linux_old1/drivers/infiniband/hw/qib/qib_file_ops.c

2329 lines
59 KiB
C

/*
* Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
* All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/swap.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/uio.h>
#include <linux/jiffies.h>
#include <asm/pgtable.h>
#include <linux/delay.h>
#include <linux/export.h>
#include "qib.h"
#include "qib_common.h"
#include "qib_user_sdma.h"
static int qib_open(struct inode *, struct file *);
static int qib_close(struct inode *, struct file *);
static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
static ssize_t qib_aio_write(struct kiocb *, const struct iovec *,
unsigned long, loff_t);
static unsigned int qib_poll(struct file *, struct poll_table_struct *);
static int qib_mmapf(struct file *, struct vm_area_struct *);
static const struct file_operations qib_file_ops = {
.owner = THIS_MODULE,
.write = qib_write,
.aio_write = qib_aio_write,
.open = qib_open,
.release = qib_close,
.poll = qib_poll,
.mmap = qib_mmapf,
.llseek = noop_llseek,
};
/*
* Convert kernel virtual addresses to physical addresses so they don't
* potentially conflict with the chip addresses used as mmap offsets.
* It doesn't really matter what mmap offset we use as long as we can
* interpret it correctly.
*/
static u64 cvt_kvaddr(void *p)
{
struct page *page;
u64 paddr = 0;
page = vmalloc_to_page(p);
if (page)
paddr = page_to_pfn(page) << PAGE_SHIFT;
return paddr;
}
static int qib_get_base_info(struct file *fp, void __user *ubase,
size_t ubase_size)
{
struct qib_ctxtdata *rcd = ctxt_fp(fp);
int ret = 0;
struct qib_base_info *kinfo = NULL;
struct qib_devdata *dd = rcd->dd;
struct qib_pportdata *ppd = rcd->ppd;
unsigned subctxt_cnt;
int shared, master;
size_t sz;
subctxt_cnt = rcd->subctxt_cnt;
if (!subctxt_cnt) {
shared = 0;
master = 0;
subctxt_cnt = 1;
} else {
shared = 1;
master = !subctxt_fp(fp);
}
sz = sizeof(*kinfo);
/* If context sharing is not requested, allow the old size structure */
if (!shared)
sz -= 7 * sizeof(u64);
if (ubase_size < sz) {
ret = -EINVAL;
goto bail;
}
kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
if (kinfo == NULL) {
ret = -ENOMEM;
goto bail;
}
ret = dd->f_get_base_info(rcd, kinfo);
if (ret < 0)
goto bail;
kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
/*
* have to mmap whole thing
*/
kinfo->spi_rcv_egrbuftotlen =
rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
rcd->rcvegrbuf_chunks;
kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
if (master)
kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
/*
* for this use, may be cfgctxts summed over all chips that
* are are configured and present
*/
kinfo->spi_nctxts = dd->cfgctxts;
/* unit (chip/board) our context is on */
kinfo->spi_unit = dd->unit;
kinfo->spi_port = ppd->port;
/* for now, only a single page */
kinfo->spi_tid_maxsize = PAGE_SIZE;
/*
* Doing this per context, and based on the skip value, etc. This has
* to be the actual buffer size, since the protocol code treats it
* as an array.
*
* These have to be set to user addresses in the user code via mmap.
* These values are used on return to user code for the mmap target
* addresses only. For 32 bit, same 44 bit address problem, so use
* the physical address, not virtual. Before 2.6.11, using the
* page_address() macro worked, but in 2.6.11, even that returns the
* full 64 bit address (upper bits all 1's). So far, using the
* physical addresses (or chip offsets, for chip mapping) works, but
* no doubt some future kernel release will change that, and we'll be
* on to yet another method of dealing with this.
* Normally only one of rcvhdr_tailaddr or rhf_offset is useful
* since the chips with non-zero rhf_offset don't normally
* enable tail register updates to host memory, but for testing,
* both can be enabled and used.
*/
kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
kinfo->spi_rhf_offset = dd->rhf_offset;
kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
/* setup per-unit (not port) status area for user programs */
kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
(char *) ppd->statusp -
(char *) dd->pioavailregs_dma;
kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
if (!shared) {
kinfo->spi_piocnt = rcd->piocnt;
kinfo->spi_piobufbase = (u64) rcd->piobufs;
kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
} else if (master) {
kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
(rcd->piocnt % subctxt_cnt);
/* Master's PIO buffers are after all the slave's */
kinfo->spi_piobufbase = (u64) rcd->piobufs +
dd->palign *
(rcd->piocnt - kinfo->spi_piocnt);
} else {
unsigned slave = subctxt_fp(fp) - 1;
kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
kinfo->spi_piobufbase = (u64) rcd->piobufs +
dd->palign * kinfo->spi_piocnt * slave;
}
if (shared) {
kinfo->spi_sendbuf_status =
cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
/* only spi_subctxt_* fields should be set in this block! */
kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
kinfo->spi_subctxt_rcvegrbuf =
cvt_kvaddr(rcd->subctxt_rcvegrbuf);
kinfo->spi_subctxt_rcvhdr_base =
cvt_kvaddr(rcd->subctxt_rcvhdr_base);
}
/*
* All user buffers are 2KB buffers. If we ever support
* giving 4KB buffers to user processes, this will need some
* work. Can't use piobufbase directly, because it has
* both 2K and 4K buffer base values.
*/
kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
dd->palign;
kinfo->spi_pioalign = dd->palign;
kinfo->spi_qpair = QIB_KD_QP;
/*
* user mode PIO buffers are always 2KB, even when 4KB can
* be received, and sent via the kernel; this is ibmaxlen
* for 2K MTU.
*/
kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
kinfo->spi_ctxt = rcd->ctxt;
kinfo->spi_subctxt = subctxt_fp(fp);
kinfo->spi_sw_version = QIB_KERN_SWVERSION;
kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
kinfo->spi_hw_version = dd->revision;
if (master)
kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
if (copy_to_user(ubase, kinfo, sz))
ret = -EFAULT;
bail:
kfree(kinfo);
return ret;
}
/**
* qib_tid_update - update a context TID
* @rcd: the context
* @fp: the qib device file
* @ti: the TID information
*
* The new implementation as of Oct 2004 is that the driver assigns
* the tid and returns it to the caller. To reduce search time, we
* keep a cursor for each context, walking the shadow tid array to find
* one that's not in use.
