2558 lines
75 KiB
C
2558 lines
75 KiB
C
/*
|
|
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt61pci
|
|
Abstract: rt61pci device specific routines.
|
|
Supported chipsets: RT2561, RT2561s, RT2661.
|
|
*/
|
|
|
|
/*
|
|
* Set enviroment defines for rt2x00.h
|
|
*/
|
|
#define DRV_NAME "rt61pci"
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/eeprom_93cx6.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00pci.h"
|
|
#include "rt61pci.h"
|
|
|
|
/*
|
|
* Register access.
|
|
* BBP and RF register require indirect register access,
|
|
* and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
|
|
* These indirect registers work with busy bits,
|
|
* and we will try maximal REGISTER_BUSY_COUNT times to access
|
|
* the register while taking a REGISTER_BUSY_DELAY us delay
|
|
* between each attampt. When the busy bit is still set at that time,
|
|
* the access attempt is considered to have failed,
|
|
* and we will print an error.
|
|
*/
|
|
static u32 rt61pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®);
|
|
if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
|
|
break;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void rt61pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt61pci_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write the data into the BBP.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
|
|
rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
|
|
rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
|
|
rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
|
|
}
|
|
|
|
static void rt61pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt61pci_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write the request into the BBP.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
|
|
rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
|
|
rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt61pci_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
|
|
*value = 0xff;
|
|
return;
|
|
}
|
|
|
|
*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
|
|
}
|
|
|
|
static void rt61pci_rf_write(const struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u32 value)
|
|
{
|
|
u32 reg;
|
|
unsigned int i;
|
|
|
|
if (!word)
|
|
return;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®);
|
|
if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
|
|
goto rf_write;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
|
|
return;
|
|
|
|
rf_write:
|
|
reg = 0;
|
|
rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
|
|
rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
|
|
rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
|
|
rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
|
|
rt2x00_rf_write(rt2x00dev, word, value);
|
|
}
|
|
|
|
static void rt61pci_mcu_request(const struct rt2x00_dev *rt2x00dev,
|
|
const u8 command, const u8 token,
|
|
const u8 arg0, const u8 arg1)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®);
|
|
|
|
if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
|
|
ERROR(rt2x00dev, "mcu request error. "
|
|
"Request 0x%02x failed for token 0x%02x.\n",
|
|
command, token);
|
|
return;
|
|
}
|
|
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
|
|
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
|
|
rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
|
|
rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
|
|
rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
|
|
}
|
|
|
|
static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
|
|
|
|
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
|
|
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
|
|
eeprom->reg_data_clock =
|
|
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
|
|
eeprom->reg_chip_select =
|
|
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
|
|
}
|
|
|
|
static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg = 0;
|
|
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
|
|
!!eeprom->reg_data_clock);
|
|
rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
|
|
!!eeprom->reg_chip_select);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
|
|
}
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
|
|
|
|
static void rt61pci_read_csr(const struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u32 *data)
|
|
{
|
|
rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
|
|
}
|
|
|
|
static void rt61pci_write_csr(const struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u32 data)
|
|
{
|
|
rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
|
|
}
|
|
|
|
static const struct rt2x00debug rt61pci_rt2x00debug = {
|
|
.owner = THIS_MODULE,
|
|
.csr = {
|
|
.read = rt61pci_read_csr,
|
|
.write = rt61pci_write_csr,
|
|
.word_size = sizeof(u32),
|
|
.word_count = CSR_REG_SIZE / sizeof(u32),
|
|
},
|
|
.eeprom = {
|
|
.read = rt2x00_eeprom_read,
|
|
.write = rt2x00_eeprom_write,
|
|
.word_size = sizeof(u16),
|
|
.word_count = EEPROM_SIZE / sizeof(u16),
|
|
},
|
|
.bbp = {
|
|
.read = rt61pci_bbp_read,
|
|
.write = rt61pci_bbp_write,
|
|
.word_size = sizeof(u8),
|
|
.word_count = BBP_SIZE / sizeof(u8),
|
|
},
|
|
.rf = {
|
|
.read = rt2x00_rf_read,
|
|
.write = rt61pci_rf_write,
|
|
.word_size = sizeof(u32),
|
|
.word_count = RF_SIZE / sizeof(u32),
|
|
},
|
|
};
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
|
|
#ifdef CONFIG_RT61PCI_RFKILL
|
|
static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
|
|
return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
|
|
}
|
|
#else
|
|
#define rt61pci_rfkill_poll NULL
|
|
#endif /* CONFIG_RT61PCI_RFKILL */
|
|
|
|
/*
|
|
* Configuration handlers.
|
|
*/
|
|
static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, __le32 *mac)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = le32_to_cpu(mac[1]);
|
|
rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
|
|
mac[1] = cpu_to_le32(tmp);
|
|
|
|
rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
|
|
(2 * sizeof(__le32)));
|
|
}
|
|
|
|
static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, __le32 *bssid)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = le32_to_cpu(bssid[1]);
|
|
rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
|
|
bssid[1] = cpu_to_le32(tmp);
|
|
|
|
rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, bssid,
|
|
(2 * sizeof(__le32)));
|
|
}
|
|
|
|
static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
|
|
const int tsf_sync)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Clear current synchronisation setup.
|
|
* For the Beacon base registers we only need to clear
|
|
* the first byte since that byte contains the VALID and OWNER
|
|
* bits which (when set to 0) will invalidate the entire beacon.
