2808 lines
70 KiB
C
2808 lines
70 KiB
C
/*
|
|
* Copyright (c) 2008 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Implementation of transmit path.
|
|
*/
|
|
|
|
#include "core.h"
|
|
|
|
#define BITS_PER_BYTE 8
|
|
#define OFDM_PLCP_BITS 22
|
|
#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
|
|
#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
|
|
#define L_STF 8
|
|
#define L_LTF 8
|
|
#define L_SIG 4
|
|
#define HT_SIG 8
|
|
#define HT_STF 4
|
|
#define HT_LTF(_ns) (4 * (_ns))
|
|
#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
|
|
#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
|
|
#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
|
|
#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
|
|
|
|
#define OFDM_SIFS_TIME 16
|
|
|
|
static u32 bits_per_symbol[][2] = {
|
|
/* 20MHz 40MHz */
|
|
{ 26, 54 }, /* 0: BPSK */
|
|
{ 52, 108 }, /* 1: QPSK 1/2 */
|
|
{ 78, 162 }, /* 2: QPSK 3/4 */
|
|
{ 104, 216 }, /* 3: 16-QAM 1/2 */
|
|
{ 156, 324 }, /* 4: 16-QAM 3/4 */
|
|
{ 208, 432 }, /* 5: 64-QAM 2/3 */
|
|
{ 234, 486 }, /* 6: 64-QAM 3/4 */
|
|
{ 260, 540 }, /* 7: 64-QAM 5/6 */
|
|
{ 52, 108 }, /* 8: BPSK */
|
|
{ 104, 216 }, /* 9: QPSK 1/2 */
|
|
{ 156, 324 }, /* 10: QPSK 3/4 */
|
|
{ 208, 432 }, /* 11: 16-QAM 1/2 */
|
|
{ 312, 648 }, /* 12: 16-QAM 3/4 */
|
|
{ 416, 864 }, /* 13: 64-QAM 2/3 */
|
|
{ 468, 972 }, /* 14: 64-QAM 3/4 */
|
|
{ 520, 1080 }, /* 15: 64-QAM 5/6 */
|
|
};
|
|
|
|
#define IS_HT_RATE(_rate) ((_rate) & 0x80)
|
|
|
|
/*
|
|
* Insert a chain of ath_buf (descriptors) on a txq and
|
|
* assume the descriptors are already chained together by caller.
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static void ath_tx_txqaddbuf(struct ath_softc *sc,
|
|
struct ath_txq *txq, struct list_head *head)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
/*
|
|
* Insert the frame on the outbound list and
|
|
* pass it on to the hardware.
|
|
*/
|
|
|
|
if (list_empty(head))
|
|
return;
|
|
|
|
bf = list_first_entry(head, struct ath_buf, list);
|
|
|
|
list_splice_tail_init(head, &txq->axq_q);
|
|
txq->axq_depth++;
|
|
txq->axq_totalqueued++;
|
|
txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
|
|
|
|
DPRINTF(sc, ATH_DBG_QUEUE,
|
|
"%s: txq depth = %d\n", __func__, txq->axq_depth);
|
|
|
|
if (txq->axq_link == NULL) {
|
|
ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
DPRINTF(sc, ATH_DBG_XMIT,
|
|
"%s: TXDP[%u] = %llx (%p)\n",
|
|
__func__, txq->axq_qnum,
|
|
ito64(bf->bf_daddr), bf->bf_desc);
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
|
|
__func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
ito64(bf->bf_daddr), bf->bf_desc);
|
|
}
|
|
txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
|
|
ath9k_hw_txstart(ah, txq->axq_qnum);
|
|
}
|
|
|
|
/* Get transmit rate index using rate in Kbps */
|
|
|
|
static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
|
|
{
|
|
int i;
|
|
int ndx = 0;
|
|
|
|
for (i = 0; i < rt->rateCount; i++) {
|
|
if (rt->info[i].rateKbps == rate) {
|
|
ndx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ndx;
|
|
}
|
|
|
|
/* Check if it's okay to send out aggregates */
|
|
|
|
static int ath_aggr_query(struct ath_softc *sc,
|
|
struct ath_node *an, u8 tidno)
|
|
{
|
|
struct ath_atx_tid *tid;
|
|
tid = ATH_AN_2_TID(an, tidno);
|
|
|
|
if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
|
|
{
|
|
enum ath9k_pkt_type htype;
|
|
__le16 fc;
|
|
|
|
fc = hdr->frame_control;
|
|
|
|
/* Calculate Atheros packet type from IEEE80211 packet header */
|
|
|
|
if (ieee80211_is_beacon(fc))
|
|
htype = ATH9K_PKT_TYPE_BEACON;
|
|
else if (ieee80211_is_probe_resp(fc))
|
|
htype = ATH9K_PKT_TYPE_PROBE_RESP;
|
|
else if (ieee80211_is_atim(fc))
|
|
htype = ATH9K_PKT_TYPE_ATIM;
|
|
else if (ieee80211_is_pspoll(fc))
|
|
htype = ATH9K_PKT_TYPE_PSPOLL;
|
|
else
|
|
htype = ATH9K_PKT_TYPE_NORMAL;
|
|
|
|
return htype;
|
|
}
|
|
|
|
static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
__le16 fc;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
|
|
|
|
if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
|
|
txctl->use_minrate = 1;
|
|
txctl->min_rate = tx_info_priv->min_rate;
|
|
} else if (ieee80211_is_data(fc)) {
|
|
if (ieee80211_is_nullfunc(fc) ||
|
|
/* Port Access Entity (IEEE 802.1X) */
|
|
(skb->protocol == cpu_to_be16(0x888E))) {
|
|
txctl->use_minrate = 1;
|
|
txctl->min_rate = tx_info_priv->min_rate;
|
|
}
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
|
txctl->mcast_rate = tx_info_priv->min_rate;
|
|
}
|
|
|
|
}
|
|
|
|
/* This function will setup additional txctl information, mostly rate stuff */
|
|
/* FIXME: seqno, ps */
|
|
static int ath_tx_prepare(struct ath_softc *sc,
|
|
struct sk_buff *skb,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_rc_series *rcs;
|
|
struct ath_txq *txq = NULL;
|
|
const struct ath9k_rate_table *rt;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
int hdrlen;
|
|
u8 rix, antenna;
|
|
__le16 fc;
|
|
u8 *qc;
|
|
|
|
txctl->dev = sc;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
fc = hdr->frame_control;
|
|
|
|
rt = sc->sc_currates;
|
|
BUG_ON(!rt);
|
|
|
|
/* Fill misc fields */
|
|
|
|
spin_lock_bh(&sc->node_lock);
|
|
txctl->an = ath_node_get(sc, hdr->addr1);
|
|
/* create a temp node, if the node is not there already */
|
|
if (!txctl->an)
|
|
txctl->an = ath_node_attach(sc, hdr->addr1, 0);
|
|
spin_unlock_bh(&sc->node_lock);
|
|
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
txctl->tidno = qc[0] & 0xf;
|
|
}
|
|
|
|
txctl->if_id = 0;
|
|
txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3);
|
|
txctl->txpower = MAX_RATE_POWER; /* FIXME */
|
|
|
|
/* Fill Key related fields */
|
|
|
|
txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
|
|
txctl->keyix = ATH9K_TXKEYIX_INVALID;
|
|
|
|
if (tx_info->control.hw_key) {
|
|
txctl->keyix = tx_info->control.hw_key->hw_key_idx;
|
|
txctl->frmlen += tx_info->control.icv_len;
|
|
|
|
if (sc->sc_keytype == ATH9K_CIPHER_WEP)
|
|
txctl->keytype = ATH9K_KEY_TYPE_WEP;
|
|
else if (sc->sc_keytype == ATH9K_CIPHER_TKIP)
|
|
txctl->keytype = ATH9K_KEY_TYPE_TKIP;
|
|
else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM)
|
|
txctl->keytype = ATH9K_KEY_TYPE_AES;
|
|
}
|
|
|
|
/* Fill packet type */
|
|
|
|
txctl->atype = get_hal_packet_type(hdr);
|
|
|
|
/* Fill qnum */
|
|
|
|
if (unlikely(txctl->flags & ATH9K_TXDESC_CAB)) {
|
|
txctl->qnum = 0;
|
|
txq = sc->sc_cabq;
|
|
} else {
|
|
txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
|
|
txq = &sc->sc_txq[txctl->qnum];
|
|
}
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
/* Try to avoid running out of descriptors */
|
|
if (txq->axq_depth >= (ATH_TXBUF - 20) &&
|
|
!(txctl->flags & ATH9K_TXDESC_CAB)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: TX queue: %d is full, depth: %d\n",
|
|
__func__,
|
|
txctl->qnum,
|
|
txq->axq_depth);
|
|
ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
|
|
txq->stopped = 1;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
return -1;
|
|
}
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
/* Fill rate */
|
|
|
|
fill_min_rates(skb, txctl);
|
|
|
|
/* Fill flags */
|
|
|
|
txctl->flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
|
|
|
|
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
|
|
txctl->flags |= ATH9K_TXDESC_NOACK;
|
|
if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
|
|
txctl->flags |= ATH9K_TXDESC_RTSENA;
|
|
|
|
/*
|
|
* Setup for rate calculations.
|
|
*/
|
|
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
|
|
rcs = tx_info_priv->rcs;
|
|
|
|
if (ieee80211_is_data(fc) && !txctl->use_minrate) {
|
|
|
|
/* Enable HT only for DATA frames and not for EAPOL */
|
|
txctl->ht = (hw->conf.ht_conf.ht_supported &&
|
|
(tx_info->flags & IEEE80211_TX_CTL_AMPDU));
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
rcs[0].rix = (u8)
|
|
ath_tx_findindex(rt, txctl->mcast_rate);
|
|
|
|
/*
|
|
* mcast packets are not re-tried.
|
|
*/
|
|
rcs[0].tries = 1;
|
|
}
|
|
/* For HT capable stations, we save tidno for later use.
|
|
* We also override seqno set by upper layer with the one
|
|
* in tx aggregation state.
