfp_flags), caller);
next = rb_next(next);
}
if (n_lines == -1) {
printf(" ... | ... | ... | ... | ... | %-*s | ...\n",
gfp_len, "...");
}
printf("%.105s\n", graph_dotted_line);
}
static void __print_page_caller_result(struct perf_session *session, int n_lines)
{
struct rb_node *next = rb_first(&page_caller_sorted);
struct machine *machine = &session->machines.host;
int gfp_len = max(strlen("GFP flags"), max_gfp_len);
printf("\n%.105s\n", graph_dotted_line);
printf(" %5s alloc (KB) | Hits | Order | Mig.type | %-*s | Callsite\n",
live_page ? "Live" : "Total", gfp_len, "GFP flags");
printf("%.105s\n", graph_dotted_line);
while (next && n_lines--) {
struct page_stat *data;
struct symbol *sym;
struct map *map;
char buf[32];
char *caller = buf;
data = rb_entry(next, struct page_stat, node);
sym = machine__find_kernel_function(machine, data->callsite,
&map, NULL);
if (sym && sym->name)
caller = sym->name;
else
scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
printf(" %'16llu | %'9d | %5d | %8s | %-*s | %s\n",
(unsigned long long)data->alloc_bytes / 1024,
data->nr_alloc, data->order,
migrate_type_str[data->migrate_type],
gfp_len, compact_gfp_string(data->gfp_flags), caller);
next = rb_next(next);
}
if (n_lines == -1) {
printf(" ... | ... | ... | ... | %-*s | ...\n",
gfp_len, "...");
}
printf("%.105s\n", graph_dotted_line);
}
static void print_gfp_flags(void)
{
int i;
printf("#\n");
printf("# GFP flags\n");
printf("# ---------\n");
for (i = 0; i < nr_gfps; i++) {
printf("# %08x: %*s: %s\n", gfps[i].flags,
(int) max_gfp_len, gfps[i].compact_str,
gfps[i].human_readable);
}
}
static void print_slab_summary(void)
{
printf("\nSUMMARY (SLAB allocator)");
printf("\n========================\n");
printf("Total bytes requested: %'lu\n", total_requested);
printf("Total bytes allocated: %'lu\n", total_allocated);
printf("Total bytes wasted on internal fragmentation: %'lu\n",
total_allocated - total_requested);
printf("Internal fragmentation: %f%%\n",
fragmentation(total_requested, total_allocated));
printf("Cross CPU allocations: %'lu/%'lu\n", nr_cross_allocs, nr_allocs);
}
static void print_page_summary(void)
{
int o, m;
u64 nr_alloc_freed = nr_page_frees - nr_page_nomatch;
u64 total_alloc_freed_bytes = total_page_free_bytes - total_page_nomatch_bytes;
printf("\nSUMMARY (page allocator)");
printf("\n========================\n");
printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total allocation requests",
nr_page_allocs, total_page_alloc_bytes / 1024);
printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total free requests",
nr_page_frees, total_page_free_bytes / 1024);
printf("\n");
printf("%-30s: %'16"PRIu64" [ %'16"PRIu64" KB ]\n", "Total alloc+freed requests",
nr_alloc_freed, (total_alloc_freed_bytes) / 1024);
printf("%-30s: %'16"PRIu64" [ %'16"PRIu64" KB ]\n", "Total alloc-only requests",
nr_page_allocs - nr_alloc_freed,
(total_page_alloc_bytes - total_alloc_freed_bytes) / 1024);
printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total free-only requests",
nr_page_nomatch, total_page_nomatch_bytes / 1024);
printf("\n");
printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total allocation failures",
nr_page_fails, total_page_fail_bytes / 1024);
printf("\n");
printf("%5s %12s %12s %12s %12s %12s\n", "Order", "Unmovable",