|
|
*/
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
|
|
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
|
|
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
|
|
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
|
|
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
|
|
|
|
/*
|
|
* Enable synchronisation.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
|
|
rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, tsf_sync);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
|
|
}
|
|
|
|
static void rt61pci_config_preamble(struct rt2x00_dev *rt2x00dev,
|
|
const int short_preamble,
|
|
const int ack_timeout,
|
|
const int ack_consume_time)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
|
|
!!short_preamble);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
|
|
}
|
|
|
|
static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
|
|
const int basic_rate_mask)
|
|
{
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
|
|
}
|
|
|
|
static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
|
|
struct rf_channel *rf, const int txpower)
|
|
{
|
|
u8 r3;
|
|
u8 r94;
|
|
u8 smart;
|
|
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
|
|
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
|
|
smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF2527));
|
|
|
|
rt61pci_bbp_read(rt2x00dev, 3, &r3);
|
|
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
|
|
rt61pci_bbp_write(rt2x00dev, 3, r3);
|
|
|
|
r94 = 6;
|
|
if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
|
|
r94 += txpower - MAX_TXPOWER;
|
|
else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
|
|
r94 += txpower;
|
|
rt61pci_bbp_write(rt2x00dev, 94, r94);
|
|
|
|
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
|
|
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
msleep(1);
|
|
}
|
|
|
|
static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
|
|
const int txpower)
|
|
{
|
|
struct rf_channel rf;
|
|
|
|
rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
|
|
rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
|
|
rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
|
|
rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
|
|
|
|
rt61pci_config_channel(rt2x00dev, &rf, txpower);
|
|
}
|
|
|
|
static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
|
|
const int antenna_tx,
|
|
const int antenna_rx)
|
|
{
|
|
u8 r3;
|
|
u8 r4;
|
|
u8 r77;
|
|
|
|
rt61pci_bbp_read(rt2x00dev, 3, &r3);
|
|
rt61pci_bbp_read(rt2x00dev, 4, &r4);
|
|
rt61pci_bbp_read(rt2x00dev, 77, &r77);
|
|
|
|
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
|
|
!rt2x00_rf(&rt2x00dev->chip, RF5225));
|
|
|
|
switch (antenna_rx) {
|
|
case ANTENNA_SW_DIVERSITY:
|
|
case ANTENNA_HW_DIVERSITY:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
|
|
!!(rt2x00dev->curr_hwmode != HWMODE_A));
|
|
break;
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
|
|
|
|
if (rt2x00dev->curr_hwmode == HWMODE_A)
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
|
|
else
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
break;
|
|
case ANTENNA_B:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
|
|
|
|
if (rt2x00dev->curr_hwmode == HWMODE_A)
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
else
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
|
|
break;
|
|
}
|
|
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_bbp_write(rt2x00dev, 3, r3);
|
|
rt61pci_bbp_write(rt2x00dev, 4, r4);
|
|
}
|
|
|
|
static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
|
|
const int antenna_tx,
|
|
const int antenna_rx)
|
|
{
|
|
u8 r3;
|
|
u8 r4;
|
|
u8 r77;
|
|
|
|
rt61pci_bbp_read(rt2x00dev, 3, &r3);
|
|
rt61pci_bbp_read(rt2x00dev, 4, &r4);
|
|
rt61pci_bbp_read(rt2x00dev, 77, &r77);
|
|
|
|
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2527));
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
|
|
!test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
|
|
|
|
switch (antenna_rx) {
|
|
case ANTENNA_SW_DIVERSITY:
|
|
case ANTENNA_HW_DIVERSITY:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
|
|
break;
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
break;
|
|
case ANTENNA_B:
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
|
|
break;
|
|
}
|
|
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_bbp_write(rt2x00dev, 3, r3);
|
|
rt61pci_bbp_write(rt2x00dev, 4, r4);
|
|
}
|
|
|
|
static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
|
|
const int p1, const int p2)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
|
|
|
|
if (p1 != 0xff) {
|
|
rt2x00_set_field32(®, MAC_CSR13_BIT4, !!p1);
|
|
rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
|
|
}
|
|
if (p2 != 0xff) {
|
|
rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
|
|
rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
|
|
}
|
|
}
|
|
|
|
static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
|
|
const int antenna_tx,
|
|
const int antenna_rx)
|
|
{
|
|
u16 eeprom;
|
|
u8 r3;
|
|
u8 r4;
|
|
u8 r77;
|
|
|
|
rt61pci_bbp_read(rt2x00dev, 3, &r3);
|
|
rt61pci_bbp_read(rt2x00dev, 4, &r4);
|
|
rt61pci_bbp_read(rt2x00dev, 77, &r77);
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
|
|
|
|
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
|
|
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
|
|
rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 1);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
|
|
} else if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) {
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED) >= 2) {
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
}
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
|
|
} else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
|
|
rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
|
|
|
|
switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
|
|
case 0:
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
|
|
break;
|
|
case 1:
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
|
|
break;
|
|
case 2:
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
|
|
break;
|
|
case 3:
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
|
|
break;
|
|
}
|
|
} else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
|
|
!rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
|
|
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
|
|
|
|
switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
|
|
case 0:
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
|
|
break;
|
|
case 1:
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
|
|
break;
|
|
case 2:
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
|
|
break;
|
|
case 3:
|
|
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
|
|
rt61pci_bbp_write(rt2x00dev, 77, r77);
|
|
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rt61pci_bbp_write(rt2x00dev, 3, r3);
|
|
rt61pci_bbp_write(rt2x00dev, 4, r4);
|
|
}
|
|
|
|
struct antenna_sel {
|
|
u8 word;
|
|
/*
|
|
* value[0] -> non-LNA
|
|
* value[1] -> LNA
|
|
*/
|
|
u8 value[2];
|
|
};
|
|
|
|
static const struct antenna_sel antenna_sel_a[] = {
|
|
{ 96, { 0x58, 0x78 } },
|
|
{ 104, { 0x38, 0x48 } },
|
|
{ 75, { 0xfe, 0x80 } },
|
|
{ 86, { 0xfe, 0x80 } },
|
|
{ 88, { 0xfe, 0x80 } },
|
|
{ 35, { 0x60, 0x60 } },
|
|
{ 97, { 0x58, 0x58 } },
|
|
{ 98, { 0x58, 0x58 } },
|
|
};
|
|
|
|
static const struct antenna_sel antenna_sel_bg[] = {
|
|
{ 96, { 0x48, 0x68 } },
|
|
{ 104, { 0x2c, 0x3c } },
|
|
{ 75, { 0xfe, 0x80 } },
|
|
{ 86, { 0xfe, 0x80 } },
|
|
{ 88, { 0xfe, 0x80 } },
|
|
{ 35, { 0x50, 0x50 } },
|
|
{ 97, { 0x48, 0x48 } },
|
|
{ 98, { 0x48, 0x48 } },
|
|
};
|
|
|
|
static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
|
|
const int antenna_tx, const int antenna_rx)
|
|
{
|
|
const struct antenna_sel *sel;
|
|
unsigned int lna;
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
|
|
|
|
if (rt2x00dev->curr_hwmode == HWMODE_A) {
|
|
sel = antenna_sel_a;
|
|
lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
|
|
|
|
rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 0);
|
|
rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 1);
|
|
} else {
|
|
sel = antenna_sel_bg;
|
|
lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
|
|
|
|
rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 1);
|
|
rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 0);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
|
|
rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
|
|
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF5325))
|
|
rt61pci_config_antenna_5x(rt2x00dev, antenna_tx, antenna_rx);
|
|
else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
|
|
rt61pci_config_antenna_2x(rt2x00dev, antenna_tx, antenna_rx);
|
|
else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
|
|
if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
|
|
rt61pci_config_antenna_2x(rt2x00dev, antenna_tx,
|
|
antenna_rx);
|
|
else
|
|
rt61pci_config_antenna_2529(rt2x00dev, antenna_tx,
|
|
antenna_rx);
|
|
}
|
|
}
|
|
|
|
static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
|
|
rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
|
|
rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs);
|
|
rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
|
|
rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
|
|
libconf->conf->beacon_int * 16);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
|
|
}
|
|
|
|
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int flags,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
if (flags & CONFIG_UPDATE_PHYMODE)
|
|
rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
|
|
if (flags & CONFIG_UPDATE_CHANNEL)
|
|
rt61pci_config_channel(rt2x00dev, &libconf->rf,
|
|
libconf->conf->power_level);
|
|
if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
|
|
rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
|
|
if (flags & CONFIG_UPDATE_ANTENNA)
|
|
rt61pci_config_antenna(rt2x00dev, libconf->conf->antenna_sel_tx,
|
|
libconf->conf->antenna_sel_rx);
|
|
if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
|
|
rt61pci_config_duration(rt2x00dev, libconf);
|
|
}
|
|
|
|
/*
|
|
* LED functions.