|
|
*
|
|
* First, the fragmentation stat is determined.
|
|
* If fragmentation is on, the sequence number is
|
|
* not overridden, since it has been
|
|
* incremented by the fragmentation routine.
|
|
*/
|
|
if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
|
|
txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
|
|
struct ath_atx_tid *tid;
|
|
|
|
tid = ATH_AN_2_TID(txctl->an, txctl->tidno);
|
|
|
|
hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
|
|
IEEE80211_SEQ_SEQ_SHIFT);
|
|
txctl->seqno = tid->seq_next;
|
|
INCR(tid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
} else {
|
|
/* for management and control frames,
|
|
* or for NULL and EAPOL frames */
|
|
if (txctl->min_rate)
|
|
rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate);
|
|
else
|
|
rcs[0].rix = 0;
|
|
rcs[0].tries = ATH_MGT_TXMAXTRY;
|
|
}
|
|
rix = rcs[0].rix;
|
|
|
|
if (ieee80211_has_morefrags(fc) ||
|
|
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
|
|
/*
|
|
** Force hardware to use computed duration for next
|
|
** fragment by disabling multi-rate retry, which
|
|
** updates duration based on the multi-rate
|
|
** duration table.
|
|
*/
|
|
rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
|
|
rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
|
|
/* reset tries but keep rate index */
|
|
rcs[0].tries = ATH_TXMAXTRY;
|
|
}
|
|
|
|
/*
|
|
* Determine if a tx interrupt should be generated for
|
|
* this descriptor. We take a tx interrupt to reap
|
|
* descriptors when the h/w hits an EOL condition or
|
|
* when the descriptor is specifically marked to generate
|
|
* an interrupt. We periodically mark descriptors in this
|
|
* way to insure timely replenishing of the supply needed
|
|
* for sending frames. Defering interrupts reduces system
|
|
* load and potentially allows more concurrent work to be
|
|
* done but if done to aggressively can cause senders to
|
|
* backup.
|
|
*
|
|
* NB: use >= to deal with sc_txintrperiod changing
|
|
* dynamically through sysctl.
|
|
*/
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) {
|
|
txctl->flags |= ATH9K_TXDESC_INTREQ;
|
|
txq->axq_intrcnt = 0;
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
antenna = sc->sc_mcastantenna + 1;
|
|
sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* To complete a chain of buffers associated a frame */
|
|
|
|
static void ath_tx_complete_buf(struct ath_softc *sc,
|
|
struct ath_buf *bf,
|
|
struct list_head *bf_q,
|
|
int txok, int sendbar)
|
|
{
|
|
struct sk_buff *skb = bf->bf_mpdu;
|
|
struct ath_xmit_status tx_status;
|
|
|
|
/*
|
|
* Set retry information.
|
|
* NB: Don't use the information in the descriptor, because the frame
|
|
* could be software retried.
|
|
*/
|
|
tx_status.retries = bf->bf_retries;
|
|
tx_status.flags = 0;
|
|
|
|
if (sendbar)
|
|
tx_status.flags = ATH_TX_BAR;
|
|
|
|
if (!txok) {
|
|
tx_status.flags |= ATH_TX_ERROR;
|
|
|
|
if (bf_isxretried(bf))
|
|
tx_status.flags |= ATH_TX_XRETRY;
|
|
}
|
|
/* Unmap this frame */
|
|
pci_unmap_single(sc->pdev,
|
|
bf->bf_dmacontext,
|
|
skb->len,
|
|
PCI_DMA_TODEVICE);
|
|
/* complete this frame */
|
|
ath_tx_complete(sc, skb, &tx_status, bf->bf_node);
|
|
|
|
/*
|
|
* Return the list of ath_buf of this mpdu to free queue
|
|
*/
|
|
spin_lock_bh(&sc->sc_txbuflock);
|
|
list_splice_tail_init(bf_q, &sc->sc_txbuf);
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
}
|
|
|
|
/*
|
|
* queue up a dest/ac pair for tx scheduling
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_atx_ac *ac = tid->ac;
|
|
|
|
/*
|
|
* if tid is paused, hold off
|
|
*/
|
|
if (tid->paused)
|
|
return;
|
|
|
|
/*
|
|
* add tid to ac atmost once
|
|
*/
|
|
if (tid->sched)
|
|
return;
|
|
|
|
tid->sched = true;
|
|
list_add_tail(&tid->list, &ac->tid_q);
|
|
|
|
/*
|
|
* add node ac to txq atmost once
|
|
*/
|
|
if (ac->sched)
|
|
return;
|
|
|
|
ac->sched = true;
|
|
list_add_tail(&ac->list, &txq->axq_acq);
|
|
}
|
|
|
|
/* pause a tid */
|
|
|
|
static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
tid->paused++;
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
/* resume a tid and schedule aggregate */
|
|
|
|
void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
|
|
|
|
ASSERT(tid->paused > 0);
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
tid->paused--;
|
|
|
|
if (tid->paused > 0)
|
|
goto unlock;
|
|
|
|
if (list_empty(&tid->buf_q))
|
|
goto unlock;
|
|
|
|
/*
|
|
* Add this TID to scheduler and try to send out aggregates
|
|
*/
|
|
ath_tx_queue_tid(txq, tid);
|
|
ath_txq_schedule(sc, txq);
|
|
unlock:
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
/* Compute the number of bad frames */
|
|
|
|
static int ath_tx_num_badfrms(struct ath_softc *sc,
|
|
struct ath_buf *bf, int txok)
|
|
{
|
|
struct ath_node *an = bf->bf_node;
|
|
int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
|
|
struct ath_buf *bf_last = bf->bf_lastbf;
|
|
struct ath_desc *ds = bf_last->bf_desc;
|
|
u16 seq_st = 0;
|
|
u32 ba[WME_BA_BMP_SIZE >> 5];
|
|
int ba_index;
|
|
int nbad = 0;
|
|
int isaggr = 0;
|
|
|
|
if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
|
|
return 0;
|
|
|
|
isaggr = bf_isaggr(bf);
|
|
if (isaggr) {
|
|
seq_st = ATH_DS_BA_SEQ(ds);
|
|
memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
|
|
}
|
|
|
|
while (bf) {
|
|
ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
|
|
if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
|
|
nbad++;
|
|
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
return nbad;
|
|
}
|
|
|
|
static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ieee80211_hdr *hdr;
|
|
|
|
bf->bf_state.bf_type |= BUF_RETRY;
|
|
bf->bf_retries++;
|
|
|
|
skb = bf->bf_mpdu;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
|
|
}
|
|
|
|
/* Update block ack window */
|
|
|
|
static void ath_tx_update_baw(struct ath_softc *sc,
|
|
struct ath_atx_tid *tid, int seqno)
|
|
{
|
|
int index, cindex;
|
|
|
|
index = ATH_BA_INDEX(tid->seq_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
tid->tx_buf[cindex] = NULL;
|
|
|
|
while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
|
|
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
|
|
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ath_pkt_dur - compute packet duration (NB: not NAV)
|
|
*
|
|
* rix - rate index
|
|
* pktlen - total bytes (delims + data + fcs + pads + pad delims)
|
|
* width - 0 for 20 MHz, 1 for 40 MHz
|
|
* half_gi - to use 4us v/s 3.6 us for symbol time
|
|
*/
|
|
|
|
static u32 ath_pkt_duration(struct ath_softc *sc,
|
|
u8 rix,
|
|
struct ath_buf *bf,
|
|
int width,
|
|
int half_gi,
|
|
bool shortPreamble)
|
|
{
|
|
const struct ath9k_rate_table *rt = sc->sc_currates;
|
|
u32 nbits, nsymbits, duration, nsymbols;
|
|
u8 rc;
|
|
int streams, pktlen;
|
|
|
|
pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
|
|
rc = rt->info[rix].rateCode;
|
|
|
|
/*
|
|
* for legacy rates, use old function to compute packet duration
|
|
*/
|
|
if (!IS_HT_RATE(rc))
|
|
return ath9k_hw_computetxtime(sc->sc_ah,
|
|
rt,
|
|
pktlen,
|
|
rix,
|
|
shortPreamble);
|
|
/*
|
|
* find number of symbols: PLCP + data
|
|
*/
|
|
nbits = (pktlen << 3) + OFDM_PLCP_BITS;
|
|
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
|
|
nsymbols = (nbits + nsymbits - 1) / nsymbits;
|
|
|
|
if (!half_gi)
|
|
duration = SYMBOL_TIME(nsymbols);
|
|
else
|
|
duration = SYMBOL_TIME_HALFGI(nsymbols);
|
|
|
|
/*
|
|
* addup duration for legacy/ht training and signal fields
|
|
*/
|
|
streams = HT_RC_2_STREAMS(rc);
|
|
duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
|
|
return duration;
|
|
}
|
|
|
|
/* Rate module function to set rate related fields in tx descriptor */
|
|
|
|
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ath9k_rate_table *rt;
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
|
|
struct ath9k_11n_rate_series series[4];
|
|
int i, flags, rtsctsena = 0, dynamic_mimops = 0;
|
|
u32 ctsduration = 0;
|
|
u8 rix = 0, cix, ctsrate = 0;
|
|
u32 aggr_limit_with_rts = ah->ah_caps.rts_aggr_limit;
|
|
struct ath_node *an = (struct ath_node *) bf->bf_node;
|
|
|
|
/*
|
|
* get the cix for the lowest valid rix.
|
|
*/
|
|
rt = sc->sc_currates;
|
|
for (i = 4; i--;) {
|
|
if (bf->bf_rcs[i].tries) {
|
|
rix = bf->bf_rcs[i].rix;
|
|
break;
|
|
}
|
|
}
|
|
flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
|
|
cix = rt->info[rix].controlRate;
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether
|
|
* to use RTS/CTS or just CTS. Note that this is only
|
|
* done for OFDM/HT unicast frames.
