linux_old1/drivers/net/bfin_mac.c

1724 lines
42 KiB
C

/*
* Blackfin On-Chip MAC Driver
*
* Copyright 2004-2007 Analog Devices Inc.
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Licensed under the GPL-2 or later.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/platform_device.h>
#include <asm/dma.h>
#include <linux/dma-mapping.h>
#include <asm/div64.h>
#include <asm/dpmc.h>
#include <asm/blackfin.h>
#include <asm/cacheflush.h>
#include <asm/portmux.h>
#include "bfin_mac.h"
#define DRV_NAME "bfin_mac"
#define DRV_VERSION "1.1"
#define DRV_AUTHOR "Bryan Wu, Luke Yang"
#define DRV_DESC "Blackfin on-chip Ethernet MAC driver"
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRV_DESC);
MODULE_ALIAS("platform:bfin_mac");
#if defined(CONFIG_BFIN_MAC_USE_L1)
# define bfin_mac_alloc(dma_handle, size) l1_data_sram_zalloc(size)
# define bfin_mac_free(dma_handle, ptr) l1_data_sram_free(ptr)
#else
# define bfin_mac_alloc(dma_handle, size) \
dma_alloc_coherent(NULL, size, dma_handle, GFP_KERNEL)
# define bfin_mac_free(dma_handle, ptr) \
dma_free_coherent(NULL, sizeof(*ptr), ptr, dma_handle)
#endif
#define PKT_BUF_SZ 1580
#define MAX_TIMEOUT_CNT 500
/* pointers to maintain transmit list */
static struct net_dma_desc_tx *tx_list_head;
static struct net_dma_desc_tx *tx_list_tail;
static struct net_dma_desc_rx *rx_list_head;
static struct net_dma_desc_rx *rx_list_tail;
static struct net_dma_desc_rx *current_rx_ptr;
static struct net_dma_desc_tx *current_tx_ptr;
static struct net_dma_desc_tx *tx_desc;
static struct net_dma_desc_rx *rx_desc;
#if defined(CONFIG_BFIN_MAC_RMII)
static u16 pin_req[] = P_RMII0;
#else
static u16 pin_req[] = P_MII0;
#endif
static void desc_list_free(void)
{
struct net_dma_desc_rx *r;
struct net_dma_desc_tx *t;
int i;
#if !defined(CONFIG_BFIN_MAC_USE_L1)
dma_addr_t dma_handle = 0;
#endif
if (tx_desc) {
t = tx_list_head;
for (i = 0; i < CONFIG_BFIN_TX_DESC_NUM; i++) {
if (t) {
if (t->skb) {
dev_kfree_skb(t->skb);
t->skb = NULL;
}
t = t->next;
}
}
bfin_mac_free(dma_handle, tx_desc);
}
if (rx_desc) {
r = rx_list_head;
for (i = 0; i < CONFIG_BFIN_RX_DESC_NUM; i++) {
if (r) {
if (r->skb) {
dev_kfree_skb(r->skb);
r->skb = NULL;
}
r = r->next;
}
}
bfin_mac_free(dma_handle, rx_desc);
}
}
static int desc_list_init(void)
{
int i;
struct sk_buff *new_skb;
#if !defined(CONFIG_BFIN_MAC_USE_L1)
/*
* This dma_handle is useless in Blackfin dma_alloc_coherent().
* The real dma handler is the return value of dma_alloc_coherent().
*/
dma_addr_t dma_handle;
#endif
tx_desc = bfin_mac_alloc(&dma_handle,
sizeof(struct net_dma_desc_tx) *
CONFIG_BFIN_TX_DESC_NUM);
if (tx_desc == NULL)
goto init_error;
rx_desc = bfin_mac_alloc(&dma_handle,
sizeof(struct net_dma_desc_rx) *
CONFIG_BFIN_RX_DESC_NUM);
if (rx_desc == NULL)
goto init_error;
/* init tx_list */
tx_list_head = tx_list_tail = tx_desc;
for (i = 0; i < CONFIG_BFIN_TX_DESC_NUM; i++) {
struct net_dma_desc_tx *t = tx_desc + i;
struct dma_descriptor *a = &(t->desc_a);
struct dma_descriptor *b = &(t->desc_b);
/*
* disable DMA
* read from memory WNR = 0
* wordsize is 32 bits
* 6 half words is desc size
* large desc flow
*/
a->config = WDSIZE_32 | NDSIZE_6 | DMAFLOW_LARGE;
a->start_addr = (unsigned long)t->packet;
a->x_count = 0;
a->next_dma_desc = b;
/*
* enabled DMA
* write to memory WNR = 1
* wordsize is 32 bits
* disable interrupt
* 6 half words is desc size
* large desc flow
*/
b->config = DMAEN | WNR | WDSIZE_32 | NDSIZE_6 | DMAFLOW_LARGE;
b->start_addr = (unsigned long)(&(t->status));
b->x_count = 0;
t->skb = NULL;
tx_list_tail->desc_b.next_dma_desc = a;
tx_list_tail->next = t;
tx_list_tail = t;
}
tx_list_tail->next = tx_list_head; /* tx_list is a circle */
tx_list_tail->desc_b.next_dma_desc = &(tx_list_head->desc_a);
current_tx_ptr = tx_list_head;
/* init rx_list */
rx_list_head = rx_list_tail = rx_desc;
for (i = 0; i < CONFIG_BFIN_RX_DESC_NUM; i++) {
struct net_dma_desc_rx *r = rx_desc + i;
struct dma_descriptor *a = &(r->desc_a);
struct dma_descriptor *b = &(r->desc_b);
/* allocate a new skb for next time receive */
new_skb = dev_alloc_skb(PKT_BUF_SZ + NET_IP_ALIGN);
if (!new_skb) {
printk(KERN_NOTICE DRV_NAME
": init: low on mem - packet dropped\n");
goto init_error;
}
skb_reserve(new_skb, NET_IP_ALIGN);
/* Invidate the data cache of skb->data range when it is write back
* cache. It will prevent overwritting the new data from DMA
*/
blackfin_dcache_invalidate_range((unsigned long)new_skb->head,
(unsigned long)new_skb->end);
r->skb = new_skb;
/*
* enabled DMA
* write to memory WNR = 1
* wordsize is 32 bits
* disable interrupt
* 6 half words is desc size
* large desc flow
*/
a->config = DMAEN | WNR | WDSIZE_32 | NDSIZE_6 | DMAFLOW_LARGE;
/* since RXDWA is enabled */
a->start_addr = (unsigned long)new_skb->data - 2;
a->x_count = 0;
a->next_dma_desc = b;
/*
* enabled DMA