|
|
*/
|
|
static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 led_reg;
|
|
u8 arg0;
|
|
u8 arg1;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR14, ®);
|
|
rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, 70);
|
|
rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, 30);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
|
|
|
|
led_reg = rt2x00dev->led_reg;
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 1);
|
|
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A)
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 1);
|
|
else
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 1);
|
|
|
|
arg0 = led_reg & 0xff;
|
|
arg1 = (led_reg >> 8) & 0xff;
|
|
|
|
rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
|
|
}
|
|
|
|
static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 led_reg;
|
|
u8 arg0;
|
|
u8 arg1;
|
|
|
|
led_reg = rt2x00dev->led_reg;
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
|
|
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
|
|
|
|
arg0 = led_reg & 0xff;
|
|
arg1 = (led_reg >> 8) & 0xff;
|
|
|
|
rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
|
|
}
|
|
|
|
static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
|
|
{
|
|
u8 led;
|
|
|
|
if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
|
|
return;
|
|
|
|
/*
|
|
* Led handling requires a positive value for the rssi,
|
|
* to do that correctly we need to add the correction.
|
|
*/
|
|
rssi += rt2x00dev->rssi_offset;
|
|
|
|
if (rssi <= 30)
|
|
led = 0;
|
|
else if (rssi <= 39)
|
|
led = 1;
|
|
else if (rssi <= 49)
|
|
led = 2;
|
|
else if (rssi <= 53)
|
|
led = 3;
|
|
else if (rssi <= 63)
|
|
led = 4;
|
|
else
|
|
led = 5;
|
|
|
|
rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
|
|
}
|
|
|
|
/*
|
|
* Link tuning
|
|
*/
|
|
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Update FCS error count from register.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
|
|
rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
|
|
|
|
/*
|
|
* Update False CCA count from register.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
|
|
rt2x00dev->link.false_cca =
|
|
rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
|
|
}
|
|
|
|
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt61pci_bbp_write(rt2x00dev, 17, 0x20);
|
|
rt2x00dev->link.vgc_level = 0x20;
|
|
}
|
|
|
|
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
|
|
u8 r17;
|
|
u8 up_bound;
|
|
u8 low_bound;
|
|
|
|
/*
|
|
* Update Led strength
|
|
*/
|
|
rt61pci_activity_led(rt2x00dev, rssi);
|
|
|
|
rt61pci_bbp_read(rt2x00dev, 17, &r17);
|
|
|
|
/*
|
|
* Determine r17 bounds.
|
|
*/
|
|
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
|
|
low_bound = 0x28;
|
|
up_bound = 0x48;
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
|
|
low_bound += 0x10;
|
|
up_bound += 0x10;
|
|
}
|
|
} else {
|
|
low_bound = 0x20;
|
|
up_bound = 0x40;
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
|
|
low_bound += 0x10;
|
|
up_bound += 0x10;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Special big-R17 for very short distance
|
|
*/
|
|
if (rssi >= -35) {
|
|
if (r17 != 0x60)
|
|
rt61pci_bbp_write(rt2x00dev, 17, 0x60);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special big-R17 for short distance
|
|
*/
|
|
if (rssi >= -58) {
|
|
if (r17 != up_bound)
|
|
rt61pci_bbp_write(rt2x00dev, 17, up_bound);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special big-R17 for middle-short distance
|
|
*/
|
|
if (rssi >= -66) {
|
|
low_bound += 0x10;
|
|
if (r17 != low_bound)
|
|
rt61pci_bbp_write(rt2x00dev, 17, low_bound);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special mid-R17 for middle distance
|
|
*/
|
|
if (rssi >= -74) {
|
|
low_bound += 0x08;
|
|
if (r17 != low_bound)
|
|
rt61pci_bbp_write(rt2x00dev, 17, low_bound);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special case: Change up_bound based on the rssi.
|
|
* Lower up_bound when rssi is weaker then -74 dBm.
|
|
*/
|
|
up_bound -= 2 * (-74 - rssi);
|
|
if (low_bound > up_bound)
|
|
up_bound = low_bound;
|
|
|
|
if (r17 > up_bound) {
|
|
rt61pci_bbp_write(rt2x00dev, 17, up_bound);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* r17 does not yet exceed upper limit, continue and base
|
|
* the r17 tuning on the false CCA count.
|
|
*/
|
|
if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) {
|
|
if (++r17 > up_bound)
|
|
r17 = up_bound;
|
|
rt61pci_bbp_write(rt2x00dev, 17, r17);
|
|
} else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) {
|
|
if (--r17 < low_bound)
|
|
r17 = low_bound;
|
|
rt61pci_bbp_write(rt2x00dev, 17, r17);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Firmware name function.