"Reclaimable", "Movable", "Reserved", "CMA/Isolated");
printf("%.5s %.12s %.12s %.12s %.12s %.12s\n", graph_dotted_line,
graph_dotted_line, graph_dotted_line, graph_dotted_line,
graph_dotted_line, graph_dotted_line);
for (o = 0; o < MAX_PAGE_ORDER; o++) {
printf("%5d", o);
for (m = 0; m < MAX_MIGRATE_TYPES - 1; m++) {
if (order_stats[o][m])
printf(" %'12d", order_stats[o][m]);
else
printf(" %12c", '.');
}
printf("\n");
}
}
static void print_slab_result(struct perf_session *session)
{
if (caller_flag)
__print_slab_result(&root_caller_sorted, session, caller_lines, 1);
if (alloc_flag)
__print_slab_result(&root_alloc_sorted, session, alloc_lines, 0);
print_slab_summary();
}
static void print_page_result(struct perf_session *session)
{
if (caller_flag || alloc_flag)
print_gfp_flags();
if (caller_flag)
__print_page_caller_result(session, caller_lines);
if (alloc_flag)
__print_page_alloc_result(session, alloc_lines);
print_page_summary();
}
static void print_result(struct perf_session *session)
{
if (kmem_slab)
print_slab_result(session);
if (kmem_page)
print_page_result(session);
}
static LIST_HEAD(slab_caller_sort);
static LIST_HEAD(slab_alloc_sort);
static LIST_HEAD(page_caller_sort);
static LIST_HEAD(page_alloc_sort);
static void sort_slab_insert(struct rb_root *root, struct alloc_stat *data,
struct list_head *sort_list)
{
struct rb_node **new = &(root->rb_node);
struct rb_node *parent = NULL;
struct sort_dimension *sort;
while (*new) {
struct alloc_stat *this;
int cmp = 0;
this = rb_entry(*new, struct alloc_stat, node);
parent = *new;
list_for_each_entry(sort, sort_list, list) {
cmp = sort->cmp(data, this);
if (cmp)
break;
}
if (cmp > 0)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);
}
static void __sort_slab_result(struct rb_root *root, struct rb_root *root_sorted,
struct list_head *sort_list)
{
struct rb_node *node;
struct alloc_stat *data;
for (;;) {
node = rb_first(root);
if (!node)
break;
rb_erase(node, root);
data = rb_entry(node, struct alloc_stat, node);
sort_slab_insert(root_sorted, data, sort_list);
}
}
static void sort_page_insert(struct rb_root *root, struct page_stat *data,
struct list_head *sort_list)
{
struct rb_node **new = &root->rb_node;
struct rb_node *parent = NULL;
struct sort_dimension *sort;
while (*new) {
struct page_stat *this;
int cmp = 0;
this = rb_entry(*new, struct page_stat, node);
parent = *new;
list_for_each_entry(sort, sort_list, list) {
cmp = sort->cmp(data, this);
if (cmp)
break;
}
if (cmp > 0)
new = &parent->rb_left;
else
new = &parent->rb_right;
}
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);
}
static void __sort_page_result(struct rb_root *root, struct rb_root *root_sorted,
struct list_head *sort_list)
{
struct rb_node *node;
struct page_stat *data;
for (;;) {
node = rb_first(root);
if (!node)
break;
rb_erase(node, root);
data = rb_entry(node, struct page_stat, node);
sort_page_insert(root_sorted, data, sort_list);
}
}
static void sort_result(void)
{
if (kmem_slab) {
__sort_slab_result(&root_alloc_stat, &root_alloc_sorted,
&slab_alloc_sort);
__sort_slab_result(&root_caller_stat, &root_caller_sorted,
&slab_caller_sort);
}
if (kmem_page) {
if (live_page)
__sort_page_result(&page_live_tree, &page_alloc_sorted,
&page_alloc_sort);
else
__sort_page_result(&page_alloc_tree, &page_alloc_sorted,
&page_alloc_sort);