* write to memory WNR = 1
* wordsize is 32 bits
* enable interrupt
* 6 half words is desc size
* large desc flow
*/
b->config = DMAEN | WNR | WDSIZE_32 | DI_EN |
NDSIZE_6 | DMAFLOW_LARGE;
b->start_addr = (unsigned long)(&(r->status));
b->x_count = 0;
rx_list_tail->desc_b.next_dma_desc = a;
rx_list_tail->next = r;
rx_list_tail = r;
}
rx_list_tail->next = rx_list_head; /* rx_list is a circle */
rx_list_tail->desc_b.next_dma_desc = &(rx_list_head->desc_a);
current_rx_ptr = rx_list_head;
return 0;
init_error:
desc_list_free();
printk(KERN_ERR DRV_NAME ": kmalloc failed\n");
return -ENOMEM;
}
/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
/*
* MII operations
*/
/* Wait until the previous MDC/MDIO transaction has completed */
static int bfin_mdio_poll(void)
{
int timeout_cnt = MAX_TIMEOUT_CNT;
/* poll the STABUSY bit */
while ((bfin_read_EMAC_STAADD()) & STABUSY) {
udelay(1);
if (timeout_cnt-- < 0) {
printk(KERN_ERR DRV_NAME
": wait MDC/MDIO transaction to complete timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
/* Read an off-chip register in a PHY through the MDC/MDIO port */
static int bfin_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
int ret;
ret = bfin_mdio_poll();
if (ret)
return ret;
/* read mode */
bfin_write_EMAC_STAADD(SET_PHYAD((u16) phy_addr) |
SET_REGAD((u16) regnum) |
STABUSY);
ret = bfin_mdio_poll();
if (ret)
return ret;
return (int) bfin_read_EMAC_STADAT();
}
/* Write an off-chip register in a PHY through the MDC/MDIO port */
static int bfin_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
u16 value)
{
int ret;
ret = bfin_mdio_poll();
if (ret)
return ret;
bfin_write_EMAC_STADAT((u32) value);
/* write mode */
bfin_write_EMAC_STAADD(SET_PHYAD((u16) phy_addr) |
SET_REGAD((u16) regnum) |
STAOP |
STABUSY);
return bfin_mdio_poll();
}
static int bfin_mdiobus_reset(struct mii_bus *bus)
{
return 0;
}
static void bfin_mac_adjust_link(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
struct phy_device *phydev = lp->phydev;
unsigned long flags;
int new_state = 0;
spin_lock_irqsave(&lp->lock, flags);
if (phydev->link) {
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != lp->old_duplex) {
u32 opmode = bfin_read_EMAC_OPMODE();
new_state = 1;
if (phydev->duplex)
opmode |= FDMODE;
else
opmode &= ~(FDMODE);
bfin_write_EMAC_OPMODE(opmode);
lp->old_duplex = phydev->duplex;
}
if (phydev->speed != lp->old_speed) {
#if defined(CONFIG_BFIN_MAC_RMII)
u32 opmode = bfin_read_EMAC_OPMODE();
switch (phydev->speed) {
case 10:
opmode |= RMII_10;
break;
case 100:
opmode &= ~(RMII_10);
break;
default:
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100!\n",
DRV_NAME, phydev->speed);
break;
}
bfin_write_EMAC_OPMODE(opmode);
#endif
new_state = 1;
lp->old_speed = phydev->speed;
}
if (!lp->old_link) {
new_state = 1;
lp->old_link = 1;
}
} else if (lp->old_link) {
new_state = 1;
lp->old_link = 0;
lp->old_speed = 0;
lp->old_duplex = -1;
}
if (new_state) {
u32 opmode = bfin_read_EMAC_OPMODE();
phy_print_status(phydev);
pr_debug("EMAC_OPMODE = 0x%08x\n", opmode);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
/* MDC = 2.5 MHz */
#define MDC_CLK 2500000
static int mii_probe(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
struct phy_device *phydev = NULL;
unsigned short sysctl;
int i;
u32 sclk, mdc_div;
/* Enable PHY output early */
if (!(bfin_read_VR_CTL() & CLKBUFOE))
bfin_write_VR_CTL(bfin_read_VR_CTL() | CLKBUFOE);
sclk = get_sclk();
mdc_div = ((sclk / MDC_CLK) / 2) - 1;
sysctl = bfin_read_EMAC_SYSCTL();
sysctl = (sysctl & ~MDCDIV) | SET_MDCDIV(mdc_div);
bfin_write_EMAC_SYSCTL(sysctl);
/* search for connect PHY device */
for (i = 0; i < PHY_MAX_ADDR; i++) {
struct phy_device *const tmp_phydev = lp->mii_bus->phy_map[i];
if (!tmp_phydev)
continue; /* no PHY here... */
phydev = tmp_phydev;
break; /* found it */
}
/* now we are supposed to have a proper phydev, to attach to... */
if (!phydev) {
printk(KERN_INFO "%s: Don't found any phy device at all\n",
dev->name);
return -ENODEV;
}
#if defined(CONFIG_BFIN_MAC_RMII)
phydev = phy_connect(dev, dev_name(&phydev->dev), &bfin_mac_adjust_link,
0, PHY_INTERFACE_MODE_RMII);
#else
phydev = phy_connect(dev, dev_name(&phydev->dev), &bfin_mac_adjust_link,
0, PHY_INTERFACE_MODE_MII);
#endif
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* mask with MAC supported features */
phydev->supported &= (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg
| SUPPORTED_Pause | SUPPORTED_Asym_Pause
| SUPPORTED_MII
| SUPPORTED_TP);
phydev->advertising = phydev->supported;
lp->old_link = 0;
lp->old_speed = 0;
lp->old_duplex = -1;
lp->phydev = phydev;
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s, irq=%d, mdc_clk=%dHz(mdc_div=%d)"
"@sclk=%dMHz)\n",
DRV_NAME, phydev->drv->name, dev_name(&phydev->dev), phydev->irq,
MDC_CLK, mdc_div, sclk/1000000);
return 0;