|
|
*/
|
|
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
char *fw_name;
|
|
|
|
switch (rt2x00dev->chip.rt) {
|
|
case RT2561:
|
|
fw_name = FIRMWARE_RT2561;
|
|
break;
|
|
case RT2561s:
|
|
fw_name = FIRMWARE_RT2561s;
|
|
break;
|
|
case RT2661:
|
|
fw_name = FIRMWARE_RT2661;
|
|
break;
|
|
default:
|
|
fw_name = NULL;
|
|
break;
|
|
}
|
|
|
|
return fw_name;
|
|
}
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
|
|
const size_t len)
|
|
{
|
|
int i;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Wait for stable hardware.
|
|
*/
|
|
for (i = 0; i < 100; i++) {
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
if (reg)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (!reg) {
|
|
ERROR(rt2x00dev, "Unstable hardware.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Prepare MCU and mailbox for firmware loading.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
|
|
rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
|
|
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
|
|
|
|
/*
|
|
* Write firmware to device.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
|
|
rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
|
|
|
|
rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
|
|
data, len);
|
|
|
|
rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
|
|
|
|
rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
|
|
if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (i == 100) {
|
|
ERROR(rt2x00dev, "MCU Control register not ready.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Reset MAC and BBP registers.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
|
|
rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
|
|
rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring = rt2x00dev->rx;
|
|
struct data_desc *rxd;
|
|
unsigned int i;
|
|
u32 word;
|
|
|
|
memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
|
|
|
|
for (i = 0; i < ring->stats.limit; i++) {
|
|
rxd = ring->entry[i].priv;
|
|
|
|
rt2x00_desc_read(rxd, 5, &word);
|
|
rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
|
|
ring->entry[i].data_dma);
|
|
rt2x00_desc_write(rxd, 5, word);
|
|
|
|
rt2x00_desc_read(rxd, 0, &word);
|
|
rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
|
|
rt2x00_desc_write(rxd, 0, word);
|
|
}
|
|
|
|
rt2x00_ring_index_clear(rt2x00dev->rx);
|
|
}
|
|
|
|
static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
|
|
{
|
|
struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
|
|
struct data_desc *txd;
|
|
unsigned int i;
|
|
u32 word;
|
|
|
|
memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
|
|
|
|
for (i = 0; i < ring->stats.limit; i++) {
|
|
txd = ring->entry[i].priv;
|
|
|
|
rt2x00_desc_read(txd, 1, &word);
|
|
rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
rt2x00_desc_read(txd, 5, &word);
|
|
rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue);
|
|
rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i);
|
|
rt2x00_desc_write(txd, 5, word);
|
|
|
|
rt2x00_desc_read(txd, 6, &word);
|
|
rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
|
|
ring->entry[i].data_dma);
|
|
rt2x00_desc_write(txd, 6, word);
|
|
|
|
rt2x00_desc_read(txd, 0, &word);
|
|
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
|
|
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
}
|
|
|
|
rt2x00_ring_index_clear(ring);
|
|
}
|
|
|
|
static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Initialize rings.
|
|
*/
|
|
rt61pci_init_rxring(rt2x00dev);
|
|
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
|
|
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
|
|
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
|
|
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
|
|
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
|
|
|
|
/*
|
|
* Initialize registers.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
|
|
rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
|
|
rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
|
|
rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
|
|
rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
|
|
rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
|
|
rt2x00_set_field32(®, TX_RING_CSR1_MGMT_RING_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
|
|
rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
|
|
4);
|
|
rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, MGMT_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
|
|
rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE,
|
|
rt2x00dev->rx->stats.limit);
|
|
rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
|
|
rt2x00dev->rx->desc_size / 4);
|
|
rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
|
|
rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
|
|
rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
|
|
rt2x00dev->rx->data_dma);
|
|
rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
|
|
rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
|
|
rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
|
|
rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
|
|
rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
|
|
rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_MGMT, 0);
|
|
rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
|
|
rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
|
|
rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
|
|
rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
|
|
rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
|
|
rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
|
|
rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
|
|
rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
|
|
rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
|
|
rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
|
|
rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
|
|
|
|
/*
|
|
* CCK TXD BBP registers
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
|
|
rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
|
|
|
|
/*
|
|
* OFDM TXD BBP registers
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
|
|
rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
|
|
rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
|
|
rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
|
|
rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
|
|
rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
|
|
rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
|
|
rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
|
|
rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
|
|
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
|
|
return -EBUSY;
|
|
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
|
|
|
|
/*
|
|
* Invalidate all Shared Keys (SEC_CSR0),
|
|
* and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
|
|
*/
|
|
rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
|
|
rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
|
|
rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
|
|
rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
|
|
rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0);
|
|
rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0);
|
|
rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
|
|
rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192);
|
|
rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48);
|
|
rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
|
|
|
|
/*
|
|
* We must clear the error counters.
|
|
* These registers are cleared on read,
|
|
* so we may pass a useless variable to store the value.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
|
|
|
|
/*
|
|
* Reset MAC and BBP registers.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
|
|
rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
|
|
rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
u8 reg_id;
|
|
u8 value;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt61pci_bbp_read(rt2x00dev, 0, &value);
|
|
if ((value != 0xff) && (value != 0x00))
|
|
goto continue_csr_init;
|
|
NOTICE(rt2x00dev, "Waiting for BBP register.\n");
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
|
|
return -EACCES;
|
|
|
|
continue_csr_init:
|
|
rt61pci_bbp_write(rt2x00dev, 3, 0x00);
|
|
rt61pci_bbp_write(rt2x00dev, 15, 0x30);
|
|
rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
|
|
rt61pci_bbp_write(rt2x00dev, 22, 0x38);
|
|
rt61pci_bbp_write(rt2x00dev, 23, 0x06);
|
|
rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
|
|
rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
|
|
rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
|
|
rt61pci_bbp_write(rt2x00dev, 34, 0x12);
|
|
rt61pci_bbp_write(rt2x00dev, 37, 0x07);
|
|
rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
|
|
rt61pci_bbp_write(rt2x00dev, 41, 0x60);
|
|
rt61pci_bbp_write(rt2x00dev, 53, 0x10);
|
|
rt61pci_bbp_write(rt2x00dev, 54, 0x18);
|
|
rt61pci_bbp_write(rt2x00dev, 60, 0x10);
|
|
rt61pci_bbp_write(rt2x00dev, 61, 0x04);
|
|
rt61pci_bbp_write(rt2x00dev, 62, 0x04);
|
|
rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
|
|
rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
|
|
rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
|
|
rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
|
|
rt61pci_bbp_write(rt2x00dev, 99, 0x00);
|
|
rt61pci_bbp_write(rt2x00dev, 102, 0x16);
|
|
rt61pci_bbp_write(rt2x00dev, 107, 0x04);
|
|
|
|
DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
|
|
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
|
|
|
|
if (eeprom != 0xffff && eeprom != 0x0000) {
|
|
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
|
|
DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
|
|
reg_id, value);
|
|
rt61pci_bbp_write(rt2x00dev, reg_id, value);
|
|
}
|
|
}
|
|
DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device state switch handlers.