*
* For now, if we can't allocate the full list, we fail, although
* in the long run, we'll allocate as many as we can, and the
* caller will deal with that by trying the remaining pages later.
* That means that when we fail, we have to mark the tids as not in
* use again, in our shadow copy.
*
* It's up to the caller to free the tids when they are done.
* We'll unlock the pages as they free them.
*
* Also, right now we are locking one page at a time, but since
* the intended use of this routine is for a single group of
* virtually contiguous pages, that should change to improve
* performance.
*/
static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
const struct qib_tid_info *ti)
{
int ret = 0, ntids;
u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
u16 *tidlist;
struct qib_devdata *dd = rcd->dd;
u64 physaddr;
unsigned long vaddr;
u64 __iomem *tidbase;
unsigned long tidmap[8];
struct page **pagep = NULL;
unsigned subctxt = subctxt_fp(fp);
if (!dd->pageshadow) {
ret = -ENOMEM;
goto done;
}
cnt = ti->tidcnt;
if (!cnt) {
ret = -EFAULT;
goto done;
}
ctxttid = rcd->ctxt * dd->rcvtidcnt;
if (!rcd->subctxt_cnt) {
tidcnt = dd->rcvtidcnt;
tid = rcd->tidcursor;
tidoff = 0;
} else if (!subctxt) {
tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
(dd->rcvtidcnt % rcd->subctxt_cnt);
tidoff = dd->rcvtidcnt - tidcnt;
ctxttid += tidoff;
tid = tidcursor_fp(fp);
} else {
tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
tidoff = tidcnt * (subctxt - 1);
ctxttid += tidoff;
tid = tidcursor_fp(fp);
}
if (cnt > tidcnt) {
/* make sure it all fits in tid_pg_list */
qib_devinfo(dd->pcidev, "Process tried to allocate %u "
"TIDs, only trying max (%u)\n", cnt, tidcnt);
cnt = tidcnt;
}
pagep = (struct page **) rcd->tid_pg_list;
tidlist = (u16 *) &pagep[dd->rcvtidcnt];
pagep += tidoff;
tidlist += tidoff;
memset(tidmap, 0, sizeof(tidmap));
/* before decrement; chip actual # */
ntids = tidcnt;
tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
dd->rcvtidbase +
ctxttid * sizeof(*tidbase));
/* virtual address of first page in transfer */
vaddr = ti->tidvaddr;
if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
cnt * PAGE_SIZE)) {
ret = -EFAULT;
goto done;
}
ret = qib_get_user_pages(vaddr, cnt, pagep);
if (ret) {
/*
* if (ret == -EBUSY)
* We can't continue because the pagep array won't be
* initialized. This should never happen,
* unless perhaps the user has mpin'ed the pages
* themselves.
*/
qib_devinfo(dd->pcidev,
"Failed to lock addr %p, %u pages: "
"errno %d\n", (void *) vaddr, cnt, -ret);
goto done;
}
for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
for (; ntids--; tid++) {
if (tid == tidcnt)
tid = 0;
if (!dd->pageshadow[ctxttid + tid])
break;
}
if (ntids < 0) {
/*
* Oops, wrapped all the way through their TIDs,
* and didn't have enough free; see comments at
* start of routine
*/
i--; /* last tidlist[i] not filled in */
ret = -ENOMEM;
break;
}
tidlist[i] = tid + tidoff;
/* we "know" system pages and TID pages are same size */
dd->pageshadow[ctxttid + tid] = pagep[i];
dd->physshadow[ctxttid + tid] =
qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
/*
* don't need atomic or it's overhead
*/
__set_bit(tid, tidmap);
physaddr = dd->physshadow[ctxttid + tid];
/* PERFORMANCE: below should almost certainly be cached */
dd->f_put_tid(dd, &tidbase[tid],
RCVHQ_RCV_TYPE_EXPECTED, physaddr);
/*
* don't check this tid in qib_ctxtshadow, since we
* just filled it in; start with the next one.
*/
tid++;
}
if (ret) {
u32 limit;
cleanup:
/* jump here if copy out of updated info failed... */
/* same code that's in qib_free_tid() */
limit = sizeof(tidmap) * BITS_PER_BYTE;
if (limit > tidcnt)
/* just in case size changes in future */
limit = tidcnt;
tid = find_first_bit((const unsigned long *)tidmap, limit);
for (; tid < limit; tid++) {
if (!test_bit(tid, tidmap))
continue;
if (dd->pageshadow[ctxttid + tid]) {
dma_addr_t phys;
phys = dd->physshadow[ctxttid + tid];
dd->physshadow[ctxttid + tid] = dd->tidinvalid;
/* PERFORMANCE: below should almost certainly
* be cached
*/
dd->f_put_tid(dd, &tidbase[tid],
RCVHQ_RCV_TYPE_EXPECTED,
dd->tidinvalid);
pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
dd->pageshadow[ctxttid + tid] = NULL;
}
}
qib_release_user_pages(pagep, cnt);
} else {
/*
* Copy the updated array, with qib_tid's filled in, back
* to user. Since we did the copy in already, this "should
* never fail" If it does, we have to clean up...
*/
if (copy_to_user((void __user *)
(unsigned long) ti->tidlist,
tidlist, cnt * sizeof(*tidlist))) {
ret = -EFAULT;
goto cleanup;
}
if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
tidmap, sizeof tidmap)) {
ret = -EFAULT;
goto cleanup;
}
if (tid == tidcnt)
tid = 0;
if (!rcd->subctxt_cnt)
rcd->tidcursor = tid;
else
tidcursor_fp(fp) = tid;
}
done:
return ret;
}
/**
* qib_tid_free - free a context TID
* @rcd: the context
* @subctxt: the subcontext
* @ti: the TID info
*
* right now we are unlocking one page at a time, but since
* the intended use of this routine is for a single group of
* virtually contiguous pages, that should change to improve
* performance. We check that the TID is in range for this context
* but otherwise don't check validity; if user has an error and
* frees the wrong tid, it's only their own data that can thereby
* be corrupted. We do check that the TID was in use, for sanity
* We always use our idea of the saved address, not the address that
* they pass in to us.