|
|
*/
|
|
if (sc->sc_protmode != PROT_M_NONE &&
|
|
(rt->info[rix].phy == PHY_OFDM ||
|
|
rt->info[rix].phy == PHY_HT) &&
|
|
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
|
|
if (sc->sc_protmode == PROT_M_RTSCTS)
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
else if (sc->sc_protmode == PROT_M_CTSONLY)
|
|
flags = ATH9K_TXDESC_CTSENA;
|
|
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
rtsctsena = 1;
|
|
}
|
|
|
|
/* For 11n, the default behavior is to enable RTS for
|
|
* hw retried frames. We enable the global flag here and
|
|
* let rate series flags determine which rates will actually
|
|
* use RTS.
|
|
*/
|
|
if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
|
|
BUG_ON(!an);
|
|
/*
|
|
* 802.11g protection not needed, use our default behavior
|
|
*/
|
|
if (!rtsctsena)
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
/*
|
|
* For dynamic MIMO PS, RTS needs to precede the first aggregate
|
|
* and the second aggregate should have any protection at all.
|
|
*/
|
|
if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
|
|
if (!bf_isaggrburst(bf)) {
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
dynamic_mimops = 1;
|
|
} else {
|
|
flags = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set protection if aggregate protection on
|
|
*/
|
|
if (sc->sc_config.ath_aggr_prot &&
|
|
(!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
rtsctsena = 1;
|
|
}
|
|
|
|
/*
|
|
* For AR5416 - RTS cannot be followed by a frame larger than 8K.
|
|
*/
|
|
if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) {
|
|
/*
|
|
* Ensure that in the case of SM Dynamic power save
|
|
* while we are bursting the second aggregate the
|
|
* RTS is cleared.
|
|
*/
|
|
flags &= ~(ATH9K_TXDESC_RTSENA);
|
|
}
|
|
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
/* NB: cix is set above where RTS/CTS is enabled */
|
|
BUG_ON(cix == 0xff);
|
|
ctsrate = rt->info[cix].rateCode |
|
|
(bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
|
|
|
|
/*
|
|
* Setup HAL rate series
|
|
*/
|
|
memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (!bf->bf_rcs[i].tries)
|
|
continue;
|
|
|
|
rix = bf->bf_rcs[i].rix;
|
|
|
|
series[i].Rate = rt->info[rix].rateCode |
|
|
(bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
|
|
|
|
series[i].Tries = bf->bf_rcs[i].tries;
|
|
|
|
series[i].RateFlags = (
|
|
(bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
|
|
ATH9K_RATESERIES_RTS_CTS : 0) |
|
|
((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
|
|
ATH9K_RATESERIES_2040 : 0) |
|
|
((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
|
|
ATH9K_RATESERIES_HALFGI : 0);
|
|
|
|
series[i].PktDuration = ath_pkt_duration(
|
|
sc, rix, bf,
|
|
(bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
|
|
(bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
|
|
bf_isshpreamble(bf));
|
|
|
|
if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
|
|
(bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
|
|
/*
|
|
* When sending to an HT node that has enabled static
|
|
* SM/MIMO power save, send at single stream rates but
|
|
* use maximum allowed transmit chains per user,
|
|
* hardware, regulatory, or country limits for
|
|
* better range.
|
|
*/
|
|
series[i].ChSel = sc->sc_tx_chainmask;
|
|
} else {
|
|
if (bf_isht(bf))
|
|
series[i].ChSel =
|
|
ath_chainmask_sel_logic(sc, an);
|
|
else
|
|
series[i].ChSel = sc->sc_tx_chainmask;
|
|
}
|
|
|
|
if (rtsctsena)
|
|
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
|
|
|
|
/*
|
|
* Set RTS for all rates if node is in dynamic powersave
|
|
* mode and we are using dual stream rates.
|
|
*/
|
|
if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
|
|
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
|
|
}
|
|
|
|
/*
|
|
* For non-HT devices, calculate RTS/CTS duration in software
|
|
* and disable multi-rate retry.
|
|
*/
|
|
if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
|
|
/*
|
|
* Compute the transmit duration based on the frame
|
|
* size and the size of an ACK frame. We call into the
|
|
* HAL to do the computation since it depends on the
|
|
* characteristics of the actual PHY being used.
|
|
*
|
|
* NB: CTS is assumed the same size as an ACK so we can
|
|
* use the precalculated ACK durations.
|
|
*/
|
|
if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
|
|
ctsduration += bf_isshpreamble(bf) ?
|
|
rt->info[cix].spAckDuration :
|
|
rt->info[cix].lpAckDuration;
|
|
}
|
|
|
|
ctsduration += series[0].PktDuration;
|
|
|
|
if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
|
|
ctsduration += bf_isshpreamble(bf) ?
|
|
rt->info[rix].spAckDuration :
|
|
rt->info[rix].lpAckDuration;
|
|
}
|
|
|
|
/*
|
|
* Disable multi-rate retry when using RTS/CTS by clearing
|
|
* series 1, 2 and 3.
|
|
*/
|
|
memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3);
|
|
}
|
|
|
|
/*
|
|
* set dur_update_en for l-sig computation except for PS-Poll frames
|
|
*/
|
|
ath9k_hw_set11n_ratescenario(ah, ds, lastds,
|
|
!bf_ispspoll(bf),
|
|
ctsrate,
|
|
ctsduration,
|
|
series, 4, flags);
|
|
if (sc->sc_config.ath_aggr_prot && flags)
|
|
ath9k_hw_set11n_burstduration(ah, ds, 8192);
|
|
}
|
|
|
|
/*
|
|
* Function to send a normal HT (non-AMPDU) frame
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static int ath_tx_send_normal(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_head)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
|
|
BUG_ON(list_empty(bf_head));
|
|
|
|
bf = list_first_entry(bf_head, struct ath_buf, list);
|
|
bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
|
|
|
|
skb = (struct sk_buff *)bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
|
|
memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
|
|
|
|
/* update starting sequence number for subsequent ADDBA request */
|
|
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
|
|
|
|
/* Queue to h/w without aggregation */
|
|
bf->bf_nframes = 1;
|
|
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, bf_head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* flush tid's software queue and send frames as non-ampdu's */
|
|
|
|
static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
ASSERT(tid->paused > 0);
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
tid->paused--;
|
|
|
|
if (tid->paused > 0) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
return;
|
|
}
|
|
|
|
while (!list_empty(&tid->buf_q)) {
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
ASSERT(!bf_isretried(bf));
|
|
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
|
|
ath_tx_send_normal(sc, txq, tid, &bf_head);
|
|
}
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
/* Completion routine of an aggregate */
|
|
|
|
static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
struct ath_buf *bf,
|
|
struct list_head *bf_q,
|
|
int txok)
|
|
{
|
|
struct ath_node *an = bf->bf_node;
|
|
struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno);
|
|
struct ath_buf *bf_last = bf->bf_lastbf;
|
|
struct ath_desc *ds = bf_last->bf_desc;
|
|
struct ath_buf *bf_next, *bf_lastq = NULL;
|
|
struct list_head bf_head, bf_pending;
|
|
u16 seq_st = 0;
|
|
u32 ba[WME_BA_BMP_SIZE >> 5];
|
|
int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
|
|
int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
|
|
|
|
isaggr = bf_isaggr(bf);
|
|
if (isaggr) {
|
|
if (txok) {
|
|
if (ATH_DS_TX_BA(ds)) {
|
|
/*
|
|
* extract starting sequence and
|
|
* block-ack bitmap
|
|
*/
|
|
seq_st = ATH_DS_BA_SEQ(ds);
|
|
memcpy(ba,
|
|
ATH_DS_BA_BITMAP(ds),
|
|
WME_BA_BMP_SIZE >> 3);
|
|
} else {
|
|
memzero(ba, WME_BA_BMP_SIZE >> 3);
|
|
|
|
/*
|
|
* AR5416 can become deaf/mute when BA
|
|
* issue happens. Chip needs to be reset.
|
|
* But AP code may have sychronization issues
|
|
* when perform internal reset in this routine.
|
|
* Only enable reset in STA mode for now.
|
|
*/
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
|
|
needreset = 1;
|
|
}
|
|
} else {
|
|
memzero(ba, WME_BA_BMP_SIZE >> 3);
|
|
}
|
|
}
|
|
|
|
INIT_LIST_HEAD(&bf_pending);
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
while (bf) {
|
|
txfail = txpending = 0;
|
|
bf_next = bf->bf_next;
|
|
|
|
if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
|
|
/* transmit completion, subframe is
|
|
* acked by block ack */
|
|
} else if (!isaggr && txok) {
|
|
/* transmit completion */
|
|
} else {
|
|
|
|
if (!tid->cleanup_inprogress && !isnodegone &&
|
|
ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
|
|
if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
|
|
ath_tx_set_retry(sc, bf);
|
|
txpending = 1;
|
|
} else {
|
|
bf->bf_state.bf_type |= BUF_XRETRY;
|
|
txfail = 1;
|
|
sendbar = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* cleanup in progress, just fail
|
|
* the un-acked sub-frames
|
|
*/
|
|
txfail = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Remove ath_buf's of this sub-frame from aggregate queue.
|
|
*/
|
|
if (bf_next == NULL) { /* last subframe in the aggregate */
|
|
ASSERT(bf->bf_lastfrm == bf_last);
|
|
|
|
/*
|
|
* The last descriptor of the last sub frame could be
|
|
* a holding descriptor for h/w. If that's the case,
|
|
* bf->bf_lastfrm won't be in the bf_q.
|
|
* Make sure we handle bf_q properly here.
|
|
*/
|
|
|
|
if (!list_empty(bf_q)) {
|
|
bf_lastq = list_entry(bf_q->prev,
|
|
struct ath_buf, list);
|
|
list_cut_position(&bf_head,
|
|
bf_q, &bf_lastq->list);
|
|
} else {
|
|
/*
|
|
* XXX: if the last subframe only has one
|
|
* descriptor which is also being used as
|
|
* a holding descriptor. Then the ath_buf
|
|
* is not in the bf_q at all.