}
/*
* Ethtool support
*/
/*
* interrupt routine for magic packet wakeup
*/
static irqreturn_t bfin_mac_wake_interrupt(int irq, void *dev_id)
{
return IRQ_HANDLED;
}
static int
bfin_mac_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bfin_mac_local *lp = netdev_priv(dev);
if (lp->phydev)
return phy_ethtool_gset(lp->phydev, cmd);
return -EINVAL;
}
static int
bfin_mac_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bfin_mac_local *lp = netdev_priv(dev);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (lp->phydev)
return phy_ethtool_sset(lp->phydev, cmd);
return -EINVAL;
}
static void bfin_mac_ethtool_getdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, dev_name(&dev->dev));
}
static void bfin_mac_ethtool_getwol(struct net_device *dev,
struct ethtool_wolinfo *wolinfo)
{
struct bfin_mac_local *lp = netdev_priv(dev);
wolinfo->supported = WAKE_MAGIC;
wolinfo->wolopts = lp->wol;
}
static int bfin_mac_ethtool_setwol(struct net_device *dev,
struct ethtool_wolinfo *wolinfo)
{
struct bfin_mac_local *lp = netdev_priv(dev);
int rc;
if (wolinfo->wolopts & (WAKE_MAGICSECURE |
WAKE_UCAST |
WAKE_MCAST |
WAKE_BCAST |
WAKE_ARP))
return -EOPNOTSUPP;
lp->wol = wolinfo->wolopts;
if (lp->wol && !lp->irq_wake_requested) {
/* register wake irq handler */
rc = request_irq(IRQ_MAC_WAKEDET, bfin_mac_wake_interrupt,
IRQF_DISABLED, "EMAC_WAKE", dev);
if (rc)
return rc;
lp->irq_wake_requested = true;
}
if (!lp->wol && lp->irq_wake_requested) {
free_irq(IRQ_MAC_WAKEDET, dev);
lp->irq_wake_requested = false;
}
/* Make sure the PHY driver doesn't suspend */
device_init_wakeup(&dev->dev, lp->wol);
return 0;
}
static const struct ethtool_ops bfin_mac_ethtool_ops = {
.get_settings = bfin_mac_ethtool_getsettings,
.set_settings = bfin_mac_ethtool_setsettings,
.get_link = ethtool_op_get_link,
.get_drvinfo = bfin_mac_ethtool_getdrvinfo,
.get_wol = bfin_mac_ethtool_getwol,
.set_wol = bfin_mac_ethtool_setwol,
};
/**************************************************************************/
void setup_system_regs(struct net_device *dev)
{
unsigned short sysctl;
/*
* Odd word alignment for Receive Frame DMA word
* Configure checksum support and rcve frame word alignment
*/
sysctl = bfin_read_EMAC_SYSCTL();
sysctl |= RXDWA;
#if defined(BFIN_MAC_CSUM_OFFLOAD)
sysctl |= RXCKS;
#else
sysctl &= ~RXCKS;
#endif
bfin_write_EMAC_SYSCTL(sysctl);
bfin_write_EMAC_MMC_CTL(RSTC | CROLL);
/* Initialize the TX DMA channel registers */
bfin_write_DMA2_X_COUNT(0);
bfin_write_DMA2_X_MODIFY(4);
bfin_write_DMA2_Y_COUNT(0);
bfin_write_DMA2_Y_MODIFY(0);
/* Initialize the RX DMA channel registers */
bfin_write_DMA1_X_COUNT(0);
bfin_write_DMA1_X_MODIFY(4);
bfin_write_DMA1_Y_COUNT(0);
bfin_write_DMA1_Y_MODIFY(0);
}
static void setup_mac_addr(u8 *mac_addr)
{
u32 addr_low = le32_to_cpu(*(__le32 *) & mac_addr[0]);
u16 addr_hi = le16_to_cpu(*(__le16 *) & mac_addr[4]);
/* this depends on a little-endian machine */
bfin_write_EMAC_ADDRLO(addr_low);
bfin_write_EMAC_ADDRHI(addr_hi);
}
static int bfin_mac_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
setup_mac_addr(dev->dev_addr);
return 0;
}
#ifdef CONFIG_BFIN_MAC_USE_HWSTAMP
#define bfin_mac_hwtstamp_is_none(cfg) ((cfg) == HWTSTAMP_FILTER_NONE)
static int bfin_mac_hwtstamp_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct hwtstamp_config config;
struct bfin_mac_local *lp = netdev_priv(netdev);
u16 ptpctl;
u32 ptpfv1, ptpfv2, ptpfv3, ptpfoff;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
pr_debug("%s config flag:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
__func__, config.flags, config.tx_type, config.rx_filter);
/* reserved for future extensions */
if (config.flags)
return -EINVAL;
if ((config.tx_type != HWTSTAMP_TX_OFF) &&
(config.tx_type != HWTSTAMP_TX_ON))
return -ERANGE;
ptpctl = bfin_read_EMAC_PTP_CTL();
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
/*
* Dont allow any timestamping
*/
ptpfv3 = 0xFFFFFFFF;
bfin_write_EMAC_PTP_FV3(ptpfv3);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
/*
* Clear the five comparison mask bits (bits[12:8]) in EMAC_PTP_CTL)
* to enable all the field matches.
*/
ptpctl &= ~0x1F00;
bfin_write_EMAC_PTP_CTL(ptpctl);
/*
* Keep the default values of the EMAC_PTP_FOFF register.
*/
ptpfoff = 0x4A24170C;
bfin_write_EMAC_PTP_FOFF(ptpfoff);
/*
* Keep the default values of the EMAC_PTP_FV1 and EMAC_PTP_FV2
* registers.
*/
ptpfv1 = 0x11040800;
bfin_write_EMAC_PTP_FV1(ptpfv1);
ptpfv2 = 0x0140013F;
bfin_write_EMAC_PTP_FV2(ptpfv2);
/*
* The default value (0xFFFC) allows the timestamping of both
* received Sync messages and Delay_Req messages.
*/
ptpfv3 = 0xFFFFFFFC;
bfin_write_EMAC_PTP_FV3(ptpfv3);
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* Clear all five comparison mask bits (bits[12:8]) in the
* EMAC_PTP_CTL register to enable all the field matches.