__sort_page_result(&page_caller_tree, &page_caller_sorted,
&page_caller_sort);
}
}
static int __cmd_kmem(struct perf_session *session)
{
int err = -EINVAL;
struct perf_evsel *evsel;
const struct perf_evsel_str_handler kmem_tracepoints[] = {
/* slab allocator */
{ "kmem:kmalloc", perf_evsel__process_alloc_event, },
{ "kmem:kmem_cache_alloc", perf_evsel__process_alloc_event, },
{ "kmem:kmalloc_node", perf_evsel__process_alloc_node_event, },
{ "kmem:kmem_cache_alloc_node", perf_evsel__process_alloc_node_event, },
{ "kmem:kfree", perf_evsel__process_free_event, },
{ "kmem:kmem_cache_free", perf_evsel__process_free_event, },
/* page allocator */
{ "kmem:mm_page_alloc", perf_evsel__process_page_alloc_event, },
{ "kmem:mm_page_free", perf_evsel__process_page_free_event, },
};
if (!perf_session__has_traces(session, "kmem record"))
goto out;
if (perf_session__set_tracepoints_handlers(session, kmem_tracepoints)) {
pr_err("Initializing perf session tracepoint handlers failed\n");
goto out;
}
evlist__for_each(session->evlist, evsel) {
if (!strcmp(perf_evsel__name(evsel), "kmem:mm_page_alloc") &&
perf_evsel__field(evsel, "pfn")) {
use_pfn = true;
break;
}
}
setup_pager();
err = perf_session__process_events(session);
if (err != 0) {
pr_err("error during process events: %d\n", err);
goto out;
}
sort_result();
print_result(session);
out:
return err;
}
/* slab sort keys */
static int ptr_cmp(void *a, void *b)
{
struct alloc_stat *l = a;
struct alloc_stat *r = b;
if (l->ptr < r->ptr)
return -1;
else if (l->ptr > r->ptr)
return 1;
return 0;
}
static struct sort_dimension ptr_sort_dimension = {
.name = "ptr",
.cmp = ptr_cmp,
};
static int slab_callsite_cmp(void *a, void *b)
{
struct alloc_stat *l = a;
struct alloc_stat *r = b;
if (l->call_site < r->call_site)
return -1;
else if (l->call_site > r->call_site)
return 1;
return 0;
}
static struct sort_dimension callsite_sort_dimension = {
.name = "callsite",
.cmp = slab_callsite_cmp,
};
static int hit_cmp(void *a, void *b)
{
struct alloc_stat *l = a;
struct alloc_stat *r = b;
if (l->hit < r->hit)
return -1;
else if (l->hit > r->hit)
return 1;
return 0;
}
static struct sort_dimension hit_sort_dimension = {
.name = "hit",
.cmp = hit_cmp,
};
static int bytes_cmp(void *a, void *b)
{
struct alloc_stat *l = a;
struct alloc_stat *r = b;
if (l->bytes_alloc < r->bytes_alloc)
return -1;
else if (l->bytes_alloc > r->bytes_alloc)
return 1;
return 0;
}
static struct sort_dimension bytes_sort_dimension = {
.name = "bytes",
.cmp = bytes_cmp,
};
static int frag_cmp(void *a, void *b)
{
double x, y;
struct alloc_stat *l = a;
struct alloc_stat *r = b;
x = fragmentation(l->bytes_req, l->bytes_alloc);
y = fragmentation(r->bytes_req, r->bytes_alloc);
if (x < y)
return -1;
else if (x > y)
return 1;
return 0;
}
static struct sort_dimension frag_sort_dimension = {
.name = "frag",
.cmp = frag_cmp,
};
static int pingpong_cmp(void *a, void *b)
{
struct alloc_stat *l = a;
struct alloc_stat *r = b;
if (l->pingpong < r->pingpong)
return -1;
else if (l->pingpong > r->pingpong)
return 1;
return 0;
}
static struct sort_dimension pingpong_sort_dimension = {
.name = "pingpong",
.cmp = pingpong_cmp,
};
/* page sort keys */
static int page_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
if (l->page < r->page)
return -1;
else if (l->page > r->page)
return 1;
return 0;
}