|
|
*/
|
|
INIT_LIST_HEAD(&bf_head);
|
|
}
|
|
} else {
|
|
ASSERT(!list_empty(bf_q));
|
|
list_cut_position(&bf_head,
|
|
bf_q, &bf->bf_lastfrm->list);
|
|
}
|
|
|
|
if (!txpending) {
|
|
/*
|
|
* complete the acked-ones/xretried ones; update
|
|
* block-ack window
|
|
*/
|
|
spin_lock_bh(&txq->axq_lock);
|
|
ath_tx_update_baw(sc, tid, bf->bf_seqno);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
/* complete this sub-frame */
|
|
ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
|
|
} else {
|
|
/*
|
|
* retry the un-acked ones
|
|
*/
|
|
/*
|
|
* XXX: if the last descriptor is holding descriptor,
|
|
* in order to requeue the frame to software queue, we
|
|
* need to allocate a new descriptor and
|
|
* copy the content of holding descriptor to it.
|
|
*/
|
|
if (bf->bf_next == NULL &&
|
|
bf_last->bf_status & ATH_BUFSTATUS_STALE) {
|
|
struct ath_buf *tbf;
|
|
|
|
/* allocate new descriptor */
|
|
spin_lock_bh(&sc->sc_txbuflock);
|
|
ASSERT(!list_empty((&sc->sc_txbuf)));
|
|
tbf = list_first_entry(&sc->sc_txbuf,
|
|
struct ath_buf, list);
|
|
list_del(&tbf->list);
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
|
|
ATH_TXBUF_RESET(tbf);
|
|
|
|
/* copy descriptor content */
|
|
tbf->bf_mpdu = bf_last->bf_mpdu;
|
|
tbf->bf_node = bf_last->bf_node;
|
|
tbf->bf_buf_addr = bf_last->bf_buf_addr;
|
|
*(tbf->bf_desc) = *(bf_last->bf_desc);
|
|
|
|
/* link it to the frame */
|
|
if (bf_lastq) {
|
|
bf_lastq->bf_desc->ds_link =
|
|
tbf->bf_daddr;
|
|
bf->bf_lastfrm = tbf;
|
|
ath9k_hw_cleartxdesc(sc->sc_ah,
|
|
bf->bf_lastfrm->bf_desc);
|
|
} else {
|
|
tbf->bf_state = bf_last->bf_state;
|
|
tbf->bf_lastfrm = tbf;
|
|
ath9k_hw_cleartxdesc(sc->sc_ah,
|
|
tbf->bf_lastfrm->bf_desc);
|
|
|
|
/* copy the DMA context */
|
|
tbf->bf_dmacontext =
|
|
bf_last->bf_dmacontext;
|
|
}
|
|
list_add_tail(&tbf->list, &bf_head);
|
|
} else {
|
|
/*
|
|
* Clear descriptor status words for
|
|
* software retry
|
|
*/
|
|
ath9k_hw_cleartxdesc(sc->sc_ah,
|
|
bf->bf_lastfrm->bf_desc);
|
|
}
|
|
|
|
/*
|
|
* Put this buffer to the temporary pending
|
|
* queue to retain ordering
|
|
*/
|
|
list_splice_tail_init(&bf_head, &bf_pending);
|
|
}
|
|
|
|
bf = bf_next;
|
|
}
|
|
|
|
/*
|
|
* node is already gone. no more assocication
|
|
* with the node. the node might have been freed
|
|
* any node acces can result in panic.note tid
|
|
* is part of the node.
|
|
*/
|
|
if (isnodegone)
|
|
return;
|
|
|
|
if (tid->cleanup_inprogress) {
|
|
/* check to see if we're done with cleaning the h/w queue */
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
if (tid->baw_head == tid->baw_tail) {
|
|
tid->addba_exchangecomplete = 0;
|
|
tid->addba_exchangeattempts = 0;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
tid->cleanup_inprogress = false;
|
|
|
|
/* send buffered frames as singles */
|
|
ath_tx_flush_tid(sc, tid);
|
|
} else
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* prepend un-acked frames to the beginning of the pending frame queue
|
|
*/
|
|
if (!list_empty(&bf_pending)) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
/* Note: we _prepend_, we _do_not_ at to
|
|
* the end of the queue ! */
|
|
list_splice(&bf_pending, &tid->buf_q);
|
|
ath_tx_queue_tid(txq, tid);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
if (needreset)
|
|
ath_reset(sc, false);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Process completed xmit descriptors from the specified queue */
|
|
|
|
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf, *lastbf, *bf_held = NULL;
|
|
struct list_head bf_head;
|
|
struct ath_desc *ds, *tmp_ds;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
int nacked, txok, nbad = 0, isrifs = 0;
|
|
int status;
|
|
|
|
DPRINTF(sc, ATH_DBG_QUEUE,
|
|
"%s: tx queue %d (%x), link %p\n", __func__,
|
|
txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
|
|
nacked = 0;
|
|
for (;;) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
|
|
if (list_empty(&txq->axq_q)) {
|
|
txq->axq_link = NULL;
|
|
txq->axq_linkbuf = NULL;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
|
|
|
|
/*
|
|
* There is a race condition that a BH gets scheduled
|
|
* after sw writes TxE and before hw re-load the last
|
|
* descriptor to get the newly chained one.
|
|
* Software must keep the last DONE descriptor as a
|
|
* holding descriptor - software does so by marking
|
|
* it with the STALE flag.
|
|
*/
|
|
bf_held = NULL;
|
|
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
|
|
bf_held = bf;
|
|
if (list_is_last(&bf_held->list, &txq->axq_q)) {
|
|
/* FIXME:
|
|
* The holding descriptor is the last
|
|
* descriptor in queue. It's safe to remove
|
|
* the last holding descriptor in BH context.
|
|
*/
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
} else {
|
|
/* Lets work with the next buffer now */
|
|
bf = list_entry(bf_held->list.next,
|
|
struct ath_buf, list);
|
|
}
|
|
}
|
|
|
|
lastbf = bf->bf_lastbf;
|
|
ds = lastbf->bf_desc; /* NB: last decriptor */
|
|
|
|
status = ath9k_hw_txprocdesc(ah, ds);
|
|
if (status == -EINPROGRESS) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
if (bf->bf_desc == txq->axq_lastdsWithCTS)
|
|
txq->axq_lastdsWithCTS = NULL;
|
|
if (ds == txq->axq_gatingds)
|
|
txq->axq_gatingds = NULL;
|
|
|
|
/*
|
|
* Remove ath_buf's of the same transmit unit from txq,
|
|
* however leave the last descriptor back as the holding
|
|
* descriptor for hw.
|
|
*/
|
|
lastbf->bf_status |= ATH_BUFSTATUS_STALE;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
if (!list_is_singular(&lastbf->list))
|
|
list_cut_position(&bf_head,
|
|
&txq->axq_q, lastbf->list.prev);
|
|
|
|
txq->axq_depth--;
|
|
|
|
if (bf_isaggr(bf))
|
|
txq->axq_aggr_depth--;
|
|
|
|
txok = (ds->ds_txstat.ts_status == 0);
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (bf_held) {
|
|
list_del(&bf_held->list);
|
|
spin_lock_bh(&sc->sc_txbuflock);
|
|
list_add_tail(&bf_held->list, &sc->sc_txbuf);
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
}
|
|
|
|
if (!bf_isampdu(bf)) {
|
|
/*
|
|
* This frame is sent out as a single frame.
|
|
* Use hardware retry status for this frame.
|
|
*/
|
|
bf->bf_retries = ds->ds_txstat.ts_longretry;
|
|
if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
|
|
bf->bf_state.bf_type |= BUF_XRETRY;
|
|
nbad = 0;
|
|
} else {
|
|
nbad = ath_tx_num_badfrms(sc, bf, txok);
|
|
}
|
|
skb = bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
tx_info_priv = (struct ath_tx_info_priv *)
|
|
tx_info->driver_data[0];
|
|
if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
|
|
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
|
|
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
|
|
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
|
|
if (ds->ds_txstat.ts_status == 0)
|
|
nacked++;
|
|
|
|
if (bf_isdata(bf)) {
|
|
if (isrifs)
|
|
tmp_ds = bf->bf_rifslast->bf_desc;
|
|
else
|
|
tmp_ds = ds;
|
|
memcpy(&tx_info_priv->tx,
|
|
&tmp_ds->ds_txstat,
|
|
sizeof(tx_info_priv->tx));
|
|
tx_info_priv->n_frames = bf->bf_nframes;
|
|
tx_info_priv->n_bad_frames = nbad;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Complete this transmit unit
|
|
*/
|
|
if (bf_isampdu(bf))
|
|
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
|
|
else
|
|
ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
|
|
|
|
/* Wake up mac80211 queue */
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
|
|
(ATH_TXBUF - 20)) {
|
|
int qnum;
|
|
qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
|
|
if (qnum != -1) {
|
|
ieee80211_wake_queue(sc->hw, qnum);
|
|
txq->stopped = 0;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* schedule any pending packets if aggregation is enabled
|
|
*/
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_txq_schedule(sc, txq);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
return nacked;
|
|
}
|
|
|
|
static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
(void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
|
|
}
|
|
|
|
/* Drain only the data queues */
|
|
|
|
static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
int npend = 0;
|
|
|
|
/* XXX return value */
|
|
if (!(sc->sc_flags & SC_OP_INVALID)) {
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ath_tx_stopdma(sc, &sc->sc_txq[i]);
|
|
|
|
/* The TxDMA may not really be stopped.