|
|
*/
|
|
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
|
|
state == STATE_RADIO_RX_OFF);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
}
|
|
|
|
static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int mask = (state == STATE_RADIO_IRQ_OFF);
|
|
u32 reg;
|
|
|
|
/*
|
|
* When interrupts are being enabled, the interrupt registers
|
|
* should clear the register to assure a clean state.
|
|
*/
|
|
if (state == STATE_RADIO_IRQ_ON) {
|
|
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
|
|
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
|
|
}
|
|
|
|
/*
|
|
* Only toggle the interrupts bits we are going to use.
|
|
* Non-checked interrupt bits are disabled by default.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
|
|
rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
|
|
rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
|
|
}
|
|
|
|
static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Initialize all registers.
|
|
*/
|
|
if (rt61pci_init_rings(rt2x00dev) ||
|
|
rt61pci_init_registers(rt2x00dev) ||
|
|
rt61pci_init_bbp(rt2x00dev)) {
|
|
ERROR(rt2x00dev, "Register initialization failed.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
|
|
rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
|
|
rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
|
|
|
|
/*
|
|
* Enable LED
|
|
*/
|
|
rt61pci_enable_led(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Disable LED
|
|
*/
|
|
rt61pci_disable_led(rt2x00dev);
|
|
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
|
|
|
|
/*
|
|
* Disable synchronisation.
|
|
*/
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
|
|
|
|
/*
|
|
* Cancel RX and TX.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
|
}
|
|
|
|
static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
|
|
{
|
|
u32 reg;
|
|
unsigned int i;
|
|
char put_to_sleep;
|
|
char current_state;
|
|
|
|
put_to_sleep = (state != STATE_AWAKE);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
|
|
rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
|
|
rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
|
|
rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
|
|
|
|
/*
|
|
* Device is not guaranteed to be in the requested state yet.
|
|
* We must wait until the register indicates that the
|
|
* device has entered the correct state.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
|
|
current_state =
|
|
rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
|
|
if (current_state == !put_to_sleep)
|
|
return 0;
|
|
msleep(10);
|
|
}
|
|
|
|
NOTICE(rt2x00dev, "Device failed to enter state %d, "
|
|
"current device state %d.\n", !put_to_sleep, current_state);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int retval = 0;
|
|
|
|
switch (state) {
|
|
case STATE_RADIO_ON:
|
|
retval = rt61pci_enable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_OFF:
|
|
rt61pci_disable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_RX_ON:
|
|
case STATE_RADIO_RX_OFF:
|
|
rt61pci_toggle_rx(rt2x00dev, state);
|
|
break;
|
|
case STATE_DEEP_SLEEP:
|
|
case STATE_SLEEP:
|
|
case STATE_STANDBY:
|
|
case STATE_AWAKE:
|
|
retval = rt61pci_set_state(rt2x00dev, state);
|
|
break;
|
|
default:
|
|
retval = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* TX descriptor initialization
|
|
*/
|
|
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
|
|
struct data_desc *txd,
|
|
struct txdata_entry_desc *desc,
|
|
struct ieee80211_hdr *ieee80211hdr,
|
|
unsigned int length,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
u32 word;
|
|
|
|
/*
|
|
* Start writing the descriptor words.
|
|
*/
|
|
rt2x00_desc_read(txd, 1, &word);
|
|
rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
|
|
rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
|
|
rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
|
|
rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
|
|
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
|
|
rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
rt2x00_desc_read(txd, 2, &word);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
|
|
rt2x00_desc_write(txd, 2, word);
|
|
|
|
rt2x00_desc_read(txd, 5, &word);
|
|
rt2x00_set_field32(&word, TXD_W5_TX_POWER,
|
|
TXPOWER_TO_DEV(control->power_level));
|
|
rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
|
|
rt2x00_desc_write(txd, 5, word);
|
|
|
|
rt2x00_desc_read(txd, 11, &word);
|
|
rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length);
|
|
rt2x00_desc_write(txd, 11, word);
|
|
|
|
rt2x00_desc_read(txd, 0, &word);
|
|
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
|
|
rt2x00_set_field32(&word, TXD_W0_VALID, 1);
|
|
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
|
|
test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_ACK,
|
|
!(control->flags & IEEE80211_TXCTL_NO_ACK));
|
|
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
|
|
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_OFDM,
|
|
test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
|
|
rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
|
|
!!(control->flags &
|
|
IEEE80211_TXCTL_LONG_RETRY_LIMIT));
|
|
rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
|
|
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
|
|
rt2x00_set_field32(&word, TXD_W0_BURST,
|
|
test_bit(ENTRY_TXD_BURST, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
}
|
|
|
|
/*
|
|
* TX data initialization
|
|
*/
|
|
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int queue)
|
|
{
|
|
u32 reg;
|
|
|
|
if (queue == IEEE80211_TX_QUEUE_BEACON) {
|
|
/*
|
|
* For Wi-Fi faily generated beacons between participating
|
|
* stations. Set TBTT phase adaptive adjustment step to 8us.
|
|
*/
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
|
|
if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
|
|
rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
|
|
if (queue == IEEE80211_TX_QUEUE_DATA0)
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1);
|
|
else if (queue == IEEE80211_TX_QUEUE_DATA1)
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1);
|
|
else if (queue == IEEE80211_TX_QUEUE_DATA2)
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1);
|
|
else if (queue == IEEE80211_TX_QUEUE_DATA3)
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1);
|
|
else if (queue == IEEE80211_TX_QUEUE_DATA4)
|
|
rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_MGMT, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
|
|
}
|
|
|
|
/*
|
|
* RX control handlers
|
|
*/
|
|
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
|
|
{
|
|
u16 eeprom;
|
|
u8 offset;
|
|
u8 lna;
|
|
|
|
lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
|
|
switch (lna) {
|
|
case 3:
|
|
offset = 90;
|
|
break;
|
|
case 2:
|
|
offset = 74;
|
|
break;
|
|
case 1:
|
|
offset = 64;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
|
|
offset += 14;
|
|
|
|
if (lna == 3 || lna == 2)
|
|
offset += 10;
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
|
|
offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
|
|
} else {
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
|
|
offset += 14;
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
|
|
offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
|
|
}
|
|
|
|
return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
|
|
}
|
|
|
|
static void rt61pci_fill_rxdone(struct data_entry *entry,
|
|
struct rxdata_entry_desc *desc)
|
|
{
|
|
struct data_desc *rxd = entry->priv;
|
|
u32 word0;
|
|
u32 word1;
|
|
|
|
rt2x00_desc_read(rxd, 0, &word0);
|
|
rt2x00_desc_read(rxd, 1, &word1);
|
|
|
|
desc->flags = 0;
|
|
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
|
|
desc->flags |= RX_FLAG_FAILED_FCS_CRC;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
|
|
desc->rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
|
|
desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
|
|
desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Interrupt functions.