*/
ptpctl &= ~0x1F00;
bfin_write_EMAC_PTP_CTL(ptpctl);
/*
* Keep the default values of the EMAC_PTP_FOFF register, except set
* the PTPCOF field to 0x2A.
*/
ptpfoff = 0x2A24170C;
bfin_write_EMAC_PTP_FOFF(ptpfoff);
/*
* Keep the default values of the EMAC_PTP_FV1 and EMAC_PTP_FV2
* registers.
*/
ptpfv1 = 0x11040800;
bfin_write_EMAC_PTP_FV1(ptpfv1);
ptpfv2 = 0x0140013F;
bfin_write_EMAC_PTP_FV2(ptpfv2);
/*
* To allow the timestamping of Pdelay_Req and Pdelay_Resp, set
* the value to 0xFFF0.
*/
ptpfv3 = 0xFFFFFFF0;
bfin_write_EMAC_PTP_FV3(ptpfv3);
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
/*
* Clear bits 8 and 12 of the EMAC_PTP_CTL register to enable only the
* EFTM and PTPCM field comparison.
*/
ptpctl &= ~0x1100;
bfin_write_EMAC_PTP_CTL(ptpctl);
/*
* Keep the default values of all the fields of the EMAC_PTP_FOFF
* register, except set the PTPCOF field to 0x0E.
*/
ptpfoff = 0x0E24170C;
bfin_write_EMAC_PTP_FOFF(ptpfoff);
/*
* Program bits [15:0] of the EMAC_PTP_FV1 register to 0x88F7, which
* corresponds to PTP messages on the MAC layer.
*/
ptpfv1 = 0x110488F7;
bfin_write_EMAC_PTP_FV1(ptpfv1);
ptpfv2 = 0x0140013F;
bfin_write_EMAC_PTP_FV2(ptpfv2);
/*
* To allow the timestamping of Pdelay_Req and Pdelay_Resp
* messages, set the value to 0xFFF0.
*/
ptpfv3 = 0xFFFFFFF0;
bfin_write_EMAC_PTP_FV3(ptpfv3);
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
break;
default:
return -ERANGE;
}
if (config.tx_type == HWTSTAMP_TX_OFF &&
bfin_mac_hwtstamp_is_none(config.rx_filter)) {
ptpctl &= ~PTP_EN;
bfin_write_EMAC_PTP_CTL(ptpctl);
SSYNC();
} else {
ptpctl |= PTP_EN;
bfin_write_EMAC_PTP_CTL(ptpctl);
/*
* clear any existing timestamp
*/
bfin_read_EMAC_PTP_RXSNAPLO();
bfin_read_EMAC_PTP_RXSNAPHI();
bfin_read_EMAC_PTP_TXSNAPLO();
bfin_read_EMAC_PTP_TXSNAPHI();
/*
* Set registers so that rollover occurs soon to test this.
*/
bfin_write_EMAC_PTP_TIMELO(0x00000000);
bfin_write_EMAC_PTP_TIMEHI(0xFF800000);
SSYNC();
lp->compare.last_update = 0;
timecounter_init(&lp->clock,
&lp->cycles,
ktime_to_ns(ktime_get_real()));
timecompare_update(&lp->compare, 0);
}
lp->stamp_cfg = config;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static void bfin_dump_hwtamp(char *s, ktime_t *hw, ktime_t *ts, struct timecompare *cmp)
{
ktime_t sys = ktime_get_real();
pr_debug("%s %s hardware:%d,%d transform system:%d,%d system:%d,%d, cmp:%lld, %lld\n",
__func__, s, hw->tv.sec, hw->tv.nsec, ts->tv.sec, ts->tv.nsec, sys.tv.sec,
sys.tv.nsec, cmp->offset, cmp->skew);
}
static void bfin_tx_hwtstamp(struct net_device *netdev, struct sk_buff *skb)
{
struct bfin_mac_local *lp = netdev_priv(netdev);
union skb_shared_tx *shtx = skb_tx(skb);
if (shtx->hardware) {
int timeout_cnt = MAX_TIMEOUT_CNT;
/* When doing time stamping, keep the connection to the socket
* a while longer
*/
shtx->in_progress = 1;
/*
* The timestamping is done at the EMAC module's MII/RMII interface
* when the module sees the Start of Frame of an event message packet. This
* interface is the closest possible place to the physical Ethernet transmission
* medium, providing the best timing accuracy.
*/
while ((!(bfin_read_EMAC_PTP_ISTAT() & TXTL)) && (--timeout_cnt))
udelay(1);
if (timeout_cnt == 0)
printk(KERN_ERR DRV_NAME
": fails to timestamp the TX packet\n");
else {
struct skb_shared_hwtstamps shhwtstamps;
u64 ns;
u64 regval;
regval = bfin_read_EMAC_PTP_TXSNAPLO();
regval |= (u64)bfin_read_EMAC_PTP_TXSNAPHI() << 32;
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
ns = timecounter_cyc2time(&lp->clock,
regval);
timecompare_update(&lp->compare, ns);
shhwtstamps.hwtstamp = ns_to_ktime(ns);
shhwtstamps.syststamp =
timecompare_transform(&lp->compare, ns);
skb_tstamp_tx(skb, &shhwtstamps);
bfin_dump_hwtamp("TX", &shhwtstamps.hwtstamp, &shhwtstamps.syststamp, &lp->compare);
}
}
}
static void bfin_rx_hwtstamp(struct net_device *netdev, struct sk_buff *skb)
{
struct bfin_mac_local *lp = netdev_priv(netdev);
u32 valid;
u64 regval, ns;
struct skb_shared_hwtstamps *shhwtstamps;
if (bfin_mac_hwtstamp_is_none(lp->stamp_cfg.rx_filter))
return;
valid = bfin_read_EMAC_PTP_ISTAT() & RXEL;
if (!valid)
return;
shhwtstamps = skb_hwtstamps(skb);
regval = bfin_read_EMAC_PTP_RXSNAPLO();
regval |= (u64)bfin_read_EMAC_PTP_RXSNAPHI() << 32;
ns = timecounter_cyc2time(&lp->clock, regval);
timecompare_update(&lp->compare, ns);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(ns);
shhwtstamps->syststamp = timecompare_transform(&lp->compare, ns);
bfin_dump_hwtamp("RX", &shhwtstamps->hwtstamp, &shhwtstamps->syststamp, &lp->compare);