|
|
* Double check the hal tx pending count */
|
|
npend += ath9k_hw_numtxpending(ah,
|
|
sc->sc_txq[i].axq_qnum);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (npend) {
|
|
int status;
|
|
|
|
/* TxDMA not stopped, reset the hal */
|
|
DPRINTF(sc, ATH_DBG_XMIT,
|
|
"%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah,
|
|
sc->sc_ah->ah_curchan,
|
|
sc->sc_ht_info.tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, true, &status)) {
|
|
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to reset hardware; hal status %u\n",
|
|
__func__,
|
|
status);
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
}
|
|
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
|
|
}
|
|
}
|
|
|
|
/* Add a sub-frame to block ack window */
|
|
|
|
static void ath_tx_addto_baw(struct ath_softc *sc,
|
|
struct ath_atx_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
|
|
if (bf_isretried(bf))
|
|
return;
|
|
|
|
index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
ASSERT(tid->tx_buf[cindex] == NULL);
|
|
tid->tx_buf[cindex] = bf;
|
|
|
|
if (index >= ((tid->baw_tail - tid->baw_head) &
|
|
(ATH_TID_MAX_BUFS - 1))) {
|
|
tid->baw_tail = cindex;
|
|
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function to send an A-MPDU
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static int ath_tx_send_ampdu(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_head,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
|
|
BUG_ON(list_empty(bf_head));
|
|
|
|
bf = list_first_entry(bf_head, struct ath_buf, list);
|
|
bf->bf_state.bf_type |= BUF_AMPDU;
|
|
bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */
|
|
bf->bf_tidno = txctl->tidno;
|
|
|
|
/*
|
|
* Do not queue to h/w when any of the following conditions is true:
|
|
* - there are pending frames in software queue
|
|
* - the TID is currently paused for ADDBA/BAR request
|
|
* - seqno is not within block-ack window
|
|
* - h/w queue depth exceeds low water mark
|
|
*/
|
|
if (!list_empty(&tid->buf_q) || tid->paused ||
|
|
!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
|
|
txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
|
|
/*
|
|
* Add this frame to software queue for scheduling later
|
|
* for aggregation.
|
|
*/
|
|
list_splice_tail_init(bf_head, &tid->buf_q);
|
|
ath_tx_queue_tid(txq, tid);
|
|
return 0;
|
|
}
|
|
|
|
skb = (struct sk_buff *)bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
|
|
memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
|
|
|
|
/* Add sub-frame to BAW */
|
|
ath_tx_addto_baw(sc, tid, bf);
|
|
|
|
/* Queue to h/w without aggregation */
|
|
bf->bf_nframes = 1;
|
|
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, bf_head);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* looks up the rate
|
|
* returns aggr limit based on lowest of the rates
|
|
*/
|
|
|
|
static u32 ath_lookup_rate(struct ath_softc *sc,
|
|
struct ath_buf *bf)
|
|
{
|
|
const struct ath9k_rate_table *rt = sc->sc_currates;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
u32 max_4ms_framelen, frame_length;
|
|
u16 aggr_limit, legacy = 0, maxampdu;
|
|
int i;
|
|
|
|
|
|
skb = (struct sk_buff *)bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
tx_info_priv = (struct ath_tx_info_priv *)
|
|
tx_info->driver_data[0];
|
|
memcpy(bf->bf_rcs,
|
|
tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
|
|
|
|
/*
|
|
* Find the lowest frame length among the rate series that will have a
|
|
* 4ms transmit duration.
|
|
* TODO - TXOP limit needs to be considered.
|
|
*/
|
|
max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (bf->bf_rcs[i].tries) {
|
|
frame_length = bf->bf_rcs[i].max_4ms_framelen;
|
|
|
|
if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
|
|
legacy = 1;
|
|
break;
|
|
}
|
|
|
|
max_4ms_framelen = min(max_4ms_framelen, frame_length);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* limit aggregate size by the minimum rate if rate selected is
|
|
* not a probe rate, if rate selected is a probe rate then
|
|
* avoid aggregation of this packet.
|
|
*/
|
|
if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
|
|
return 0;
|
|
|
|
aggr_limit = min(max_4ms_framelen,
|
|
(u32)ATH_AMPDU_LIMIT_DEFAULT);
|
|
|
|
/*
|
|
* h/w can accept aggregates upto 16 bit lengths (65535).
|
|
* The IE, however can hold upto 65536, which shows up here
|
|
* as zero. Ignore 65536 since we are constrained by hw.
|
|
*/
|
|
maxampdu = sc->sc_ht_info.maxampdu;
|
|
if (maxampdu)
|
|
aggr_limit = min(aggr_limit, maxampdu);
|
|
|
|
return aggr_limit;
|
|
}
|
|
|
|
/*
|
|
* returns the number of delimiters to be added to
|
|
* meet the minimum required mpdudensity.
|
|
* caller should make sure that the rate is HT rate .
|
|
*/
|
|
|
|
static int ath_compute_num_delims(struct ath_softc *sc,
|
|
struct ath_buf *bf,
|
|
u16 frmlen)
|
|
{
|
|
const struct ath9k_rate_table *rt = sc->sc_currates;
|
|
u32 nsymbits, nsymbols, mpdudensity;
|
|
u16 minlen;
|
|
u8 rc, flags, rix;
|
|
int width, half_gi, ndelim, mindelim;
|
|
|
|
/* Select standard number of delimiters based on frame length alone */
|
|
ndelim = ATH_AGGR_GET_NDELIM(frmlen);
|
|
|
|
/*
|
|
* If encryption enabled, hardware requires some more padding between
|
|
* subframes.
|
|
* TODO - this could be improved to be dependent on the rate.
|
|
* The hardware can keep up at lower rates, but not higher rates
|
|
*/
|
|
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
|
|
ndelim += ATH_AGGR_ENCRYPTDELIM;
|
|
|
|
/*
|
|
* Convert desired mpdu density from microeconds to bytes based
|
|
* on highest rate in rate series (i.e. first rate) to determine
|
|
* required minimum length for subframe. Take into account
|
|
* whether high rate is 20 or 40Mhz and half or full GI.
|
|
*/
|
|
mpdudensity = sc->sc_ht_info.mpdudensity;
|
|
|
|
/*
|
|
* If there is no mpdu density restriction, no further calculation
|
|
* is needed.
|
|
*/
|
|
if (mpdudensity == 0)
|
|
return ndelim;
|
|
|
|
rix = bf->bf_rcs[0].rix;
|
|
flags = bf->bf_rcs[0].flags;
|
|
rc = rt->info[rix].rateCode;
|
|
width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
|
|
half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
|
|
|
|
if (half_gi)
|
|
nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
|
|
else
|
|
nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
|
|
|
|
if (nsymbols == 0)
|
|
nsymbols = 1;
|
|
|
|
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
|
|
minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
|
|
|
|
/* Is frame shorter than required minimum length? */
|
|
if (frmlen < minlen) {
|
|
/* Get the minimum number of delimiters required. */
|
|
mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
|
|
ndelim = max(mindelim, ndelim);
|
|
}
|
|
|
|
return ndelim;
|
|
}
|
|
|
|
/*
|
|
* For aggregation from software buffer queue.
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_q,
|
|
struct ath_buf **bf_last,
|
|
struct aggr_rifs_param *param,
|
|
int *prev_frames)
|
|
{
|
|
#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
|
|
struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
|
|
struct list_head bf_head;
|
|
int rl = 0, nframes = 0, ndelim;
|
|
u16 aggr_limit = 0, al = 0, bpad = 0,
|
|
al_delta, h_baw = tid->baw_size / 2;
|
|
enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
|
|
int prev_al = 0, is_ds_rate = 0;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
BUG_ON(list_empty(&tid->buf_q));
|
|
|
|
bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
|
|
do {
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
|
|
/*
|
|
* do not step over block-ack window
|
|
*/
|
|
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
|
|
status = ATH_AGGR_BAW_CLOSED;
|
|
break;
|
|
}
|
|
|
|
if (!rl) {
|
|
aggr_limit = ath_lookup_rate(sc, bf);
|
|
rl = 1;
|
|
/*
|
|
* Is rate dual stream
|
|
*/
|
|
is_ds_rate =
|
|
(bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
|
|
}
|
|
|
|
/*
|
|
* do not exceed aggregation limit
|
|
*/
|
|
al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
|
|
|
|
if (nframes && (aggr_limit <
|
|
(al + bpad + al_delta + prev_al))) {
|
|
status = ATH_AGGR_LIMITED;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* do not exceed subframe limit
|
|
*/
|
|
if ((nframes + *prev_frames) >=
|
|
min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
|
|
status = ATH_AGGR_LIMITED;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* add padding for previous frame to aggregation length
|
|
*/
|
|
al += bpad + al_delta;
|
|
|
|
/*
|
|
* Get the delimiters needed to meet the MPDU
|
|
* density for this node.
|
|
*/
|
|
ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen);
|
|
|
|
bpad = PADBYTES(al_delta) + (ndelim << 2);
|
|
|
|
bf->bf_next = NULL;
|
|
bf->bf_lastfrm->bf_desc->ds_link = 0;
|
|
|
|
/*
|
|
* this packet is part of an aggregate
|
|
* - remove all descriptors belonging to this frame from
|
|
* software queue
|
|
* - add it to block ack window
|
|
* - set up descriptors for aggregation
|
|
*/
|
|
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
|
|
ath_tx_addto_baw(sc, tid, bf);
|
|
|
|
list_for_each_entry(tbf, &bf_head, list) {
|
|
ath9k_hw_set11n_aggr_middle(sc->sc_ah,
|
|
tbf->bf_desc, ndelim);
|
|
}
|
|
|
|
/*
|
|
* link buffers of this frame to the aggregate
|
|
*/
|
|
list_splice_tail_init(&bf_head, bf_q);
|
|
nframes++;
|
|
|
|
if (bf_prev) {
|
|
bf_prev->bf_next = bf;
|
|
bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
|
|
}
|
|
bf_prev = bf;
|
|
|
|
#ifdef AGGR_NOSHORT
|
|
/*
|
|
* terminate aggregation on a small packet boundary
|
|
*/
|
|
if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
|
|
status = ATH_AGGR_SHORTPKT;
|
|
break;
|
|
}
|
|
#endif
|
|
} while (!list_empty(&tid->buf_q));
|
|
|
|
bf_first->bf_al = al;
|
|
bf_first->bf_nframes = nframes;
|
|
*bf_last = bf_prev;
|
|
return status;
|
|
#undef PADBYTES
|
|
}
|
|
|
|
/*
|
|
* process pending frames possibly doing a-mpdu aggregation
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static void ath_tx_sched_aggr(struct ath_softc *sc,
|
|
struct ath_txq *txq, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
|
|
enum ATH_AGGR_STATUS status;
|
|
struct list_head bf_q;
|
|
struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
|
|
int prev_frames = 0;
|
|
|
|
do {
|
|
if (list_empty(&tid->buf_q))
|
|
return;
|
|
|
|
INIT_LIST_HEAD(&bf_q);
|
|
|
|
status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m,
|
|
&prev_frames);
|
|
|
|
/*
|
|
* no frames picked up to be aggregated; block-ack
|
|
* window is not open
|
|
*/
|
|
if (list_empty(&bf_q))
|
|
break;
|
|
|
|
bf = list_first_entry(&bf_q, struct ath_buf, list);
|
|
bf_last = list_entry(bf_q.prev, struct ath_buf, list);
|
|
bf->bf_lastbf = bf_last;
|
|
|
|
/*
|
|
* if only one frame, send as non-aggregate
|
|
*/
|
|
if (bf->bf_nframes == 1) {
|
|
ASSERT(bf->bf_lastfrm == bf_last);
|
|
|
|
bf->bf_state.bf_type &= ~BUF_AGGR;
|
|
/*
|
|
* clear aggr bits for every descriptor
|
|
* XXX TODO: is there a way to optimize it?