*/
static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
const struct qib_tid_info *ti)
{
int ret = 0;
u32 tid, ctxttid, cnt, limit, tidcnt;
struct qib_devdata *dd = rcd->dd;
u64 __iomem *tidbase;
unsigned long tidmap[8];
if (!dd->pageshadow) {
ret = -ENOMEM;
goto done;
}
if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
sizeof tidmap)) {
ret = -EFAULT;
goto done;
}
ctxttid = rcd->ctxt * dd->rcvtidcnt;
if (!rcd->subctxt_cnt)
tidcnt = dd->rcvtidcnt;
else if (!subctxt) {
tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
(dd->rcvtidcnt % rcd->subctxt_cnt);
ctxttid += dd->rcvtidcnt - tidcnt;
} else {
tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
ctxttid += tidcnt * (subctxt - 1);
}
tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
dd->rcvtidbase +
ctxttid * sizeof(*tidbase));
limit = sizeof(tidmap) * BITS_PER_BYTE;
if (limit > tidcnt)
/* just in case size changes in future */
limit = tidcnt;
tid = find_first_bit(tidmap, limit);
for (cnt = 0; tid < limit; tid++) {
/*
* small optimization; if we detect a run of 3 or so without
* any set, use find_first_bit again. That's mainly to
* accelerate the case where we wrapped, so we have some at
* the beginning, and some at the end, and a big gap
* in the middle.
*/
if (!test_bit(tid, tidmap))
continue;
cnt++;
if (dd->pageshadow[ctxttid + tid]) {
struct page *p;
dma_addr_t phys;
p = dd->pageshadow[ctxttid + tid];
dd->pageshadow[ctxttid + tid] = NULL;
phys = dd->physshadow[ctxttid + tid];
dd->physshadow[ctxttid + tid] = dd->tidinvalid;
/* PERFORMANCE: below should almost certainly be
* cached
*/
dd->f_put_tid(dd, &tidbase[tid],
RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
qib_release_user_pages(&p, 1);
}
}
done:
return ret;
}
/**
* qib_set_part_key - set a partition key
* @rcd: the context
* @key: the key
*
* We can have up to 4 active at a time (other than the default, which is
* always allowed). This is somewhat tricky, since multiple contexts may set
* the same key, so we reference count them, and clean up at exit. All 4
* partition keys are packed into a single qlogic_ib register. It's an
* error for a process to set the same pkey multiple times. We provide no
* mechanism to de-allocate a pkey at this time, we may eventually need to
* do that. I've used the atomic operations, and no locking, and only make
* a single pass through what's available. This should be more than
* adequate for some time. I'll think about spinlocks or the like if and as
* it's necessary.
*/
static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
{
struct qib_pportdata *ppd = rcd->ppd;
int i, any = 0, pidx = -1;
u16 lkey = key & 0x7FFF;
int ret;
if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) {
/* nothing to do; this key always valid */
ret = 0;
goto bail;
}
if (!lkey) {
ret = -EINVAL;
goto bail;
}
/*
* Set the full membership bit, because it has to be
* set in the register or the packet, and it seems
* cleaner to set in the register than to force all
* callers to set it.
*/
key |= 0x8000;
for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
if (!rcd->pkeys[i] && pidx == -1)
pidx = i;
if (rcd->pkeys[i] == key) {
ret = -EEXIST;
goto bail;
}
}
if (pidx == -1) {
ret = -EBUSY;
goto bail;
}
for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
if (!ppd->pkeys[i]) {
any++;
continue;
}
if (ppd->pkeys[i] == key) {
atomic_t *pkrefs = &ppd->pkeyrefs[i];
if (atomic_inc_return(pkrefs) > 1) {
rcd->pkeys[pidx] = key;
ret = 0;
goto bail;
} else {
/*
* lost race, decrement count, catch below
*/
atomic_dec(pkrefs);
any++;
}
}
if ((ppd->pkeys[i] & 0x7FFF) == lkey) {
/*
* It makes no sense to have both the limited and
* full membership PKEY set at the same time since
* the unlimited one will disable the limited one.
*/
ret = -EEXIST;
goto bail;
}
}
if (!any) {
ret = -EBUSY;
goto bail;
}
for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
if (!ppd->pkeys[i] &&
atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
rcd->pkeys[pidx] = key;
ppd->pkeys[i] = key;
(void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
ret = 0;
goto bail;
}
}
ret = -EBUSY;
bail:
return ret;
}
/**
* qib_manage_rcvq - manage a context's receive queue
* @rcd: the context
* @subctxt: the subcontext
* @start_stop: action to carry out
*
* start_stop == 0 disables receive on the context, for use in queue
* overflow conditions. start_stop==1 re-enables, to be used to
* re-init the software copy of the head register
*/
static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
int start_stop)
{
struct qib_devdata *dd = rcd->dd;
unsigned int rcvctrl_op;
if (subctxt)
goto bail;
/* atomically clear receive enable ctxt. */
if (start_stop) {
/*
* On enable, force in-memory copy of the tail register to
* 0, so that protocol code doesn't have to worry about
* whether or not the chip has yet updated the in-memory
* copy or not on return from the system call. The chip
* always resets it's tail register back to 0 on a
* transition from disabled to enabled.
*/
if (rcd->rcvhdrtail_kvaddr)
qib_clear_rcvhdrtail(rcd);
rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
} else
rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
/* always; new head should be equal to new tail; see above */
bail:
return 0;
}
static void qib_clean_part_key(struct qib_ctxtdata *rcd,
struct qib_devdata *dd)
{
int i, j, pchanged = 0;
u64 oldpkey;
struct qib_pportdata *ppd = rcd->ppd;
/* for debugging only */
oldpkey = (u64) ppd->pkeys[0] |
((u64) ppd->pkeys[1] << 16) |
((u64) ppd->pkeys[2] << 32) |
((u64) ppd->pkeys[3] << 48);
for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
if (!rcd->pkeys[i])
continue;
for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
/* check for match independent of the global bit */
if ((ppd->pkeys[j] & 0x7fff) !=
(rcd->pkeys[i] & 0x7fff))
continue;
if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
ppd->pkeys[j] = 0;
pchanged++;
}
break;
}
rcd->pkeys[i] = 0;
}
if (pchanged)
(void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
}
/* common code for the mappings on dma_alloc_coherent mem */
static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
unsigned len, void *kvaddr, u32 write_ok, char *what)
{
struct qib_devdata *dd = rcd->dd;
unsigned long pfn;
int ret;
if ((vma->vm_end - vma->vm_start) > len) {
qib_devinfo(dd->pcidev,
"FAIL on %s: len %lx > %x\n", what,
vma->vm_end - vma->vm_start, len);
ret = -EFAULT;
goto bail;
}
/*
* shared context user code requires rcvhdrq mapped r/w, others
* only allowed readonly mapping.