}
/*
* bfin_read_clock - read raw cycle counter (to be used by time counter)
*/
static cycle_t bfin_read_clock(const struct cyclecounter *tc)
{
u64 stamp;
stamp = bfin_read_EMAC_PTP_TIMELO();
stamp |= (u64)bfin_read_EMAC_PTP_TIMEHI() << 32ULL;
return stamp;
}
#define PTP_CLK 25000000
static void bfin_mac_hwtstamp_init(struct net_device *netdev)
{
struct bfin_mac_local *lp = netdev_priv(netdev);
u64 append;
/* Initialize hardware timer */
append = PTP_CLK * (1ULL << 32);
do_div(append, get_sclk());
bfin_write_EMAC_PTP_ADDEND((u32)append);
memset(&lp->cycles, 0, sizeof(lp->cycles));
lp->cycles.read = bfin_read_clock;
lp->cycles.mask = CLOCKSOURCE_MASK(64);
lp->cycles.mult = 1000000000 / PTP_CLK;
lp->cycles.shift = 0;
/* Synchronize our NIC clock against system wall clock */
memset(&lp->compare, 0, sizeof(lp->compare));
lp->compare.source = &lp->clock;
lp->compare.target = ktime_get_real;
lp->compare.num_samples = 10;
/* Initialize hwstamp config */
lp->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
lp->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
}
#else
# define bfin_mac_hwtstamp_is_none(cfg) 0
# define bfin_mac_hwtstamp_init(dev)
# define bfin_mac_hwtstamp_ioctl(dev, ifr, cmd) (-EOPNOTSUPP)
# define bfin_rx_hwtstamp(dev, skb)
# define bfin_tx_hwtstamp(dev, skb)
#endif
static inline void _tx_reclaim_skb(void)
{
do {
tx_list_head->desc_a.config &= ~DMAEN;
tx_list_head->status.status_word = 0;
if (tx_list_head->skb) {
dev_kfree_skb(tx_list_head->skb);
tx_list_head->skb = NULL;
}
tx_list_head = tx_list_head->next;
} while (tx_list_head->status.status_word != 0);
}
static void tx_reclaim_skb(struct bfin_mac_local *lp)
{
int timeout_cnt = MAX_TIMEOUT_CNT;
if (tx_list_head->status.status_word != 0)
_tx_reclaim_skb();
if (current_tx_ptr->next == tx_list_head) {
while (tx_list_head->status.status_word == 0) {
/* slow down polling to avoid too many queue stop. */
udelay(10);
/* reclaim skb if DMA is not running. */
if (!(bfin_read_DMA2_IRQ_STATUS() & DMA_RUN))
break;
if (timeout_cnt-- < 0)
break;
}
if (timeout_cnt >= 0)
_tx_reclaim_skb();
else
netif_stop_queue(lp->ndev);
}
if (current_tx_ptr->next != tx_list_head &&
netif_queue_stopped(lp->ndev))
netif_wake_queue(lp->ndev);
if (tx_list_head != current_tx_ptr) {
/* shorten the timer interval if tx queue is stopped */
if (netif_queue_stopped(lp->ndev))
lp->tx_reclaim_timer.expires =
jiffies + (TX_RECLAIM_JIFFIES >> 4);
else
lp->tx_reclaim_timer.expires =
jiffies + TX_RECLAIM_JIFFIES;
mod_timer(&lp->tx_reclaim_timer,
lp->tx_reclaim_timer.expires);
}
return;
}
static void tx_reclaim_skb_timeout(unsigned long lp)
{
tx_reclaim_skb((struct bfin_mac_local *)lp);
}
static int bfin_mac_hard_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
u16 *data;
u32 data_align = (unsigned long)(skb->data) & 0x3;
union skb_shared_tx *shtx = skb_tx(skb);
current_tx_ptr->skb = skb;
if (data_align == 0x2) {
/* move skb->data to current_tx_ptr payload */
data = (u16 *)(skb->data) - 1;
*data = (u16)(skb->len);
/*
* When transmitting an Ethernet packet, the PTP_TSYNC module requires
* a DMA_Length_Word field associated with the packet. The lower 12 bits
* of this field are the length of the packet payload in bytes and the higher
* 4 bits are the timestamping enable field.
*/
if (shtx->hardware)
*data |= 0x1000;
current_tx_ptr->desc_a.start_addr = (u32)data;
/* this is important! */
blackfin_dcache_flush_range((u32)data,
(u32)((u8 *)data + skb->len + 4));
} else {
*((u16 *)(current_tx_ptr->packet)) = (u16)(skb->len);
/* enable timestamping for the sent packet */
if (shtx->hardware)
*((u16 *)(current_tx_ptr->packet)) |= 0x1000;
memcpy((u8 *)(current_tx_ptr->packet + 2), skb->data,
skb->len);
current_tx_ptr->desc_a.start_addr =
(u32)current_tx_ptr->packet;
blackfin_dcache_flush_range(
(u32)current_tx_ptr->packet,
(u32)(current_tx_ptr->packet + skb->len + 2));
}
/* make sure the internal data buffers in the core are drained
* so that the DMA descriptors are completely written when the
* DMA engine goes to fetch them below
*/
SSYNC();
/* always clear status buffer before start tx dma */
current_tx_ptr->status.status_word = 0;
/* enable this packet's dma */
current_tx_ptr->desc_a.config |= DMAEN;
/* tx dma is running, just return */
if (bfin_read_DMA2_IRQ_STATUS() & DMA_RUN)
goto out;
/* tx dma is not running */
bfin_write_DMA2_NEXT_DESC_PTR(&(current_tx_ptr->desc_a));
/* dma enabled, read from memory, size is 6 */
bfin_write_DMA2_CONFIG(current_tx_ptr->desc_a.config);