|
|
*/
|
|
list_for_each_entry(tbf, &bf_q, list) {
|
|
ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
|
|
}
|
|
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, &bf_q);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* setup first desc with rate and aggr info
|
|
*/
|
|
bf->bf_state.bf_type |= BUF_AGGR;
|
|
ath_buf_set_rate(sc, bf);
|
|
ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
|
|
|
|
/*
|
|
* anchor last frame of aggregate correctly
|
|
*/
|
|
ASSERT(bf_lastaggr);
|
|
ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
|
|
tbf = bf_lastaggr;
|
|
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
|
|
|
|
/* XXX: We don't enter into this loop, consider removing this */
|
|
while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
|
|
tbf = list_entry(tbf->list.next, struct ath_buf, list);
|
|
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
|
|
}
|
|
|
|
txq->axq_aggr_depth++;
|
|
|
|
/*
|
|
* Normal aggregate, queue to hardware
|
|
*/
|
|
ath_tx_txqaddbuf(sc, txq, &bf_q);
|
|
|
|
} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
|
|
status != ATH_AGGR_BAW_CLOSED);
|
|
}
|
|
|
|
/* Called with txq lock held */
|
|
|
|
static void ath_tid_drain(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
bool bh_flag)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
for (;;) {
|
|
if (list_empty(&tid->buf_q))
|
|
break;
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
|
|
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
|
|
|
|
/* update baw for software retried frame */
|
|
if (bf_isretried(bf))
|
|
ath_tx_update_baw(sc, tid, bf->bf_seqno);
|
|
|
|
/*
|
|
* do not indicate packets while holding txq spinlock.
|
|
* unlock is intentional here
|
|
*/
|
|
if (likely(bh_flag))
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
else
|
|
spin_unlock(&txq->axq_lock);
|
|
|
|
/* complete this sub-frame */
|
|
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
|
|
|
|
if (likely(bh_flag))
|
|
spin_lock_bh(&txq->axq_lock);
|
|
else
|
|
spin_lock(&txq->axq_lock);
|
|
}
|
|
|
|
/*
|
|
* TODO: For frame(s) that are in the retry state, we will reuse the
|
|
* sequence number(s) without setting the retry bit. The
|
|
* alternative is to give up on these and BAR the receiver's window
|
|
* forward.
|
|
*/
|
|
tid->seq_next = tid->seq_start;
|
|
tid->baw_tail = tid->baw_head;
|
|
}
|
|
|
|
/*
|
|
* Drain all pending buffers
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
bool bh_flag)
|
|
{
|
|
struct ath_atx_ac *ac, *ac_tmp;
|
|
struct ath_atx_tid *tid, *tid_tmp;
|
|
|
|
list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
ath_tid_drain(sc, txq, tid, bh_flag);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ath_tx_start_dma(struct ath_softc *sc,
|
|
struct sk_buff *skb,
|
|
struct scatterlist *sg,
|
|
u32 n_sg,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_node *an = txctl->an;
|
|
struct ath_buf *bf = NULL;
|
|
struct list_head bf_head;
|
|
struct ath_desc *ds;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_txq *txq;
|
|
struct ath_tx_info_priv *tx_info_priv;
|
|
struct ath_rc_series *rcs;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
__le16 fc = hdr->frame_control;
|
|
|
|
if (unlikely(txctl->flags & ATH9K_TXDESC_CAB))
|
|
txq = sc->sc_cabq;
|
|
else
|
|
txq = &sc->sc_txq[txctl->qnum];
|
|
|
|
/* For each sglist entry, allocate an ath_buf for DMA */
|
|
INIT_LIST_HEAD(&bf_head);
|
|
spin_lock_bh(&sc->sc_txbuflock);
|
|
if (unlikely(list_empty(&sc->sc_txbuf))) {
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
|
|
list_del(&bf->list);
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
|
|
list_add_tail(&bf->list, &bf_head);
|
|
|
|
/* set up this buffer */
|
|
ATH_TXBUF_RESET(bf);
|
|
bf->bf_frmlen = txctl->frmlen;
|
|
|
|
ieee80211_is_data(fc) ?
|
|
(bf->bf_state.bf_type |= BUF_DATA) :
|
|
(bf->bf_state.bf_type &= ~BUF_DATA);
|
|
ieee80211_is_back_req(fc) ?
|
|
(bf->bf_state.bf_type |= BUF_BAR) :
|
|
(bf->bf_state.bf_type &= ~BUF_BAR);
|
|
ieee80211_is_pspoll(fc) ?
|
|
(bf->bf_state.bf_type |= BUF_PSPOLL) :
|
|
(bf->bf_state.bf_type &= ~BUF_PSPOLL);
|
|
(sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
|
|
(bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
|
|
(bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
|
|
|
|
bf->bf_flags = txctl->flags;
|
|
bf->bf_keytype = txctl->keytype;
|
|
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
|
|
rcs = tx_info_priv->rcs;
|
|
bf->bf_rcs[0] = rcs[0];
|
|
bf->bf_rcs[1] = rcs[1];
|
|
bf->bf_rcs[2] = rcs[2];
|
|
bf->bf_rcs[3] = rcs[3];
|
|
bf->bf_node = an;
|
|
bf->bf_mpdu = skb;
|
|
bf->bf_buf_addr = sg_dma_address(sg);
|
|
|
|
/* setup descriptor */
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0;
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
/*
|
|
* Save the DMA context in the first ath_buf
|
|
*/
|
|
bf->bf_dmacontext = txctl->dmacontext;
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
ath9k_hw_set11n_txdesc(ah,
|
|
ds,
|
|
bf->bf_frmlen, /* frame length */
|
|
txctl->atype, /* Atheros packet type */
|
|
min(txctl->txpower, (u16)60), /* txpower */
|
|
txctl->keyix, /* key cache index */
|
|
txctl->keytype, /* key type */
|
|
txctl->flags); /* flags */
|
|
ath9k_hw_filltxdesc(ah,
|
|
ds,
|
|
sg_dma_len(sg), /* segment length */
|
|
true, /* first segment */
|
|
(n_sg == 1) ? true : false, /* last segment */
|
|
ds); /* first descriptor */
|
|
|
|
bf->bf_lastfrm = bf;
|
|
(txctl->ht) ?
|
|
(bf->bf_state.bf_type |= BUF_HT) :
|
|
(bf->bf_state.bf_type &= ~BUF_HT);
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
|
|
struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno);
|
|
if (ath_aggr_query(sc, an, txctl->tidno)) {
|
|
/*
|
|
* Try aggregation if it's a unicast data frame
|
|
* and the destination is HT capable.
|
|
*/
|
|
ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl);
|
|
} else {
|
|
/*
|
|
* Send this frame as regular when ADDBA exchange
|
|
* is neither complete nor pending.
|
|
*/
|
|
ath_tx_send_normal(sc, txq, tid, &bf_head);
|
|
}
|
|
} else {
|
|
bf->bf_lastbf = bf;
|
|
bf->bf_nframes = 1;
|
|
ath_buf_set_rate(sc, bf);
|
|
|
|
if (ieee80211_is_back_req(fc)) {
|
|
/* This is required for resuming tid
|
|
* during BAR completion */
|
|
bf->bf_tidno = txctl->tidno;
|
|
}
|
|
|
|
ath_tx_txqaddbuf(sc, txq, &bf_head);
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void xmit_map_sg(struct ath_softc *sc,
|
|
struct sk_buff *skb,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_xmit_status tx_status;
|
|
struct ath_atx_tid *tid;
|
|
struct scatterlist sg;
|
|
|
|
txctl->dmacontext = pci_map_single(sc->pdev, skb->data,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
|
|
/* setup S/G list */
|
|
memset(&sg, 0, sizeof(struct scatterlist));
|
|
sg_dma_address(&sg) = txctl->dmacontext;
|
|
sg_dma_len(&sg) = skb->len;
|
|
|
|
if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) {
|
|
/*
|
|
* We have to do drop frame here.
|
|
*/
|
|
pci_unmap_single(sc->pdev, txctl->dmacontext,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
|
|
tx_status.retries = 0;
|
|
tx_status.flags = ATH_TX_ERROR;
|
|
|
|
if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
|
|
/* Reclaim the seqno. */
|
|
tid = ATH_AN_2_TID((struct ath_node *)
|
|
txctl->an, txctl->tidno);
|
|
DECR(tid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
ath_tx_complete(sc, skb, &tx_status, txctl->an);
|
|
}
|
|
}
|
|
|
|
/* Initialize TX queue and h/w */
|
|
|
|
int ath_tx_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
int error = 0;
|
|
|
|
do {
|
|
spin_lock_init(&sc->sc_txbuflock);
|
|
|
|
/* Setup tx descriptors */
|
|
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
|
|
"tx", nbufs, 1);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: failed to allocate tx descriptors: %d\n",
|
|
__func__, error);
|
|
break;
|
|
}
|
|
|
|
/* XXX allocate beacon state together with vap */
|
|
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
|
|
"beacon", ATH_BCBUF, 1);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: failed to allocate "
|
|
"beacon descripotrs: %d\n",
|
|
__func__, error);
|
|
break;
|
|
}
|
|
|
|
} while (0);
|
|
|
|
if (error != 0)
|
|
ath_tx_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Reclaim all tx queue resources */
|
|
|
|
int ath_tx_cleanup(struct ath_softc *sc)
|
|
{
|
|
/* cleanup beacon descriptors */
|
|
if (sc->sc_bdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
|
|
|
|
/* cleanup tx descriptors */
|
|
if (sc->sc_txdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Setup a h/w transmit queue */
|
|
|
|
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath9k_tx_queue_info qi;
|
|
int qnum;
|
|
|
|
memzero(&qi, sizeof(qi));
|
|
qi.tqi_subtype = subtype;
|
|
qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_physCompBuf = 0;
|
|
|
|
/*
|
|
* Enable interrupts only for EOL and DESC conditions.