static struct sort_dimension page_sort_dimension = {
.name = "page",
.cmp = page_cmp,
};
static int page_callsite_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
if (l->callsite < r->callsite)
return -1;
else if (l->callsite > r->callsite)
return 1;
return 0;
}
static struct sort_dimension page_callsite_sort_dimension = {
.name = "callsite",
.cmp = page_callsite_cmp,
};
static int page_hit_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
if (l->nr_alloc < r->nr_alloc)
return -1;
else if (l->nr_alloc > r->nr_alloc)
return 1;
return 0;
}
static struct sort_dimension page_hit_sort_dimension = {
.name = "hit",
.cmp = page_hit_cmp,
};
static int page_bytes_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
if (l->alloc_bytes < r->alloc_bytes)
return -1;
else if (l->alloc_bytes > r->alloc_bytes)
return 1;
return 0;
}
static struct sort_dimension page_bytes_sort_dimension = {
.name = "bytes",
.cmp = page_bytes_cmp,
};
static int page_order_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
if (l->order < r->order)
return -1;
else if (l->order > r->order)
return 1;
return 0;
}
static struct sort_dimension page_order_sort_dimension = {
.name = "order",
.cmp = page_order_cmp,
};
static int migrate_type_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
/* for internal use to find free'd page */
if (l->migrate_type == -1U)
return 0;
if (l->migrate_type < r->migrate_type)
return -1;
else if (l->migrate_type > r->migrate_type)
return 1;
return 0;
}
static struct sort_dimension migrate_type_sort_dimension = {
.name = "migtype",
.cmp = migrate_type_cmp,
};
static int gfp_flags_cmp(void *a, void *b)
{
struct page_stat *l = a;
struct page_stat *r = b;
/* for internal use to find free'd page */
if (l->gfp_flags == -1U)
return 0;
if (l->gfp_flags < r->gfp_flags)
return -1;
else if (l->gfp_flags > r->gfp_flags)
return 1;
return 0;
}
static struct sort_dimension gfp_flags_sort_dimension = {
.name = "gfp",
.cmp = gfp_flags_cmp,
};
static struct sort_dimension *slab_sorts[] = {
&ptr_sort_dimension,
&callsite_sort_dimension,
&hit_sort_dimension,
&bytes_sort_dimension,
&frag_sort_dimension,
&pingpong_sort_dimension,
};
static struct sort_dimension *page_sorts[] = {
&page_sort_dimension,
&page_callsite_sort_dimension,
&page_hit_sort_dimension,
&page_bytes_sort_dimension,
&page_order_sort_dimension,
&migrate_type_sort_dimension,
&gfp_flags_sort_dimension,
};
static int slab_sort_dimension__add(const char *tok, struct list_head *list)
{
struct sort_dimension *sort;
int i;
for (i = 0; i < (int)ARRAY_SIZE(slab_sorts); i++) {
if (!strcmp(slab_sorts[i]->name, tok)) {
sort = memdup(slab_sorts[i], sizeof(*slab_sorts[i]));
if (!sort) {
pr_err("%s: memdup failed\n", __func__);
return -1;
}
list_add_tail(&sort->list, list);
return 0;
}
}
return -1;
}
static int page_sort_dimension__add(const char *tok, struct list_head *list)
{
struct sort_dimension *sort;
int i;
for (i = 0; i < (int)ARRAY_SIZE(page_sorts); i++) {
if (!strcmp(page_sorts[i]->name, tok)) {
sort = memdup(page_sorts[i], sizeof(*page_sorts[i]));
if (!sort) {
pr_err("%s: memdup failed\n", __func__);
return -1;
}
list_add_tail(&sort->list, list);
return 0;
}
}
return -1;
}
static int setup_slab_sorting(struct list_head *sort_list, const char *arg)
{
char *tok;
char *str = strdup(arg);
char *pos = str;
if (!str) {