|
|
*/
|
|
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_ring *ring;
|
|
struct data_entry *entry;
|
|
struct data_desc *txd;
|
|
u32 word;
|
|
u32 reg;
|
|
u32 old_reg;
|
|
int type;
|
|
int index;
|
|
int tx_status;
|
|
int retry;
|
|
|
|
/*
|
|
* During each loop we will compare the freshly read
|
|
* STA_CSR4 register value with the value read from
|
|
* the previous loop. If the 2 values are equal then
|
|
* we should stop processing because the chance it
|
|
* quite big that the device has been unplugged and
|
|
* we risk going into an endless loop.
|
|
*/
|
|
old_reg = 0;
|
|
|
|
while (1) {
|
|
rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
|
|
if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
|
|
break;
|
|
|
|
if (old_reg == reg)
|
|
break;
|
|
old_reg = reg;
|
|
|
|
/*
|
|
* Skip this entry when it contains an invalid
|
|
* ring identication number.
|
|
*/
|
|
type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
|
|
ring = rt2x00lib_get_ring(rt2x00dev, type);
|
|
if (unlikely(!ring))
|
|
continue;
|
|
|
|
/*
|
|
* Skip this entry when it contains an invalid
|
|
* index number.
|
|
*/
|
|
index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
|
|
if (unlikely(index >= ring->stats.limit))
|
|
continue;
|
|
|
|
entry = &ring->entry[index];
|
|
txd = entry->priv;
|
|
rt2x00_desc_read(txd, 0, &word);
|
|
|
|
if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
|
|
!rt2x00_get_field32(word, TXD_W0_VALID))
|
|
return;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
|
|
retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
|
|
|
|
rt2x00lib_txdone(entry, tx_status, retry);
|
|
|
|
/*
|
|
* Make this entry available for reuse.
|
|
*/
|
|
entry->flags = 0;
|
|
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
rt2x00_ring_index_done_inc(entry->ring);
|
|
|
|
/*
|
|
* If the data ring was full before the txdone handler
|
|
* we must make sure the packet queue in the mac80211 stack
|
|
* is reenabled when the txdone handler has finished.
|
|
*/
|
|
if (!rt2x00_ring_full(ring))
|
|
ieee80211_wake_queue(rt2x00dev->hw,
|
|
entry->tx_status.control.queue);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = dev_instance;
|
|
u32 reg_mcu;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Get the interrupt sources & saved to local variable.
|
|
* Write register value back to clear pending interrupts.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
|
|
rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
|
|
|
|
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
|
|
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
|
|
if (!reg && !reg_mcu)
|
|
return IRQ_NONE;
|
|
|
|
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return IRQ_HANDLED;
|
|
|
|
/*
|
|
* Handle interrupts, walk through all bits
|
|
* and run the tasks, the bits are checked in order of
|
|
* priority.
|
|
*/
|
|
|
|
/*
|
|
* 1 - Rx ring done interrupt.
|
|
*/
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
|
|
rt2x00pci_rxdone(rt2x00dev);
|
|
|
|
/*
|
|
* 2 - Tx ring done interrupt.
|
|
*/
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
|
|
rt61pci_txdone(rt2x00dev);
|
|
|
|
/*
|
|
* 3 - Handle MCU command done.
|
|
*/
|
|
if (reg_mcu)
|
|
rt2x00pci_register_write(rt2x00dev,
|
|
M2H_CMD_DONE_CSR, 0xffffffff);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Device probe functions.
|
|
*/
|
|
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct eeprom_93cx6 eeprom;
|
|
u32 reg;
|
|
u16 word;
|
|
u8 *mac;
|
|
s8 value;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
|
|
|
|
eeprom.data = rt2x00dev;
|
|
eeprom.register_read = rt61pci_eepromregister_read;
|
|
eeprom.register_write = rt61pci_eepromregister_write;
|
|
eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
|
|
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
|
|
eeprom.reg_data_in = 0;
|
|
eeprom.reg_data_out = 0;
|
|
eeprom.reg_data_clock = 0;
|
|
eeprom.reg_chip_select = 0;
|
|
|
|
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
|
|
EEPROM_SIZE / sizeof(u16));
|
|
|
|
/*
|
|
* Start validation of the data that has been read.
|
|
*/
|
|
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
|
|
if (!is_valid_ether_addr(mac)) {
|
|
DECLARE_MAC_BUF(macbuf);
|
|
|
|
random_ether_addr(mac);
|
|
EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
|
|
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
|
|
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
|
|
LED_MODE_DEFAULT);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
|
|
EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
|
|
EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
|
|
EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
|
|
} else {
|
|
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
|
|
if (value < -10 || value > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
|
|
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
|
|
if (value < -10 || value > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
|
|
EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
|
|
} else {
|
|
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
|
|
if (value < -10 || value > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
|
|
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
|
|
if (value < -10 || value > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 value;
|
|
u16 eeprom;
|
|
u16 device;
|
|
|
|
/*
|
|
* Read EEPROM word for configuration.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
|
|
|
|
/*
|
|
* Identify RF chipset.
|
|
* To determine the RT chip we have to read the
|
|
* PCI header of the device.
|
|
*/
|
|
pci_read_config_word(rt2x00dev_pci(rt2x00dev),
|
|
PCI_CONFIG_HEADER_DEVICE, &device);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
|
|
rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
rt2x00_set_chip(rt2x00dev, device, value, reg);
|
|
|
|
if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF5325) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2527) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2529)) {
|
|
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Identify default antenna configuration.