|
|
* We mark tx descriptors to receive a DESC interrupt
|
|
* when a tx queue gets deep; otherwise waiting for the
|
|
* EOL to reap descriptors. Note that this is done to
|
|
* reduce interrupt load and this only defers reaping
|
|
* descriptors, never transmitting frames. Aside from
|
|
* reducing interrupts this also permits more concurrency.
|
|
* The only potential downside is if the tx queue backs
|
|
* up in which case the top half of the kernel may backup
|
|
* due to a lack of tx descriptors.
|
|
*
|
|
* The UAPSD queue is an exception, since we take a desc-
|
|
* based intr on the EOSP frames.
|
|
*/
|
|
if (qtype == ATH9K_TX_QUEUE_UAPSD)
|
|
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
|
|
else
|
|
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
|
|
TXQ_FLAG_TXDESCINT_ENABLE;
|
|
qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
|
|
if (qnum == -1) {
|
|
/*
|
|
* NB: don't print a message, this happens
|
|
* normally on parts with too few tx queues
|
|
*/
|
|
return NULL;
|
|
}
|
|
if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: hal qnum %u out of range, max %u!\n",
|
|
__func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
|
|
ath9k_hw_releasetxqueue(ah, qnum);
|
|
return NULL;
|
|
}
|
|
if (!ATH_TXQ_SETUP(sc, qnum)) {
|
|
struct ath_txq *txq = &sc->sc_txq[qnum];
|
|
|
|
txq->axq_qnum = qnum;
|
|
txq->axq_link = NULL;
|
|
INIT_LIST_HEAD(&txq->axq_q);
|
|
INIT_LIST_HEAD(&txq->axq_acq);
|
|
spin_lock_init(&txq->axq_lock);
|
|
txq->axq_depth = 0;
|
|
txq->axq_aggr_depth = 0;
|
|
txq->axq_totalqueued = 0;
|
|
txq->axq_intrcnt = 0;
|
|
txq->axq_linkbuf = NULL;
|
|
sc->sc_txqsetup |= 1<<qnum;
|
|
}
|
|
return &sc->sc_txq[qnum];
|
|
}
|
|
|
|
/* Reclaim resources for a setup queue */
|
|
|
|
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
|
|
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Setup a hardware data transmit queue for the specified
|
|
* access control. The hal may not support all requested
|
|
* queues in which case it will return a reference to a
|
|
* previously setup queue. We record the mapping from ac's
|
|
* to h/w queues for use by ath_tx_start and also track
|
|
* the set of h/w queues being used to optimize work in the
|
|
* transmit interrupt handler and related routines.
|
|
*/
|
|
|
|
int ath_tx_setup(struct ath_softc *sc, int haltype)
|
|
{
|
|
struct ath_txq *txq;
|
|
|
|
if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: HAL AC %u out of range, max %zu!\n",
|
|
__func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
|
|
return 0;
|
|
}
|
|
txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
|
|
if (txq != NULL) {
|
|
sc->sc_haltype2q[haltype] = txq->axq_qnum;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
|
|
{
|
|
int qnum;
|
|
|
|
switch (qtype) {
|
|
case ATH9K_TX_QUEUE_DATA:
|
|
if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: HAL AC %u out of range, max %zu!\n",
|
|
__func__,
|
|
haltype, ARRAY_SIZE(sc->sc_haltype2q));
|
|
return -1;
|
|
}
|
|
qnum = sc->sc_haltype2q[haltype];
|
|
break;
|
|
case ATH9K_TX_QUEUE_BEACON:
|
|
qnum = sc->sc_bhalq;
|
|
break;
|
|
case ATH9K_TX_QUEUE_CAB:
|
|
qnum = sc->sc_cabq->axq_qnum;
|
|
break;
|
|
default:
|
|
qnum = -1;
|
|
}
|
|
return qnum;
|
|
}
|
|
|
|
/* Update parameters for a transmit queue */
|
|
|
|
int ath_txq_update(struct ath_softc *sc, int qnum,
|
|
struct ath9k_tx_queue_info *qinfo)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error = 0;
|
|
struct ath9k_tx_queue_info qi;
|
|
|
|
if (qnum == sc->sc_bhalq) {
|
|
/*
|
|
* XXX: for beacon queue, we just save the parameter.
|
|
* It will be picked up by ath_beaconq_config when
|
|
* it's necessary.
|
|
*/
|
|
sc->sc_beacon_qi = *qinfo;
|
|
return 0;
|
|
}
|
|
|
|
ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
|
|
|
|
ath9k_hw_get_txq_props(ah, qnum, &qi);
|
|
qi.tqi_aifs = qinfo->tqi_aifs;
|
|
qi.tqi_cwmin = qinfo->tqi_cwmin;
|
|
qi.tqi_cwmax = qinfo->tqi_cwmax;
|
|
qi.tqi_burstTime = qinfo->tqi_burstTime;
|
|
qi.tqi_readyTime = qinfo->tqi_readyTime;
|
|
|
|
if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to update hardware queue %u!\n",
|
|
__func__, qnum);
|
|
error = -EIO;
|
|
} else {
|
|
ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int ath_cabq_update(struct ath_softc *sc)
|
|
{
|
|
struct ath9k_tx_queue_info qi;
|
|
int qnum = sc->sc_cabq->axq_qnum;
|
|
struct ath_beacon_config conf;
|
|
|
|
ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
|
|
/*
|
|
* Ensure the readytime % is within the bounds.
|
|
*/
|
|
if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
|
|
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
|
|
else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
|
|
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
|
|
|
|
ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
|
|
qi.tqi_readyTime =
|
|
(conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
|
|
ath_txq_update(sc, qnum, &qi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ath_tx_control txctl;
|
|
int error = 0;
|
|
|
|
memset(&txctl, 0, sizeof(struct ath_tx_control));
|
|
error = ath_tx_prepare(sc, skb, &txctl);
|
|
if (error == 0)
|
|
/*
|
|
* Start DMA mapping.
|
|
* ath_tx_start_dma() will be called either synchronously
|
|
* or asynchrounsly once DMA is complete.
|
|
*/
|
|
xmit_map_sg(sc, skb, &txctl);
|
|
else
|
|
ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE);
|
|
|
|
/* failed packets will be dropped by the caller */
|
|
return error;
|
|
}
|
|
|
|
/* Deferred processing of transmit interrupt */
|
|
|
|
void ath_tx_tasklet(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
|
|
|
|
ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
|
|
ath_tx_processq(sc, &sc->sc_txq[i]);
|
|
}
|
|
}
|
|
|
|
void ath_tx_draintxq(struct ath_softc *sc,
|
|
struct ath_txq *txq, bool retry_tx)
|
|
{
|
|
struct ath_buf *bf, *lastbf;
|
|
struct list_head bf_head;
|
|
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
/*
|
|
* NB: this assumes output has been stopped and
|
|
* we do not need to block ath_tx_tasklet
|
|
*/
|
|
for (;;) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
if (list_empty(&txq->axq_q)) {
|
|
txq->axq_link = NULL;
|
|
txq->axq_linkbuf = NULL;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
|
|
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
|
|
|
|
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
|
|
list_del(&bf->list);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
spin_lock_bh(&sc->sc_txbuflock);
|
|
list_add_tail(&bf->list, &sc->sc_txbuf);
|
|
spin_unlock_bh(&sc->sc_txbuflock);
|
|
continue;
|
|
}
|
|
|
|
lastbf = bf->bf_lastbf;
|
|
if (!retry_tx)
|
|
lastbf->bf_desc->ds_txstat.ts_flags =
|
|
ATH9K_TX_SW_ABORTED;
|
|
|
|
/* remove ath_buf's of the same mpdu from txq */
|
|
list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
|
|
txq->axq_depth--;
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (bf_isampdu(bf))
|
|
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
|
|
else
|
|
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
|
|
}
|
|
|
|
/* flush any pending frames if aggregation is enabled */
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
if (!retry_tx) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
ath_txq_drain_pending_buffers(sc, txq,
|
|
ATH9K_BH_STATUS_CHANGE);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Drain the transmit queues and reclaim resources */
|
|
|
|
void ath_draintxq(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
/* stop beacon queue. The beacon will be freed when
|
|
* we go to INIT state */
|
|
if (!(sc->sc_flags & SC_OP_INVALID)) {
|
|
(void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
|
|
ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
|
|
}
|
|
|
|
ath_drain_txdataq(sc, retry_tx);
|
|
}
|
|
|
|
u32 ath_txq_depth(struct ath_softc *sc, int qnum)
|
|
{
|
|
return sc->sc_txq[qnum].axq_depth;
|
|
}
|
|
|
|
u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
|
|
{
|
|
return sc->sc_txq[qnum].axq_aggr_depth;
|
|
}
|
|
|
|
/* Check if an ADDBA is required. A valid node must be passed. */
|
|
enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
|
|
struct ath_node *an,
|
|
u8 tidno)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
DECLARE_MAC_BUF(mac);
|
|
|
|
if (!(sc->sc_flags & SC_OP_TXAGGR))
|
|
return AGGR_NOT_REQUIRED;
|
|
|
|
/* ADDBA exchange must be completed before sending aggregates */
|
|
txtid = ATH_AN_2_TID(an, tidno);
|
|
|
|
if (txtid->addba_exchangecomplete)
|
|
return AGGR_EXCHANGE_DONE;
|
|
|
|
if (txtid->cleanup_inprogress)
|
|
return AGGR_CLEANUP_PROGRESS;
|
|
|
|
if (txtid->addba_exchangeinprogress)
|
|
return AGGR_EXCHANGE_PROGRESS;
|
|
|
|
if (!txtid->addba_exchangecomplete) {
|
|
if (!txtid->addba_exchangeinprogress &&
|
|
(txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
|
|
txtid->addba_exchangeattempts++;
|
|
return AGGR_REQUIRED;
|
|
}
|
|
}
|
|
|
|
return AGGR_NOT_REQUIRED;
|
|
}
|
|
|
|
/* Start TX aggregation */
|
|
|
|
int ath_tx_aggr_start(struct ath_softc *sc,
|
|
const u8 *addr,
|
|
u16 tid,
|
|
u16 *ssn)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
struct ath_node *an;
|
|
|
|
spin_lock_bh(&sc->node_lock);
|
|
an = ath_node_find(sc, (u8 *) addr);
|
|
spin_unlock_bh(&sc->node_lock);
|
|
|
|
if (!an) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Node not found to initialize "
|
|
"TX aggregation\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
txtid = ATH_AN_2_TID(an, tid);
|
|
txtid->addba_exchangeinprogress = 1;
|
|
ath_tx_pause_tid(sc, txtid);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Stop tx aggregation */
|
|
|
|
int ath_tx_aggr_stop(struct ath_softc *sc,
|
|
const u8 *addr,
|
|
u16 tid)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
spin_lock_bh(&sc->node_lock);
|
|
an = ath_node_find(sc, (u8 *) addr);
|
|
spin_unlock_bh(&sc->node_lock);
|
|
|
|
if (!an) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: TX aggr stop for non-existent node\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
ath_tx_aggr_teardown(sc, an, tid);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Performs transmit side cleanup when TID changes from aggregated to
|
|
* unaggregated.