pr_err("%s: strdup failed\n", __func__);
return -1;
}
while (true) {
tok = strsep(&pos, ",");
if (!tok)
break;
if (slab_sort_dimension__add(tok, sort_list) < 0) {
error("Unknown slab --sort key: '%s'", tok);
free(str);
return -1;
}
}
free(str);
return 0;
}
static int setup_page_sorting(struct list_head *sort_list, const char *arg)
{
char *tok;
char *str = strdup(arg);
char *pos = str;
if (!str) {
pr_err("%s: strdup failed\n", __func__);
return -1;
}
while (true) {
tok = strsep(&pos, ",");
if (!tok)
break;
if (page_sort_dimension__add(tok, sort_list) < 0) {
error("Unknown page --sort key: '%s'", tok);
free(str);
return -1;
}
}
free(str);
return 0;
}
static int parse_sort_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!arg)
return -1;
if (kmem_page > kmem_slab ||
(kmem_page == 0 && kmem_slab == 0 && kmem_default == KMEM_PAGE)) {
if (caller_flag > alloc_flag)
return setup_page_sorting(&page_caller_sort, arg);
else
return setup_page_sorting(&page_alloc_sort, arg);
} else {
if (caller_flag > alloc_flag)
return setup_slab_sorting(&slab_caller_sort, arg);
else
return setup_slab_sorting(&slab_alloc_sort, arg);
}
return 0;
}
static int parse_caller_opt(const struct option *opt __maybe_unused,
const char *arg __maybe_unused,
int unset __maybe_unused)
{
caller_flag = (alloc_flag + 1);
return 0;
}
static int parse_alloc_opt(const struct option *opt __maybe_unused,
const char *arg __maybe_unused,
int unset __maybe_unused)
{
alloc_flag = (caller_flag + 1);
return 0;
}
static int parse_slab_opt(const struct option *opt __maybe_unused,
const char *arg __maybe_unused,
int unset __maybe_unused)
{
kmem_slab = (kmem_page + 1);
return 0;
}
static int parse_page_opt(const struct option *opt __maybe_unused,
const char *arg __maybe_unused,
int unset __maybe_unused)
{
kmem_page = (kmem_slab + 1);
return 0;
}
static int parse_line_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
int lines;
if (!arg)
return -1;
lines = strtoul(arg, NULL, 10);
if (caller_flag > alloc_flag)
caller_lines = lines;
else
alloc_lines = lines;
return 0;
}
static int __cmd_record(int argc, const char **argv)
{
const char * const record_args[] = {
"record", "-a", "-R", "-c", "1",
};
const char * const slab_events[] = {
"-e", "kmem:kmalloc",
"-e", "kmem:kmalloc_node",
"-e", "kmem:kfree",
"-e", "kmem:kmem_cache_alloc",
"-e", "kmem:kmem_cache_alloc_node",
"-e", "kmem:kmem_cache_free",
};
const char * const page_events[] = {
"-e", "kmem:mm_page_alloc",
"-e", "kmem:mm_page_free",
};
unsigned int rec_argc, i, j;
const char **rec_argv;
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
if (kmem_slab)
rec_argc += ARRAY_SIZE(slab_events);
if (kmem_page)
rec_argc += ARRAY_SIZE(page_events) + 1; /* for -g */
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(record_args); i++)
rec_argv[i] = strdup(record_args[i]);
if (kmem_slab) {
for (j = 0; j < ARRAY_SIZE(slab_events); j++, i++)
rec_argv[i] = strdup(slab_events[j]);
}
if (kmem_page) {
rec_argv[i++] = strdup("-g");
for (j = 0; j < ARRAY_SIZE(page_events); j++, i++)
rec_argv[i] = strdup(page_events[j]);
}
for (j = 1; j < (unsigned int)argc; j++, i++)
rec_argv[i] = argv[j];
return cmd_record(i, rec_argv, NULL);
}
static int kmem_config(const char *var, const char *value, void *cb)
{
if (!strcmp(var, "kmem.default")) {
if (!strcmp(value, "slab"))