|
|
*/
|
|
rt2x00dev->hw->conf.antenna_sel_tx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
|
|
rt2x00dev->hw->conf.antenna_sel_rx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
|
|
|
|
/*
|
|
* Read the Frame type.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
|
|
__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Determine number of antenna's.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
|
|
__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Detect if this device has an hardware controlled radio.
|
|
*/
|
|
#ifdef CONFIG_RT61PCI_RFKILL
|
|
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
|
|
__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
|
|
#endif /* CONFIG_RT61PCI_RFKILL */
|
|
|
|
/*
|
|
* Read frequency offset and RF programming sequence.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
|
|
__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
|
|
|
|
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
|
|
|
|
/*
|
|
* Read external LNA informations.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
|
|
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
|
|
__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
|
|
__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Store led settings, for correct led behaviour.
|
|
* If the eeprom value is invalid,
|
|
* switch to default led mode.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
|
|
|
|
rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
|
|
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
|
|
rt2x00dev->led_mode);
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_GPIO_0));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_GPIO_1));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_GPIO_2));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_GPIO_3));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_GPIO_4));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
|
|
rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_RDY_G));
|
|
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
|
|
rt2x00_get_field16(eeprom,
|
|
EEPROM_LED_POLARITY_RDY_A));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RF value list for RF5225 & RF5325
|
|
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
|
|
*/
|
|
static const struct rf_channel rf_vals_noseq[] = {
|
|
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
|
|
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
|
|
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
|
|
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
|
|
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
|
|
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
|
|
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
|
|
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
|
|
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
|
|
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
|
|
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
|
|
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
|
|
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
|
|
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
|
|
{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
|
|
{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
|
|
{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
|
|
{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
|
|
{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
|
|
{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
|
|
{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
|
|
{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
|
|
{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
|
|
{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
|
|
{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
|
|
{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
|
|
{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
|
|
{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
|
|
{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
|
|
{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
|
|
|
|
/* 802.11 UNII */
|
|
{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
|
|
{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
|
|
{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
|
|
{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
|
|
{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
|
|
{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
|
|
|
|
/* MMAC(Japan)J52 ch 34,38,42,46 */
|
|
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
|
|
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
|
|
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
|
|
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF5225 & RF5325
|
|
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
|
|
*/
|
|
static const struct rf_channel rf_vals_seq[] = {
|
|
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
|
|
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
|
|
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
|
|
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
|
|
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
|
|
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
|
|
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
|
|
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
|
|
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
|
|
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
|
|
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
|
|
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
|
|
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
|
|
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
|
|
{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
|
|
{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
|
|
{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
|
|
{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
|
|
{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
|
|
{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
|
|
{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
|
|
{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
|
|
{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
|
|
{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
|
|
{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
|
|
{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
|
|
{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
|
|
{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
|
|
{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
|
|
{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
|
|
|
|
/* 802.11 UNII */
|
|
{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
|
|
{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
|
|
{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
|
|
{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
|
|
{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
|
|
{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
|
|
|
|
/* MMAC(Japan)J52 ch 34,38,42,46 */
|
|
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
|
|
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
|
|
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
|
|
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
|
|
};
|
|
|
|
static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
u8 *txpower;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Initialize all hw fields.
|
|
*/
|
|
rt2x00dev->hw->flags =
|
|
IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
|
|
rt2x00dev->hw->extra_tx_headroom = 0;
|
|
rt2x00dev->hw->max_signal = MAX_SIGNAL;
|
|
rt2x00dev->hw->max_rssi = MAX_RX_SSI;
|
|
rt2x00dev->hw->queues = 5;
|
|
|
|
SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
|
|
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
|
|
rt2x00_eeprom_addr(rt2x00dev,
|
|
EEPROM_MAC_ADDR_0));
|
|
|
|
/*
|
|
* Convert tx_power array in eeprom.
|
|
*/
|
|
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
|
|
for (i = 0; i < 14; i++)
|
|
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
|
|
|
|
/*
|
|
* Initialize hw_mode information.
|
|
*/
|
|
spec->num_modes = 2;
|
|
spec->num_rates = 12;
|
|
spec->tx_power_a = NULL;
|
|
spec->tx_power_bg = txpower;
|
|
spec->tx_power_default = DEFAULT_TXPOWER;
|
|
|
|
if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
|
|
spec->num_channels = 14;
|
|
spec->channels = rf_vals_noseq;
|
|
} else {
|
|
spec->num_channels = 14;
|
|
spec->channels = rf_vals_seq;
|
|
}
|
|
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF5325)) {
|
|
spec->num_modes = 3;
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_seq);
|
|
|
|
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
|
|
for (i = 0; i < 14; i++)
|
|
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
|
|
|
|
spec->tx_power_a = txpower;
|
|
}
|
|
}
|
|
|
|
static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
/*
|
|
* Allocate eeprom data.
|
|
*/
|
|
retval = rt61pci_validate_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = rt61pci_init_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize hw specifications.
|
|
*/
|
|
rt61pci_probe_hw_mode(rt2x00dev);
|
|
|
|
/*
|
|
* This device requires firmware
|
|
*/
|
|
__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Set the rssi offset.
|
|
*/
|
|
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IEEE80211 stack callback functions.
|
|
*/
|
|
static void rt61pci_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *total_flags,
|
|
int mc_count,
|
|
struct dev_addr_list *mc_list)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct interface *intf = &rt2x00dev->interface;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Mask off any flags we are going to ignore from
|
|
* the total_flags field.
|
|
*/
|
|
*total_flags &=
|
|
FIF_ALLMULTI |
|
|
FIF_FCSFAIL |
|
|
FIF_PLCPFAIL |
|
|
FIF_CONTROL |
|
|
FIF_OTHER_BSS |
|
|
FIF_PROMISC_IN_BSS;
|
|
|
|
/*
|
|
* Apply some rules to the filters:
|
|
* - Some filters imply different filters to be set.
|
|
* - Some things we can't filter out at all.
|
|
* - Some filters are set based on interface type.
|
|
*/
|
|
if (mc_count)
|
|
*total_flags |= FIF_ALLMULTI;
|
|
if (*total_flags & FIF_OTHER_BSS ||
|
|
*total_flags & FIF_PROMISC_IN_BSS)
|
|
*total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
|
|
if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
|
|
*total_flags |= FIF_PROMISC_IN_BSS;
|
|
|
|
/*
|
|
* Check if there is any work left for us.