|
|
* - Pause the TID and mark cleanup in progress
|
|
* - Discard all retry frames from the s/w queue.
|
|
*/
|
|
|
|
void ath_tx_aggr_teardown(struct ath_softc *sc,
|
|
struct ath_node *an, u8 tid)
|
|
{
|
|
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
|
|
struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
|
|
|
|
if (txtid->cleanup_inprogress) /* cleanup is in progress */
|
|
return;
|
|
|
|
if (!txtid->addba_exchangecomplete) {
|
|
txtid->addba_exchangeattempts = 0;
|
|
return;
|
|
}
|
|
|
|
/* TID must be paused first */
|
|
ath_tx_pause_tid(sc, txtid);
|
|
|
|
/* drop all software retried frames and mark this TID */
|
|
spin_lock_bh(&txq->axq_lock);
|
|
while (!list_empty(&txtid->buf_q)) {
|
|
bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
|
|
if (!bf_isretried(bf)) {
|
|
/*
|
|
* NB: it's based on the assumption that
|
|
* software retried frame will always stay
|
|
* at the head of software queue.
|
|
*/
|
|
break;
|
|
}
|
|
list_cut_position(&bf_head,
|
|
&txtid->buf_q, &bf->bf_lastfrm->list);
|
|
ath_tx_update_baw(sc, txtid, bf->bf_seqno);
|
|
|
|
/* complete this sub-frame */
|
|
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
|
|
}
|
|
|
|
if (txtid->baw_head != txtid->baw_tail) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
txtid->cleanup_inprogress = true;
|
|
} else {
|
|
txtid->addba_exchangecomplete = 0;
|
|
txtid->addba_exchangeattempts = 0;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
ath_tx_flush_tid(sc, txtid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tx scheduling logic
|
|
* NB: must be called with txq lock held
|
|
*/
|
|
|
|
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_atx_ac *ac;
|
|
struct ath_atx_tid *tid;
|
|
|
|
/* nothing to schedule */
|
|
if (list_empty(&txq->axq_acq))
|
|
return;
|
|
/*
|
|
* get the first node/ac pair on the queue
|
|
*/
|
|
ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
|
|
/*
|
|
* process a single tid per destination
|
|
*/
|
|
do {
|
|
/* nothing to schedule */
|
|
if (list_empty(&ac->tid_q))
|
|
return;
|
|
|
|
tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
|
|
if (tid->paused) /* check next tid to keep h/w busy */
|
|
continue;
|
|
|
|
if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
|
|
((txq->axq_depth % 2) == 0)) {
|
|
ath_tx_sched_aggr(sc, txq, tid);
|
|
}
|
|
|
|
/*
|
|
* add tid to round-robin queue if more frames
|
|
* are pending for the tid
|
|
*/
|
|
if (!list_empty(&tid->buf_q))
|
|
ath_tx_queue_tid(txq, tid);
|
|
|
|
/* only schedule one TID at a time */
|
|
break;
|
|
} while (!list_empty(&ac->tid_q));
|
|
|
|
/*
|
|
* schedule AC if more TIDs need processing
|
|
*/
|
|
if (!list_empty(&ac->tid_q)) {
|
|
/*
|
|
* add dest ac to txq if not already added
|
|
*/
|
|
if (!ac->sched) {
|
|
ac->sched = true;
|
|
list_add_tail(&ac->list, &txq->axq_acq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize per-node transmit state */
|
|
|
|
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
struct ath_atx_tid *tid;
|
|
struct ath_atx_ac *ac;
|
|
int tidno, acno;
|
|
|
|
sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT;
|
|
|
|
/*
|
|
* Init per tid tx state
|
|
*/
|
|
for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
|
|
tidno < WME_NUM_TID;
|
|
tidno++, tid++) {
|
|
tid->an = an;
|
|
tid->tidno = tidno;
|
|
tid->seq_start = tid->seq_next = 0;
|
|
tid->baw_size = WME_MAX_BA;
|
|
tid->baw_head = tid->baw_tail = 0;
|
|
tid->sched = false;
|
|
tid->paused = false;
|
|
tid->cleanup_inprogress = false;
|
|
INIT_LIST_HEAD(&tid->buf_q);
|
|
|
|
acno = TID_TO_WME_AC(tidno);
|
|
tid->ac = &an->an_aggr.tx.ac[acno];
|
|
|
|
/* ADDBA state */
|
|
tid->addba_exchangecomplete = 0;
|
|
tid->addba_exchangeinprogress = 0;
|
|
tid->addba_exchangeattempts = 0;
|
|
}
|
|
|
|
/*
|
|
* Init per ac tx state
|
|
*/
|
|
for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
|
|
acno < WME_NUM_AC; acno++, ac++) {
|
|
ac->sched = false;
|
|
INIT_LIST_HEAD(&ac->tid_q);
|
|
|
|
switch (acno) {
|
|
case WME_AC_BE:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
|
|
break;
|
|
case WME_AC_BK:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
|
|
break;
|
|
case WME_AC_VI:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
|
|
break;
|
|
case WME_AC_VO:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Cleanupthe pending buffers for the node. */
|
|
|
|
void ath_tx_node_cleanup(struct ath_softc *sc,
|
|
struct ath_node *an, bool bh_flag)
|
|
{
|
|
int i;
|
|
struct ath_atx_ac *ac, *ac_tmp;
|
|
struct ath_atx_tid *tid, *tid_tmp;
|
|
struct ath_txq *txq;
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
txq = &sc->sc_txq[i];
|
|
|
|
if (likely(bh_flag))
|
|
spin_lock_bh(&txq->axq_lock);
|
|
else
|
|
spin_lock(&txq->axq_lock);
|
|
|
|
list_for_each_entry_safe(ac,
|
|
ac_tmp, &txq->axq_acq, list) {
|
|
tid = list_first_entry(&ac->tid_q,
|
|
struct ath_atx_tid, list);
|
|
if (tid && tid->an != an)
|
|
continue;
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
|
|
list_for_each_entry_safe(tid,
|
|
tid_tmp, &ac->tid_q, list) {
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
ath_tid_drain(sc, txq, tid, bh_flag);
|
|
tid->addba_exchangecomplete = 0;
|
|
tid->addba_exchangeattempts = 0;
|
|
tid->cleanup_inprogress = false;
|
|
}
|
|
}
|
|
|
|
if (likely(bh_flag))
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
else
|
|
spin_unlock(&txq->axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Cleanup per node transmit state */
|
|
|
|
void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
struct ath_atx_tid *tid;
|
|
int tidno, i;
|
|
|
|
/* Init per tid rx state */
|
|
for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
|
|
tidno < WME_NUM_TID;
|
|
tidno++, tid++) {
|
|
|
|
for (i = 0; i < ATH_TID_MAX_BUFS; i++)
|
|
ASSERT(tid->tx_buf[i] == NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
int hdrlen, padsize;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ath_tx_control txctl;
|
|
|
|
/*
|
|
* As a temporary workaround, assign seq# here; this will likely need
|
|
* to be cleaned up to work better with Beacon transmission and virtual
|
|
* BSSes.
|
|
*/
|
|
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
sc->seq_no += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
|
|
}
|
|
|
|
/* Add the padding after the header if this is not already done */
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
if (hdrlen & 3) {
|
|
padsize = hdrlen % 4;
|
|
if (skb_headroom(skb) < padsize) {
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ padding "
|
|
"failed\n", __func__);
|
|
dev_kfree_skb_any(skb);
|
|
return;
|
|
}
|
|
skb_push(skb, padsize);
|
|
memmove(skb->data, skb->data + padsize, hdrlen);
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting CABQ packet, skb: %p\n",
|
|
__func__,
|
|
skb);
|
|
|
|
memset(&txctl, 0, sizeof(struct ath_tx_control));
|
|
txctl.flags = ATH9K_TXDESC_CAB;
|
|
if (ath_tx_prepare(sc, skb, &txctl) == 0) {
|
|
/*
|
|
* Start DMA mapping.
|
|
* ath_tx_start_dma() will be called either synchronously
|
|
* or asynchrounsly once DMA is complete.
|
|
*/
|
|
xmit_map_sg(sc, skb, &txctl);
|
|
} else {
|
|
ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE);
|
|
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ failed\n", __func__);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|
|
|