/* Turn on the EMAC tx */
bfin_write_EMAC_OPMODE(bfin_read_EMAC_OPMODE() | TE);
out:
bfin_tx_hwtstamp(dev, skb);
current_tx_ptr = current_tx_ptr->next;
dev->stats.tx_packets++;
dev->stats.tx_bytes += (skb->len);
tx_reclaim_skb(lp);
return NETDEV_TX_OK;
}
#define IP_HEADER_OFF 0
#define RX_ERROR_MASK (RX_LONG | RX_ALIGN | RX_CRC | RX_LEN | \
RX_FRAG | RX_ADDR | RX_DMAO | RX_PHY | RX_LATE | RX_RANGE)
static void bfin_mac_rx(struct net_device *dev)
{
struct sk_buff *skb, *new_skb;
unsigned short len;
struct bfin_mac_local *lp __maybe_unused = netdev_priv(dev);
#if defined(BFIN_MAC_CSUM_OFFLOAD)
unsigned int i;
unsigned char fcs[ETH_FCS_LEN + 1];
#endif
/* check if frame status word reports an error condition
* we which case we simply drop the packet
*/
if (current_rx_ptr->status.status_word & RX_ERROR_MASK) {
printk(KERN_NOTICE DRV_NAME
": rx: receive error - packet dropped\n");
dev->stats.rx_dropped++;
goto out;
}
/* allocate a new skb for next time receive */
skb = current_rx_ptr->skb;
new_skb = dev_alloc_skb(PKT_BUF_SZ + NET_IP_ALIGN);
if (!new_skb) {
printk(KERN_NOTICE DRV_NAME
": rx: low on mem - packet dropped\n");
dev->stats.rx_dropped++;
goto out;
}
/* reserve 2 bytes for RXDWA padding */
skb_reserve(new_skb, NET_IP_ALIGN);
/* Invidate the data cache of skb->data range when it is write back
* cache. It will prevent overwritting the new data from DMA
*/
blackfin_dcache_invalidate_range((unsigned long)new_skb->head,
(unsigned long)new_skb->end);
current_rx_ptr->skb = new_skb;
current_rx_ptr->desc_a.start_addr = (unsigned long)new_skb->data - 2;
len = (unsigned short)((current_rx_ptr->status.status_word) & RX_FRLEN);
/* Deduce Ethernet FCS length from Ethernet payload length */
len -= ETH_FCS_LEN;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
bfin_rx_hwtstamp(dev, skb);
#if defined(BFIN_MAC_CSUM_OFFLOAD)
/* Checksum offloading only works for IPv4 packets with the standard IP header
* length of 20 bytes, because the blackfin MAC checksum calculation is
* based on that assumption. We must NOT use the calculated checksum if our
* IP version or header break that assumption.
*/
if (skb->data[IP_HEADER_OFF] == 0x45) {
skb->csum = current_rx_ptr->status.ip_payload_csum;
/*
* Deduce Ethernet FCS from hardware generated IP payload checksum.
* IP checksum is based on 16-bit one's complement algorithm.
* To deduce a value from checksum is equal to add its inversion.
* If the IP payload len is odd, the inversed FCS should also
* begin from odd address and leave first byte zero.
*/
if (skb->len % 2) {
fcs[0] = 0;
for (i = 0; i < ETH_FCS_LEN; i++)
fcs[i + 1] = ~skb->data[skb->len + i];
skb->csum = csum_partial(fcs, ETH_FCS_LEN + 1, skb->csum);
} else {
for (i = 0; i < ETH_FCS_LEN; i++)
fcs[i] = ~skb->data[skb->len + i];
skb->csum = csum_partial(fcs, ETH_FCS_LEN, skb->csum);
}
skb->ip_summed = CHECKSUM_COMPLETE;
}
#endif
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
out:
current_rx_ptr->status.status_word = 0x00000000;
current_rx_ptr = current_rx_ptr->next;
}
/* interrupt routine to handle rx and error signal */
static irqreturn_t bfin_mac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
int number = 0;
get_one_packet:
if (current_rx_ptr->status.status_word == 0) {
/* no more new packet received */
if (number == 0) {
if (current_rx_ptr->next->status.status_word != 0) {
current_rx_ptr = current_rx_ptr->next;
goto real_rx;
}
}
bfin_write_DMA1_IRQ_STATUS(bfin_read_DMA1_IRQ_STATUS() |
DMA_DONE | DMA_ERR);
return IRQ_HANDLED;
}
real_rx:
bfin_mac_rx(dev);
number++;
goto get_one_packet;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bfin_mac_poll(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
disable_irq(IRQ_MAC_RX);
bfin_mac_interrupt(IRQ_MAC_RX, dev);
tx_reclaim_skb(lp);
enable_irq(IRQ_MAC_RX);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static void bfin_mac_disable(void)
{
unsigned int opmode;
opmode = bfin_read_EMAC_OPMODE();
opmode &= (~RE);
opmode &= (~TE);
/* Turn off the EMAC */
bfin_write_EMAC_OPMODE(opmode);
}
/*
* Enable Interrupts, Receive, and Transmit
*/
static int bfin_mac_enable(void)
{
int ret;
u32 opmode;
pr_debug("%s: %s\n", DRV_NAME, __func__);
/* Set RX DMA */
bfin_write_DMA1_NEXT_DESC_PTR(&(rx_list_head->desc_a));
bfin_write_DMA1_CONFIG(rx_list_head->desc_a.config);
/* Wait MII done */
ret = bfin_mdio_poll();
if (ret)
return ret;
/* We enable only RX here */
/* ASTP : Enable Automatic Pad Stripping
PR : Promiscuous Mode for test
PSF : Receive frames with total length less than 64 bytes.