|
|
*/
|
|
if (intf->filter == *total_flags)
|
|
return;
|
|
intf->filter = *total_flags;
|
|
|
|
/*
|
|
* Start configuration steps.
|
|
* Note that the version error will always be dropped
|
|
* and broadcast frames will always be accepted since
|
|
* there is no filter for it at this time.
|
|
*/
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
|
|
!(*total_flags & FIF_FCSFAIL));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
|
|
!(*total_flags & FIF_PLCPFAIL));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
|
|
!(*total_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
|
|
!(*total_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
|
|
!(*total_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
|
|
!(*total_flags & FIF_ALLMULTI));
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_BORADCAST, 0);
|
|
rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 1);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
}
|
|
|
|
static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
|
|
u32 short_retry, u32 long_retry)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
|
|
rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
|
|
rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u64 tsf;
|
|
u32 reg;
|
|
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
|
|
tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
|
|
rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
|
|
tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
|
|
|
|
return tsf;
|
|
}
|
|
|
|
static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
|
|
rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
|
|
}
|
|
|
|
static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
|
|
/*
|
|
* Just in case the ieee80211 doesn't set this,
|
|
* but we need this queue set for the descriptor
|
|
* initialization.
|
|
*/
|
|
control->queue = IEEE80211_TX_QUEUE_BEACON;
|
|
|
|
/*
|
|
* We need to append the descriptor in front of the
|
|
* beacon frame.
|
|
*/
|
|
if (skb_headroom(skb) < TXD_DESC_SIZE) {
|
|
if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
|
|
dev_kfree_skb(skb);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* First we create the beacon.
|
|
*/
|
|
skb_push(skb, TXD_DESC_SIZE);
|
|
memset(skb->data, 0, TXD_DESC_SIZE);
|
|
|
|
rt2x00lib_write_tx_desc(rt2x00dev, (struct data_desc *)skb->data,
|
|
(struct ieee80211_hdr *)(skb->data +
|
|
TXD_DESC_SIZE),
|
|
skb->len - TXD_DESC_SIZE, control);
|
|
|
|
/*
|
|
* Write entire beacon with descriptor to register,
|
|
* and kick the beacon generator.
|
|
*/
|
|
rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0,
|
|
skb->data, skb->len);
|
|
rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ieee80211_ops rt61pci_mac80211_ops = {
|
|
.tx = rt2x00mac_tx,
|
|
.start = rt2x00mac_start,
|
|
.stop = rt2x00mac_stop,
|
|
.add_interface = rt2x00mac_add_interface,
|
|
.remove_interface = rt2x00mac_remove_interface,
|
|
.config = rt2x00mac_config,
|
|
.config_interface = rt2x00mac_config_interface,
|
|
.configure_filter = rt61pci_configure_filter,
|
|
.get_stats = rt2x00mac_get_stats,
|
|
.set_retry_limit = rt61pci_set_retry_limit,
|
|
.erp_ie_changed = rt2x00mac_erp_ie_changed,
|
|
.conf_tx = rt2x00mac_conf_tx,
|
|
.get_tx_stats = rt2x00mac_get_tx_stats,
|
|
.get_tsf = rt61pci_get_tsf,
|
|
.reset_tsf = rt61pci_reset_tsf,
|
|
.beacon_update = rt61pci_beacon_update,
|
|
};
|
|
|
|
static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
|
|
.irq_handler = rt61pci_interrupt,
|
|
.probe_hw = rt61pci_probe_hw,
|
|
.get_firmware_name = rt61pci_get_firmware_name,
|
|
.load_firmware = rt61pci_load_firmware,
|
|
.initialize = rt2x00pci_initialize,
|
|
.uninitialize = rt2x00pci_uninitialize,
|
|
.set_device_state = rt61pci_set_device_state,
|
|
.rfkill_poll = rt61pci_rfkill_poll,
|
|
.link_stats = rt61pci_link_stats,
|
|
.reset_tuner = rt61pci_reset_tuner,
|
|
.link_tuner = rt61pci_link_tuner,
|
|
.write_tx_desc = rt61pci_write_tx_desc,
|
|
.write_tx_data = rt2x00pci_write_tx_data,
|
|
.kick_tx_queue = rt61pci_kick_tx_queue,
|
|
.fill_rxdone = rt61pci_fill_rxdone,
|
|
.config_mac_addr = rt61pci_config_mac_addr,
|
|
.config_bssid = rt61pci_config_bssid,
|
|
.config_type = rt61pci_config_type,
|
|
.config_preamble = rt61pci_config_preamble,
|
|
.config = rt61pci_config,
|
|
};
|
|
|
|
static const struct rt2x00_ops rt61pci_ops = {
|
|
.name = DRV_NAME,
|
|
.rxd_size = RXD_DESC_SIZE,
|
|
.txd_size = TXD_DESC_SIZE,
|
|
.eeprom_size = EEPROM_SIZE,
|
|
.rf_size = RF_SIZE,
|
|
.lib = &rt61pci_rt2x00_ops,
|
|
.hw = &rt61pci_mac80211_ops,
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
.debugfs = &rt61pci_rt2x00debug,
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
};
|
|
|
|
/*
|
|
* RT61pci module information.
|
|
*/
|
|
static struct pci_device_id rt61pci_device_table[] = {
|
|
/* RT2561s */
|
|
{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
|
|
/* RT2561 v2 */
|
|
{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
|
|
/* RT2661 */
|
|
{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
|
|
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
|
|
"PCI & PCMCIA chipset based cards");
|
|
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
|
|
MODULE_FIRMWARE(FIRMWARE_RT2561);
|
|
MODULE_FIRMWARE(FIRMWARE_RT2561s);
|
|
MODULE_FIRMWARE(FIRMWARE_RT2661);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static struct pci_driver rt61pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = rt61pci_device_table,
|
|
.probe = rt2x00pci_probe,
|
|
.remove = __devexit_p(rt2x00pci_remove),
|
|
.suspend = rt2x00pci_suspend,
|
|
.resume = rt2x00pci_resume,
|
|
};
|
|
|
|
static int __init rt61pci_init(void)
|
|
{
|
|
return pci_register_driver(&rt61pci_driver);
|
|
}
|
|
|
|
static void __exit rt61pci_exit(void)
|
|
{
|
|
pci_unregister_driver(&rt61pci_driver);
|
|
}
|
|
|
|
module_init(rt61pci_init);
|
|
module_exit(rt61pci_exit);
|