kmem_default = KMEM_SLAB;
else if (!strcmp(value, "page"))
kmem_default = KMEM_PAGE;
else
pr_err("invalid default value ('slab' or 'page' required): %s\n",
value);
return 0;
}
return perf_default_config(var, value, cb);
}
int cmd_kmem(int argc, const char **argv, const char *prefix __maybe_unused)
{
const char * const default_slab_sort = "frag,hit,bytes";
const char * const default_page_sort = "bytes,hit";
struct perf_data_file file = {
.mode = PERF_DATA_MODE_READ,
};
const struct option kmem_options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
"show per-callsite statistics", parse_caller_opt),
OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
"show per-allocation statistics", parse_alloc_opt),
OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
"sort by keys: ptr, callsite, bytes, hit, pingpong, frag, "
"page, order, migtype, gfp", parse_sort_opt),
OPT_CALLBACK('l', "line", NULL, "num", "show n lines", parse_line_opt),
OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
OPT_BOOLEAN('f', "force", &file.force, "don't complain, do it"),
OPT_CALLBACK_NOOPT(0, "slab", NULL, NULL, "Analyze slab allocator",
parse_slab_opt),
OPT_CALLBACK_NOOPT(0, "page", NULL, NULL, "Analyze page allocator",
parse_page_opt),
OPT_BOOLEAN(0, "live", &live_page, "Show live page stat"),
OPT_END()
};
const char *const kmem_subcommands[] = { "record", "stat", NULL };
const char *kmem_usage[] = {
NULL,
NULL
};
struct perf_session *session;
int ret = -1;
const char errmsg[] = "No %s allocation events found. Have you run 'perf kmem record --%s'?\n";
perf_config(kmem_config, NULL);
argc = parse_options_subcommand(argc, argv, kmem_options,
kmem_subcommands, kmem_usage, 0);
if (!argc)
usage_with_options(kmem_usage, kmem_options);
if (kmem_slab == 0 && kmem_page == 0) {
if (kmem_default == KMEM_SLAB)
kmem_slab = 1;
else
kmem_page = 1;
}
if (!strncmp(argv[0], "rec", 3)) {
symbol__init(NULL);
return __cmd_record(argc, argv);
}
file.path = input_name;
kmem_session = session = perf_session__new(&file, false, &perf_kmem);
if (session == NULL)
return -1;
if (kmem_slab) {
if (!perf_evlist__find_tracepoint_by_name(session->evlist,
"kmem:kmalloc")) {
pr_err(errmsg, "slab", "slab");
goto out_delete;
}
}
if (kmem_page) {
struct perf_evsel *evsel;
evsel = perf_evlist__find_tracepoint_by_name(session->evlist,
"kmem:mm_page_alloc");
if (evsel == NULL) {
pr_err(errmsg, "page", "page");
goto out_delete;
}
kmem_page_size = pevent_get_page_size(evsel->tp_format->pevent);
symbol_conf.use_callchain = true;
}
symbol__init(&session->header.env);
if (!strcmp(argv[0], "stat")) {
setlocale(LC_ALL, "");
if (cpu__setup_cpunode_map())
goto out_delete;
if (list_empty(&slab_caller_sort))
setup_slab_sorting(&slab_caller_sort, default_slab_sort);
if (list_empty(&slab_alloc_sort))
setup_slab_sorting(&slab_alloc_sort, default_slab_sort);
if (list_empty(&page_caller_sort))
setup_page_sorting(&page_caller_sort, default_page_sort);
if (list_empty(&page_alloc_sort))
setup_page_sorting(&page_alloc_sort, default_page_sort);
if (kmem_page) {
setup_page_sorting(&page_alloc_sort_input,
"page,order,migtype,gfp");
setup_page_sorting(&page_caller_sort_input,
"callsite,order,migtype,gfp");
}
ret = __cmd_kmem(session);
} else
usage_with_options(kmem_usage, kmem_options);
out_delete:
perf_session__delete(session);
return ret;
}