FDMODE : Full Duplex Mode
LB : Internal Loopback for test
RE : Receiver Enable */
opmode = bfin_read_EMAC_OPMODE();
if (opmode & FDMODE)
opmode |= PSF;
else
opmode |= DRO | DC | PSF;
opmode |= RE;
#if defined(CONFIG_BFIN_MAC_RMII)
opmode |= RMII; /* For Now only 100MBit are supported */
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536)) && CONFIG_BF_REV_0_2
opmode |= TE;
#endif
#endif
/* Turn on the EMAC rx */
bfin_write_EMAC_OPMODE(opmode);
return 0;
}
/* Our watchdog timed out. Called by the networking layer */
static void bfin_mac_timeout(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
pr_debug("%s: %s\n", dev->name, __func__);
bfin_mac_disable();
del_timer(&lp->tx_reclaim_timer);
/* reset tx queue and free skb */
while (tx_list_head != current_tx_ptr) {
tx_list_head->desc_a.config &= ~DMAEN;
tx_list_head->status.status_word = 0;
if (tx_list_head->skb) {
dev_kfree_skb(tx_list_head->skb);
tx_list_head->skb = NULL;
}
tx_list_head = tx_list_head->next;
}
if (netif_queue_stopped(lp->ndev))
netif_wake_queue(lp->ndev);
bfin_mac_enable();
/* We can accept TX packets again */
dev->trans_start = jiffies; /* prevent tx timeout */
netif_wake_queue(dev);
}
static void bfin_mac_multicast_hash(struct net_device *dev)
{
u32 emac_hashhi, emac_hashlo;
struct netdev_hw_addr *ha;
char *addrs;
u32 crc;
emac_hashhi = emac_hashlo = 0;
netdev_for_each_mc_addr(ha, dev) {
addrs = ha->addr;
/* skip non-multicast addresses */
if (!(*addrs & 1))
continue;
crc = ether_crc(ETH_ALEN, addrs);
crc >>= 26;
if (crc & 0x20)
emac_hashhi |= 1 << (crc & 0x1f);
else
emac_hashlo |= 1 << (crc & 0x1f);
}
bfin_write_EMAC_HASHHI(emac_hashhi);
bfin_write_EMAC_HASHLO(emac_hashlo);
}
/*
* This routine will, depending on the values passed to it,
* either make it accept multicast packets, go into
* promiscuous mode (for TCPDUMP and cousins) or accept
* a select set of multicast packets
*/
static void bfin_mac_set_multicast_list(struct net_device *dev)
{
u32 sysctl;
if (dev->flags & IFF_PROMISC) {
printk(KERN_INFO "%s: set to promisc mode\n", dev->name);
sysctl = bfin_read_EMAC_OPMODE();
sysctl |= PR;
bfin_write_EMAC_OPMODE(sysctl);
} else if (dev->flags & IFF_ALLMULTI) {
/* accept all multicast */
sysctl = bfin_read_EMAC_OPMODE();
sysctl |= PAM;
bfin_write_EMAC_OPMODE(sysctl);
} else if (!netdev_mc_empty(dev)) {
/* set up multicast hash table */
sysctl = bfin_read_EMAC_OPMODE();
sysctl |= HM;
bfin_write_EMAC_OPMODE(sysctl);
bfin_mac_multicast_hash(dev);
} else {
/* clear promisc or multicast mode */
sysctl = bfin_read_EMAC_OPMODE();
sysctl &= ~(RAF | PAM);
bfin_write_EMAC_OPMODE(sysctl);
}
}
static int bfin_mac_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCSHWTSTAMP:
return bfin_mac_hwtstamp_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/*
* this puts the device in an inactive state
*/
static void bfin_mac_shutdown(struct net_device *dev)
{
/* Turn off the EMAC */
bfin_write_EMAC_OPMODE(0x00000000);
/* Turn off the EMAC RX DMA */
bfin_write_DMA1_CONFIG(0x0000);
bfin_write_DMA2_CONFIG(0x0000);
}
/*
* Open and Initialize the interface
*
* Set up everything, reset the card, etc..
*/
static int bfin_mac_open(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
int ret;
pr_debug("%s: %s\n", dev->name, __func__);
/*
* Check that the address is valid. If its not, refuse
* to bring the device up. The user must specify an
* address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
*/
if (!is_valid_ether_addr(dev->dev_addr)) {
printk(KERN_WARNING DRV_NAME ": no valid ethernet hw addr\n");
return -EINVAL;
}
/* initial rx and tx list */
ret = desc_list_init();
if (ret)
return ret;
phy_start(lp->phydev);
phy_write(lp->phydev, MII_BMCR, BMCR_RESET);
setup_system_regs(dev);
setup_mac_addr(dev->dev_addr);
bfin_mac_disable();
ret = bfin_mac_enable();
if (ret)
return ret;
pr_debug("hardware init finished\n");
netif_start_queue(dev);
netif_carrier_on(dev);
return 0;
}
/*
* this makes the board clean up everything that it can
* and not talk to the outside world. Caused by
* an 'ifconfig ethX down'
*/
static int bfin_mac_close(struct net_device *dev)
{
struct bfin_mac_local *lp = netdev_priv(dev);
pr_debug("%s: %s\n", dev->name, __func__);
netif_stop_queue(dev);
netif_carrier_off(dev);
phy_stop(lp->phydev);
phy_write(lp->phydev, MII_BMCR, BMCR_PDOWN);
/* clear everything */
bfin_mac_shutdown(dev);
/* free the rx/tx buffers */
desc_list_free();
return 0;
}
static const struct net_device_ops bfin_mac_netdev_ops = {
.ndo_open = bfin_mac_open,
.ndo_stop = bfin_mac_close,
.ndo_start_xmit = bfin_mac_hard_start_xmit,
.ndo_set_mac_address = bfin_mac_set_mac_address,
.ndo_tx_timeout = bfin_mac_timeout,
.ndo_set_multicast_list = bfin_mac_set_multicast_list,
.ndo_do_ioctl = bfin_mac_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = bfin_mac_poll,
#endif
};
static int __devinit bfin_mac_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct bfin_mac_local *lp;
struct platform_device *pd;
int rc;
ndev = alloc_etherdev(sizeof(struct bfin_mac_local));
if (!ndev) {
dev_err(&pdev->dev, "Cannot allocate net device!\n");
return -ENOMEM;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
platform_set_drvdata(pdev, ndev);
lp = netdev_priv(ndev);
lp->ndev = ndev;
/* Grab the MAC address in the MAC */
*(__le32 *) (&(ndev->dev_addr[0])) = cpu_to_le32(bfin_read_EMAC_ADDRLO());
*(__le16 *) (&(ndev->dev_addr[4])) = cpu_to_le16((u16) bfin_read_EMAC_ADDRHI());
/* probe mac */
/*todo: how to proble? which is revision_register */
bfin_write_EMAC_ADDRLO(0x12345678);
if (bfin_read_EMAC_ADDRLO() != 0x12345678) {
dev_err(&pdev->dev, "Cannot detect Blackfin on-chip ethernet MAC controller!\n");
rc = -ENODEV;
goto out_err_probe_mac;
}
/*
* Is it valid? (Did bootloader initialize it?)