*/
if (!write_ok) {
if (vma->vm_flags & VM_WRITE) {
qib_devinfo(dd->pcidev,
"%s must be mapped readonly\n", what);
ret = -EPERM;
goto bail;
}
/* don't allow them to later change with mprotect */
vma->vm_flags &= ~VM_MAYWRITE;
}
pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
ret = remap_pfn_range(vma, vma->vm_start, pfn,
len, vma->vm_page_prot);
if (ret)
qib_devinfo(dd->pcidev, "%s ctxt%u mmap of %lx, %x "
"bytes failed: %d\n", what, rcd->ctxt,
pfn, len, ret);
bail:
return ret;
}
static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
u64 ureg)
{
unsigned long phys;
unsigned long sz;
int ret;
/*
* This is real hardware, so use io_remap. This is the mechanism
* for the user process to update the head registers for their ctxt
* in the chip.
*/
sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
if ((vma->vm_end - vma->vm_start) > sz) {
qib_devinfo(dd->pcidev, "FAIL mmap userreg: reqlen "
"%lx > PAGE\n", vma->vm_end - vma->vm_start);
ret = -EFAULT;
} else {
phys = dd->physaddr + ureg;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
ret = io_remap_pfn_range(vma, vma->vm_start,
phys >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
return ret;
}
static int mmap_piobufs(struct vm_area_struct *vma,
struct qib_devdata *dd,
struct qib_ctxtdata *rcd,
unsigned piobufs, unsigned piocnt)
{
unsigned long phys;
int ret;
/*
* When we map the PIO buffers in the chip, we want to map them as
* writeonly, no read possible; unfortunately, x86 doesn't allow
* for this in hardware, but we still prevent users from asking
* for it.
*/
if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
qib_devinfo(dd->pcidev, "FAIL mmap piobufs: "
"reqlen %lx > PAGE\n",
vma->vm_end - vma->vm_start);
ret = -EINVAL;
goto bail;
}
phys = dd->physaddr + piobufs;
#if defined(__powerpc__)
/* There isn't a generic way to specify writethrough mappings */
pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU;
pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED;
#endif
/*
* don't allow them to later change to readable with mprotect (for when
* not initially mapped readable, as is normally the case)
*/
vma->vm_flags &= ~VM_MAYREAD;
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
if (qib_wc_pat)
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
bail:
return ret;
}
static int mmap_rcvegrbufs(struct vm_area_struct *vma,
struct qib_ctxtdata *rcd)
{
struct qib_devdata *dd = rcd->dd;
unsigned long start, size;
size_t total_size, i;
unsigned long pfn;
int ret;
size = rcd->rcvegrbuf_size;
total_size = rcd->rcvegrbuf_chunks * size;
if ((vma->vm_end - vma->vm_start) > total_size) {
qib_devinfo(dd->pcidev, "FAIL on egr bufs: "
"reqlen %lx > actual %lx\n",
vma->vm_end - vma->vm_start,
(unsigned long) total_size);
ret = -EINVAL;
goto bail;
}
if (vma->vm_flags & VM_WRITE) {
qib_devinfo(dd->pcidev, "Can't map eager buffers as "
"writable (flags=%lx)\n", vma->vm_flags);
ret = -EPERM;
goto bail;
}
/* don't allow them to later change to writeable with mprotect */
vma->vm_flags &= ~VM_MAYWRITE;
start = vma->vm_start;
for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
ret = remap_pfn_range(vma, start, pfn, size,
vma->vm_page_prot);
if (ret < 0)
goto bail;
}
ret = 0;
bail:
return ret;
}
/*
* qib_file_vma_fault - handle a VMA page fault.
*/
static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page;
page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
if (!page)
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static struct vm_operations_struct qib_file_vm_ops = {
.fault = qib_file_vma_fault,
};
static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
struct qib_ctxtdata *rcd, unsigned subctxt)
{
struct qib_devdata *dd = rcd->dd;
unsigned subctxt_cnt;
unsigned long len;
void *addr;
size_t size;
int ret = 0;
subctxt_cnt = rcd->subctxt_cnt;
size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
/*
* Each process has all the subctxt uregbase, rcvhdrq, and
* rcvegrbufs mmapped - as an array for all the processes,
* and also separately for this process.
*/
if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
addr = rcd->subctxt_uregbase;
size = PAGE_SIZE * subctxt_cnt;
} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
addr = rcd->subctxt_rcvhdr_base;
size = rcd->rcvhdrq_size * subctxt_cnt;
} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
addr = rcd->subctxt_rcvegrbuf;
size *= subctxt_cnt;
} else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
PAGE_SIZE * subctxt)) {
addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
size = PAGE_SIZE;
} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
rcd->rcvhdrq_size * subctxt)) {
addr = rcd->subctxt_rcvhdr_base +
rcd->rcvhdrq_size * subctxt;
size = rcd->rcvhdrq_size;
} else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
addr = rcd->user_event_mask;
size = PAGE_SIZE;
} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
size * subctxt)) {
addr = rcd->subctxt_rcvegrbuf + size * subctxt;
/* rcvegrbufs are read-only on the slave */
if (vma->vm_flags & VM_WRITE) {
qib_devinfo(dd->pcidev,
"Can't map eager buffers as "
"writable (flags=%lx)\n", vma->vm_flags);
ret = -EPERM;
goto bail;
}
/*
* Don't allow permission to later change to writeable
* with mprotect.
*/
vma->vm_flags &= ~VM_MAYWRITE;
} else
goto bail;
len = vma->vm_end - vma->vm_start;
if (len > size) {
ret = -EINVAL;
goto bail;
}
vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
vma->vm_ops = &qib_file_vm_ops;
vma->vm_flags |= VM_RESERVED | VM_DONTEXPAND;
ret = 1;
bail:
return ret;
}
/**
* qib_mmapf - mmap various structures into user space
* @fp: the file pointer
* @vma: the VM area
*
* We use this to have a shared buffer between the kernel and the user code
* for the rcvhdr queue, egr buffers, and the per-context user regs and pio
* buffers in the chip. We have the open and close entries so we can bump
* the ref count and keep the driver from being unloaded while still mapped.
*/
static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
{
struct qib_ctxtdata *rcd;
struct qib_devdata *dd;
u64 pgaddr, ureg;
unsigned piobufs, piocnt;
int ret, match = 1;
rcd = ctxt_fp(fp);
if (!rcd || !(vma->vm_flags & VM_SHARED)) {
ret = -EINVAL;
goto bail;
}
dd = rcd->dd;
/*
* This is the qib_do_user_init() code, mapping the shared buffers
* and per-context user registers into the user process. The address
* referred to by vm_pgoff is the file offset passed via mmap().
* For shared contexts, this is the kernel vmalloc() address of the
* pages to share with the master.
* For non-shared or master ctxts, this is a physical address.
* We only do one mmap for each space mapped.
*/
pgaddr = vma->vm_pgoff << PAGE_SHIFT;
/*
* Check for 0 in case one of the allocations failed, but user
* called mmap anyway.
*/
if (!pgaddr) {
ret = -EINVAL;
goto bail;
}
/*
* Physical addresses must fit in 40 bits for our hardware.
* Check for kernel virtual addresses first, anything else must
* match a HW or memory address.
*/
ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
if (ret) {
if (ret > 0)
ret = 0;
goto bail;
}
ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
if (!rcd->subctxt_cnt) {
/* ctxt is not shared */
piocnt = rcd->piocnt;
piobufs = rcd->piobufs;
} else if (!subctxt_fp(fp)) {
/* caller is the master */
piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
(rcd->piocnt % rcd->subctxt_cnt);
piobufs = rcd->piobufs +
dd->palign * (rcd->piocnt - piocnt);
} else {
unsigned slave = subctxt_fp(fp) - 1;
/* caller is a slave */
piocnt = rcd->piocnt / rcd->subctxt_cnt;
piobufs = rcd->piobufs + dd->palign * piocnt * slave;
}
if (pgaddr == ureg)
ret = mmap_ureg(vma, dd, ureg);
else if (pgaddr == piobufs)
ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
else if (pgaddr == dd->pioavailregs_phys)
/* in-memory copy of pioavail registers */
ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
(void *) dd->pioavailregs_dma, 0,
"pioavail registers");
else if (pgaddr == rcd->rcvegr_phys)
ret = mmap_rcvegrbufs(vma, rcd);
else if (pgaddr == (u64) rcd->rcvhdrq_phys)
/*
* The rcvhdrq itself; multiple pages, contiguous
* from an i/o perspective. Shared contexts need
* to map r/w, so we allow writing.
*/
ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
rcd->rcvhdrq, 1, "rcvhdrq");
else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
/* in-memory copy of rcvhdrq tail register */
ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
rcd->rcvhdrtail_kvaddr, 0,
"rcvhdrq tail");
else
match = 0;
if (!match)
ret = -EINVAL;
vma->vm_private_data = NULL;
if (ret < 0)
qib_devinfo(dd->pcidev,
"mmap Failure %d: off %llx len %lx\n",
-ret, (unsigned long long)pgaddr,
vma->vm_end - vma->vm_start);
bail:
return ret;
}
static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd,
struct file *fp,
struct poll_table_struct *pt)
{
struct qib_devdata *dd = rcd->dd;
unsigned pollflag;
poll_wait(fp, &rcd->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (rcd->urgent != rcd->urgent_poll) {
pollflag = POLLIN | POLLRDNORM;
rcd->urgent_poll = rcd->urgent;
} else {
pollflag = 0;
set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
}
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
static unsigned int qib_poll_next(struct qib_ctxtdata *rcd,
struct file *fp,
struct poll_table_struct *pt)
{
struct qib_devdata *dd = rcd->dd;
unsigned pollflag;
poll_wait(fp, &rcd->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (dd->f_hdrqempty(rcd)) {
set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
pollflag = 0;
} else
pollflag = POLLIN | POLLRDNORM;
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt)
{
struct qib_ctxtdata *rcd;
unsigned pollflag;
rcd = ctxt_fp(fp);
if (!rcd)
pollflag = POLLERR;
else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
pollflag = qib_poll_urgent(rcd, fp, pt);
else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
pollflag = qib_poll_next(rcd, fp, pt);
else /* invalid */
pollflag = POLLERR;
return pollflag;
}
/*
* Check that userland and driver are compatible for subcontexts.
*/
static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
{
/* this code is written long-hand for clarity */
if (QIB_USER_SWMAJOR != user_swmajor) {
/* no promise of compatibility if major mismatch */
return 0;
}
if (QIB_USER_SWMAJOR == 1) {
switch (QIB_USER_SWMINOR) {
case 0:
case 1:
case 2:
/* no subctxt implementation so cannot be compatible */
return 0;
case 3:
/* 3 is only compatible with itself */
return user_swminor == 3;
default:
/* >= 4 are compatible (or are expected to be) */
return user_swminor >= 4;
}
}
/* make no promises yet for future major versions */
return 0;
}
static int init_subctxts(struct qib_devdata *dd,
struct qib_ctxtdata *rcd,
const struct qib_user_info *uinfo)
{
int ret = 0;
unsigned num_subctxts;
size_t size;
/*
* If the user is requesting zero subctxts,
* skip the subctxt allocation.