* Grab the MAC from the board somehow
* this is done in the arch/blackfin/mach-bfxxx/boards/eth_mac.c
*/
if (!is_valid_ether_addr(ndev->dev_addr))
bfin_get_ether_addr(ndev->dev_addr);
/* If still not valid, get a random one */
if (!is_valid_ether_addr(ndev->dev_addr))
random_ether_addr(ndev->dev_addr);
setup_mac_addr(ndev->dev_addr);
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "Cannot get platform device bfin_mii_bus!\n");
rc = -ENODEV;
goto out_err_probe_mac;
}
pd = pdev->dev.platform_data;
lp->mii_bus = platform_get_drvdata(pd);
if (!lp->mii_bus) {
dev_err(&pdev->dev, "Cannot get mii_bus!\n");
rc = -ENODEV;
goto out_err_mii_bus_probe;
}
lp->mii_bus->priv = ndev;
rc = mii_probe(ndev);
if (rc) {
dev_err(&pdev->dev, "MII Probe failed!\n");
goto out_err_mii_probe;
}
/* Fill in the fields of the device structure with ethernet values. */
ether_setup(ndev);
ndev->netdev_ops = &bfin_mac_netdev_ops;
ndev->ethtool_ops = &bfin_mac_ethtool_ops;
init_timer(&lp->tx_reclaim_timer);
lp->tx_reclaim_timer.data = (unsigned long)lp;
lp->tx_reclaim_timer.function = tx_reclaim_skb_timeout;
spin_lock_init(&lp->lock);
/* now, enable interrupts */
/* register irq handler */
rc = request_irq(IRQ_MAC_RX, bfin_mac_interrupt,
IRQF_DISABLED, "EMAC_RX", ndev);
if (rc) {
dev_err(&pdev->dev, "Cannot request Blackfin MAC RX IRQ!\n");
rc = -EBUSY;
goto out_err_request_irq;
}
rc = register_netdev(ndev);
if (rc) {
dev_err(&pdev->dev, "Cannot register net device!\n");
goto out_err_reg_ndev;
}
bfin_mac_hwtstamp_init(ndev);
/* now, print out the card info, in a short format.. */
dev_info(&pdev->dev, "%s, Version %s\n", DRV_DESC, DRV_VERSION);
return 0;
out_err_reg_ndev:
free_irq(IRQ_MAC_RX, ndev);
out_err_request_irq:
out_err_mii_probe:
mdiobus_unregister(lp->mii_bus);
mdiobus_free(lp->mii_bus);
out_err_mii_bus_probe:
peripheral_free_list(pin_req);
out_err_probe_mac:
platform_set_drvdata(pdev, NULL);
free_netdev(ndev);
return rc;
}
static int __devexit bfin_mac_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct bfin_mac_local *lp = netdev_priv(ndev);
platform_set_drvdata(pdev, NULL);
lp->mii_bus->priv = NULL;
unregister_netdev(ndev);
free_irq(IRQ_MAC_RX, ndev);
free_netdev(ndev);
peripheral_free_list(pin_req);
return 0;
}
#ifdef CONFIG_PM
static int bfin_mac_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct bfin_mac_local *lp = netdev_priv(net_dev);
if (lp->wol) {
bfin_write_EMAC_OPMODE((bfin_read_EMAC_OPMODE() & ~TE) | RE);
bfin_write_EMAC_WKUP_CTL(MPKE);
enable_irq_wake(IRQ_MAC_WAKEDET);
} else {
if (netif_running(net_dev))
bfin_mac_close(net_dev);
}
return 0;
}
static int bfin_mac_resume(struct platform_device *pdev)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct bfin_mac_local *lp = netdev_priv(net_dev);
if (lp->wol) {
bfin_write_EMAC_OPMODE(bfin_read_EMAC_OPMODE() | TE);
bfin_write_EMAC_WKUP_CTL(0);
disable_irq_wake(IRQ_MAC_WAKEDET);
} else {
if (netif_running(net_dev))
bfin_mac_open(net_dev);
}
return 0;
}
#else
#define bfin_mac_suspend NULL
#define bfin_mac_resume NULL
#endif /* CONFIG_PM */
static int __devinit bfin_mii_bus_probe(struct platform_device *pdev)
{
struct mii_bus *miibus;
int rc, i;
/*
* We are setting up a network card,
* so set the GPIO pins to Ethernet mode
*/
rc = peripheral_request_list(pin_req, DRV_NAME);
if (rc) {
dev_err(&pdev->dev, "Requesting peripherals failed!\n");
return rc;
}
rc = -ENOMEM;
miibus = mdiobus_alloc();
if (miibus == NULL)
goto out_err_alloc;
miibus->read = bfin_mdiobus_read;
miibus->write = bfin_mdiobus_write;
miibus->reset = bfin_mdiobus_reset;
miibus->parent = &pdev->dev;
miibus->name = "bfin_mii_bus";
snprintf(miibus->id, MII_BUS_ID_SIZE, "0");
miibus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
if (miibus->irq == NULL)
goto out_err_alloc;
for (i = 0; i < PHY_MAX_ADDR; ++i)
miibus->irq[i] = PHY_POLL;
rc = mdiobus_register(miibus);
if (rc) {
dev_err(&pdev->dev, "Cannot register MDIO bus!\n");
goto out_err_mdiobus_register;
}
platform_set_drvdata(pdev, miibus);
return 0;
out_err_mdiobus_register:
kfree(miibus->irq);
mdiobus_free(miibus);
out_err_alloc:
peripheral_free_list(pin_req);
return rc;
}
static int __devexit bfin_mii_bus_remove(struct platform_device *pdev)
{
struct mii_bus *miibus = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
mdiobus_unregister(miibus);
kfree(miibus->irq);
mdiobus_free(miibus);
peripheral_free_list(pin_req);
return 0;
}
static struct platform_driver bfin_mii_bus_driver = {
.probe = bfin_mii_bus_probe,
.remove = __devexit_p(bfin_mii_bus_remove),
.driver = {
.name = "bfin_mii_bus",
.owner = THIS_MODULE,
},
};
static struct platform_driver bfin_mac_driver = {
.probe = bfin_mac_probe,
.remove = __devexit_p(bfin_mac_remove),
.resume = bfin_mac_resume,
.suspend = bfin_mac_suspend,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init bfin_mac_init(void)
{
int ret;
ret = platform_driver_register(&bfin_mii_bus_driver);
if (!ret)
return platform_driver_register(&bfin_mac_driver);
return -ENODEV;
}
module_init(bfin_mac_init);
static void __exit bfin_mac_cleanup(void)
{
platform_driver_unregister(&bfin_mac_driver);
platform_driver_unregister(&bfin_mii_bus_driver);
}
module_exit(bfin_mac_cleanup);