*/
if (uinfo->spu_subctxt_cnt <= 0)
goto bail;
num_subctxts = uinfo->spu_subctxt_cnt;
/* Check for subctxt compatibility */
if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
uinfo->spu_userversion & 0xffff)) {
qib_devinfo(dd->pcidev,
"Mismatched user version (%d.%d) and driver "
"version (%d.%d) while context sharing. Ensure "
"that driver and library are from the same "
"release.\n",
(int) (uinfo->spu_userversion >> 16),
(int) (uinfo->spu_userversion & 0xffff),
QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
goto bail;
}
if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
ret = -EINVAL;
goto bail;
}
rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
if (!rcd->subctxt_uregbase) {
ret = -ENOMEM;
goto bail;
}
/* Note: rcd->rcvhdrq_size isn't initialized yet. */
size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
sizeof(u32), PAGE_SIZE) * num_subctxts;
rcd->subctxt_rcvhdr_base = vmalloc_user(size);
if (!rcd->subctxt_rcvhdr_base) {
ret = -ENOMEM;
goto bail_ureg;
}
rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
rcd->rcvegrbuf_size *
num_subctxts);
if (!rcd->subctxt_rcvegrbuf) {
ret = -ENOMEM;
goto bail_rhdr;
}
rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
rcd->subctxt_id = uinfo->spu_subctxt_id;
rcd->active_slaves = 1;
rcd->redirect_seq_cnt = 1;
set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
goto bail;
bail_rhdr:
vfree(rcd->subctxt_rcvhdr_base);
bail_ureg:
vfree(rcd->subctxt_uregbase);
rcd->subctxt_uregbase = NULL;
bail:
return ret;
}
static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
struct file *fp, const struct qib_user_info *uinfo)
{
struct qib_devdata *dd = ppd->dd;
struct qib_ctxtdata *rcd;
void *ptmp = NULL;
int ret;
rcd = qib_create_ctxtdata(ppd, ctxt);
/*
* Allocate memory for use in qib_tid_update() at open to
* reduce cost of expected send setup per message segment
*/
if (rcd)
ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
dd->rcvtidcnt * sizeof(struct page **),
GFP_KERNEL);
if (!rcd || !ptmp) {
qib_dev_err(dd, "Unable to allocate ctxtdata "
"memory, failing open\n");
ret = -ENOMEM;
goto bailerr;
}
rcd->userversion = uinfo->spu_userversion;
ret = init_subctxts(dd, rcd, uinfo);
if (ret)
goto bailerr;
rcd->tid_pg_list = ptmp;
rcd->pid = current->pid;
init_waitqueue_head(&dd->rcd[ctxt]->wait);
strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
ctxt_fp(fp) = rcd;
qib_stats.sps_ctxts++;
dd->freectxts--;
ret = 0;
goto bail;
bailerr:
dd->rcd[ctxt] = NULL;
kfree(rcd);
kfree(ptmp);
bail:
return ret;
}
static inline int usable(struct qib_pportdata *ppd)
{
struct qib_devdata *dd = ppd->dd;
return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
(ppd->lflags & QIBL_LINKACTIVE);
}
/*
* Select a context on the given device, either using a requested port
* or the port based on the context number.
*/
static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
const struct qib_user_info *uinfo)
{
struct qib_pportdata *ppd = NULL;
int ret, ctxt;
if (port) {
if (!usable(dd->pport + port - 1)) {
ret = -ENETDOWN;
goto done;
} else
ppd = dd->pport + port - 1;
}
for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
ctxt++)
;
if (ctxt == dd->cfgctxts) {
ret = -EBUSY;
goto done;
}
if (!ppd) {
u32 pidx = ctxt % dd->num_pports;
if (usable(dd->pport + pidx))
ppd = dd->pport + pidx;
else {
for (pidx = 0; pidx < dd->num_pports && !ppd;
pidx++)
if (usable(dd->pport + pidx))
ppd = dd->pport + pidx;
}
}
ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
done:
return ret;
}
static int find_free_ctxt(int unit, struct file *fp,
const struct qib_user_info *uinfo)
{
struct qib_devdata *dd = qib_lookup(unit);
int ret;
if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
ret = -ENODEV;
else
ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
return ret;
}
static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
unsigned alg)
{
struct qib_devdata *udd = NULL;
int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
u32 port = uinfo->spu_port, ctxt;
devmax = qib_count_units(&npresent, &nup);
if (!npresent) {
ret = -ENXIO;
goto done;
}
if (nup == 0) {
ret = -ENETDOWN;
goto done;
}
if (alg == QIB_PORT_ALG_ACROSS) {
unsigned inuse = ~0U;
/* find device (with ACTIVE ports) with fewest ctxts in use */
for (ndev = 0; ndev < devmax; ndev++) {
struct qib_devdata *dd = qib_lookup(ndev);
unsigned cused = 0, cfree = 0, pusable = 0;
if (!dd)
continue;
if (port && port <= dd->num_pports &&
usable(dd->pport + port - 1))
pusable = 1;
else
for (i = 0; i < dd->num_pports; i++)
if (usable(dd->pport + i))
pusable++;
if (!pusable)
continue;
for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
ctxt++)
if (dd->rcd[ctxt])
cused++;
else
cfree++;
if (pusable && cfree && cused < inuse) {
udd = dd;
inuse = cused;
}
}
if (udd) {
ret = choose_port_ctxt(fp, udd, port, uinfo);
goto done;
}
} else {
for (ndev = 0; ndev < devmax; ndev++) {
struct qib_devdata *dd = qib_lookup(ndev);
if (dd) {
ret = choose_port_ctxt(fp, dd, port, uinfo);
if (!ret)
goto done;
if (ret == -EBUSY)
dusable++;
}
}
}
ret = dusable ? -EBUSY : -ENETDOWN;
done:
return ret;
}
static int find_shared_ctxt(struct file *fp,
const struct qib_user_info *uinfo)
{
int devmax, ndev, i;
int ret = 0;
devmax = qib_count_units(NULL, NULL);
for (ndev = 0; ndev < devmax; ndev++) {
struct qib_devdata *dd = qib_lookup(ndev);
/* device portion of usable() */
if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
continue;
for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
struct qib_ctxtdata *rcd = dd->rcd[i];
/* Skip ctxts which are not yet open */
if (!rcd || !rcd->cnt)
continue;
/* Skip ctxt if it doesn't match the requested one */
if (rcd->subctxt_id != uinfo->spu_subctxt_id)
continue;
/* Verify the sharing process matches the master */
if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
rcd->userversion != uinfo->spu_userversion ||
rcd->cnt >= rcd->subctxt_cnt) {
ret = -EINVAL;
goto done;
}
ctxt_fp(fp) = rcd;
subctxt_fp(fp) = rcd->cnt++;
rcd->subpid[subctxt_fp(fp)] = current->pid;
tidcursor_fp(fp) = 0;
rcd->active_slaves |= 1 << subctxt_fp(fp);
ret = 1;
goto done;
}
}
done:
return ret;
}
static int qib_open(struct inode *in, struct file *fp)
{
/* The real work is performed later in qib_assign_ctxt() */
fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
if (fp->private_data) /* no cpu affinity by default */
((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
return fp->private_data ? 0 : -ENOMEM;
}
/*
* Get ctxt early, so can set affinity prior to memory allocation.
*/
static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
{
int ret;
int i_minor;
unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
/* Check to be sure we haven't already initialized this file */
if (ctxt_fp(fp)) {
ret = -EINVAL;
goto done;
}
/* for now, if major version is different, bail */
swmajor = uinfo->spu_userversion >> 16;
if (swmajor != QIB_USER_SWMAJOR) {
ret = -ENODEV;
goto done;
}
swminor = uinfo->spu_userversion & 0xffff;
if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
alg = uinfo->spu_port_alg;
mutex_lock(&qib_mutex);
if (qib_compatible_subctxts(swmajor, swminor) &&
uinfo->spu_subctxt_cnt) {
ret = find_shared_ctxt(fp, uinfo);
if (ret) {
if (ret > 0)
ret = 0;
goto done_chk_sdma;
}
}
i_minor = iminor(fp->f_dentry->d_inode) - QIB_USER_MINOR_BASE;
if (i_minor)
ret = find_free_ctxt(i_minor - 1, fp, uinfo);
else
ret = get_a_ctxt(fp, uinfo, alg);
done_chk_sdma:
if (!ret) {
struct qib_filedata *fd = fp->private_data;
const struct qib_ctxtdata *rcd = fd->rcd;
const struct qib_devdata *dd = rcd->dd;
unsigned int weight;
if (dd->flags & QIB_HAS_SEND_DMA) {
fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
dd->unit,
rcd->ctxt,
fd->subctxt);
if (!fd->pq)
ret = -ENOMEM;
}
/*
* If process has NOT already set it's affinity, select and
* reserve a processor for it, as a rendezvous for all
* users of the driver. If they don't actually later
* set affinity to this cpu, or set it to some other cpu,
* it just means that sooner or later we don't recommend
* a cpu, and let the scheduler do it's best.
*/
weight = cpumask_weight(tsk_cpus_allowed(current));
if (!ret && weight >= qib_cpulist_count) {
int cpu;
cpu = find_first_zero_bit(qib_cpulist,
qib_cpulist_count);
if (cpu != qib_cpulist_count) {
__set_bit(cpu, qib_cpulist);
fd->rec_cpu_num = cpu;
}
} else if (weight == 1 &&
test_bit(cpumask_first(tsk_cpus_allowed(current)),
qib_cpulist))
qib_devinfo(dd->pcidev, "%s PID %u affinity "
"set to cpu %d; already allocated\n",
current->comm, current->pid,
cpumask_first(tsk_cpus_allowed(current)));
}
mutex_unlock(&qib_mutex);
done:
return ret;
}
static int qib_do_user_init(struct file *fp,
const struct qib_user_info *uinfo)
{
int ret;
struct qib_ctxtdata *rcd = ctxt_fp(fp);
struct qib_devdata *dd;
unsigned uctxt;
/* Subctxts don't need to initialize anything since master did it. */
if (subctxt_fp(fp)) {
ret = wait_event_interruptible(rcd->wait,
!test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
goto bail;
}
dd = rcd->dd;
/* some ctxts may get extra buffers, calculate that here */
uctxt = rcd->ctxt - dd->first_user_ctxt;
if (uctxt < dd->ctxts_extrabuf) {
rcd->piocnt = dd->pbufsctxt + 1;
rcd->pio_base = rcd->piocnt * uctxt;
} else {
rcd->piocnt = dd->pbufsctxt;
rcd->pio_base = rcd->piocnt * uctxt +
dd->ctxts_extrabuf;
}
/*
* All user buffers are 2KB buffers. If we ever support
* giving 4KB buffers to user processes, this will need some
* work. Can't use piobufbase directly, because it has
* both 2K and 4K buffer base values. So check and handle.
*/
if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
if (rcd->pio_base >= dd->piobcnt2k) {
qib_dev_err(dd,
"%u:ctxt%u: no 2KB buffers available\n",
dd->unit, rcd->ctxt);
ret = -ENOBUFS;
goto bail;
}
rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
rcd->ctxt, rcd->piocnt);
}
rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
TXCHK_CHG_TYPE_USER, rcd);
/*
* try to ensure that processes start up with consistent avail update
* for their own range, at least. If system very quiet, it might
* have the in-memory copy out of date at startup for this range of
* buffers, when a context gets re-used. Do after the chg_pioavail
* and before the rest of setup, so it's "almost certain" the dma
* will have occurred (can't 100% guarantee, but should be many
* decimals of 9s, with this ordering), given how much else happens
* after this.
*/
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
/*
* Now allocate the rcvhdr Q and eager TIDs; skip the TID
* array for time being. If rcd->ctxt > chip-supported,
* we need to do extra stuff here to handle by handling overflow
* through ctxt 0, someday
*/
ret = qib_create_rcvhdrq(dd, rcd);
if (!ret)
ret = qib_setup_eagerbufs(rcd);
if (ret)
goto bail_pio;
rcd->tidcursor = 0; /* start at beginning after open */
/* initialize poll variables... */
rcd->urgent = 0;
rcd->urgent_poll = 0;
/*
* Now enable the ctxt for receive.
* For chips that are set to DMA the tail register to memory
* when they change (and when the update bit transitions from
* 0 to 1. So for those chips, we turn it off and then back on.
* This will (very briefly) affect any other open ctxts, but the
* duration is very short, and therefore isn't an issue. We
* explicitly set the in-memory tail copy to 0 beforehand, so we
* don't have to wait to be sure the DMA update has happened
* (chip resets head/tail to 0 on transition to enable).
*/
if (rcd->rcvhdrtail_kvaddr)
qib_clear_rcvhdrtail(rcd);
dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
rcd->ctxt);
/* Notify any waiting slaves */
if (rcd->subctxt_cnt) {
clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
wake_up(&rcd->wait);
}
return 0;
bail_pio:
qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
TXCHK_CHG_TYPE_KERN, rcd);
bail:
return ret;
}
/**
* unlock_exptid - unlock any expected TID entries context still had in use
* @rcd: ctxt
*
* We don't actually update the chip here, because we do a bulk update
* below, using f_clear_tids.
*/
static void unlock_expected_tids(struct qib_ctxtdata *rcd)
{
struct qib_devdata *dd = rcd->dd;
int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
for (i = ctxt_tidbase; i < maxtid; i++) {
struct page *p = dd->pageshadow[i];
dma_addr_t phys;
if (!p)
continue;
phys = dd->physshadow[i];
dd->physshadow[i] = dd->tidinvalid;
dd->pageshadow[i] = NULL;
pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
qib_release_user_pages(&p, 1);
cnt++;
}
}
static int qib_close(struct inode *in, struct file *fp)
{
int ret = 0;
struct qib_filedata *fd;
struct qib_ctxtdata *rcd;
struct qib_devdata *dd;
unsigned long flags;
unsigned ctxt;
pid_t pid;
mutex_lock(&qib_mutex);
fd = fp->private_data;
fp->private_data = NULL;
rcd = fd->rcd;
if (!rcd) {
mutex_unlock(&qib_mutex);
goto bail;
}
dd = rcd->dd;
/* ensure all pio buffer writes in progress are flushed */
qib_flush_wc();
/* drain user sdma queue */
if (fd->pq) {
qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
qib_user_sdma_queue_destroy(fd->pq);
}
if (fd->rec_cpu_num != -1)
__clear_bit(fd->rec_cpu_num, qib_cpulist);
if (--rcd->cnt) {
/*
* XXX If the master closes the context before the slave(s),
* revoke the mmap for the eager receive queue so
* the slave(s) don't wait for receive data forever.
*/
rcd->active_slaves &= ~(1 << fd->subctxt);
rcd->subpid[fd->subctxt] = 0;
mutex_unlock(&qib_mutex);
goto bail;
}
/* early; no interrupt users after this */
spin_lock_irqsave(&dd->uctxt_lock, flags);
ctxt = rcd->ctxt;
dd->rcd[ctxt] = NULL;
pid = rcd->pid;
rcd->pid = 0;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
if (rcd->rcvwait_to || rcd->piowait_to ||
rcd->rcvnowait || rcd->pionowait) {
rcd->rcvwait_to = 0;
rcd->piowait_to = 0;
rcd->rcvnowait = 0;
rcd->pionowait = 0;
}
if (rcd->flag)
rcd->flag = 0;
if (dd->kregbase) {
/* atomically clear receive enable ctxt and intr avail. */
dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
/* clean up the pkeys for this ctxt user */
qib_clean_part_key(rcd, dd);
qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
qib_chg_pioavailkernel(dd, rcd->pio_base,
rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
dd->f_clear_tids(dd, rcd);
if (dd->pageshadow)
unlock_expected_tids(rcd);
qib_stats.sps_ctxts--;
dd->freectxts++;
}
mutex_unlock(&qib_mutex);
qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
bail:
kfree(fd);
return ret;
}
static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
{
struct qib_ctxt_info info;
int ret;
size_t sz;
struct qib_ctxtdata *rcd = ctxt_fp(fp);
struct qib_filedata *fd;
fd = fp->private_data;
info.num_active = qib_count_active_units();
info.unit = rcd->dd->unit;
info.port = rcd->ppd->port;
info.ctxt = rcd->ctxt;
info.subctxt = subctxt_fp(fp);
/* Number of user ctxts available for this device. */
info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
info.num_subctxts = rcd->subctxt_cnt;
info.rec_cpu = fd->rec_cpu_num;
sz = sizeof(info);
if (copy_to_user(uinfo, &info, sz)) {
ret = -EFAULT;
goto bail;
}
ret = 0;
bail:
return ret;
}
static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
u32 __user *inflightp)
{
const u32 val = qib_user_sdma_inflight_counter(pq);
if (put_user(val, inflightp))
return -EFAULT;
return 0;
}
static int qib_sdma_get_complete(struct qib_pportdata *ppd,
struct qib_user_sdma_queue *pq,
u32 __user *completep)
{
u32 val;
int err;
if (!pq)
return -EINVAL;
err = qib_user_sdma_make_progress(ppd, pq);
if (err < 0)
return err;
val = qib_user_sdma_complete_counter(pq);
if (put_user(val, completep))
return -EFAULT;
return 0;
}
static int disarm_req_delay(struct qib_ctxtdata *rcd)
{
int ret = 0;
if (!usable(rcd->ppd)) {
int i;
/*
* if link is down, or otherwise not usable, delay
* the caller up to 30 seconds, so we don't thrash
* in trying to get the chip back to ACTIVE, and
* set flag so they make the call again.
*/
if (rcd->user_event_mask) {
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[0]);
for (i = 1; i < rcd->subctxt_cnt; i++)
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[i]);
}
for (i = 0; !usable(rcd->ppd) && i < 300; i++)
msleep(100);
ret = -ENETDOWN;
}
return ret;
}
/*
* Find all user contexts in use, and set the specified bit in their
* event mask.
* See also find_ctxt() for a similar use, that is specific to send buffers.
*/
int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
{
struct qib_ctxtdata *rcd;
unsigned ctxt;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
ctxt++) {
rcd = ppd->dd->rcd[ctxt];
if (!rcd)
continue;
if (rcd->user_event_mask) {
int i;
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
set_bit(evtbit, &rcd->user_event_mask[0]);
for (i = 1; i < rcd->subctxt_cnt; i++)
set_bit(evtbit, &rcd->user_event_mask[i]);
}
ret = 1;
break;
}
spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
return ret;
}
/*
* clear the event notifier events for this context.
* For the DISARM_BUFS case, we also take action (this obsoletes
* the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
* compatibility.
* Other bits don't currently require actions, just atomically clear.
* User process then performs actions appropriate to bit having been
* set, if desired, and checks again in future.
*/
static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
unsigned long events)
{
int ret = 0, i;
for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
if (!test_bit(i, &events))
continue;
if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
(void)qib_disarm_piobufs_ifneeded(rcd);
ret = disarm_req_delay(rcd);
} else
clear_bit(i, &rcd->user_event_mask[subctxt]);
}
return ret;
}
static ssize_t qib_write(struct file *fp, const char __user *data,
size_t count, loff_t *off)
{
const struct qib_cmd __user *ucmd;
struct qib_ctxtdata *rcd;
const void __user *src;
size_t consumed, copy = 0;
struct qib_cmd cmd;
ssize_t ret = 0;
void *dest;
if (count < sizeof(cmd.type)) {
ret = -EINVAL;
goto bail;
}
ucmd = (const struct qib_cmd __user *) data;
if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
ret = -EFAULT;
goto bail;
}
consumed = sizeof(cmd.type);
switch (cmd.type) {
case QIB_CMD_ASSIGN_CTXT:
case QIB_CMD_USER_INIT:
copy = sizeof(cmd.cmd.user_info);
dest = &cmd.cmd.user_info;
src = &ucmd->cmd.user_info;
break;
case QIB_CMD_RECV_CTRL:
copy = sizeof(cmd.cmd.recv_ctrl);
dest = &cmd.cmd.recv_ctrl;
src = &ucmd->cmd.recv_ctrl;
break;
case QIB_CMD_CTXT_INFO:
copy = sizeof(cmd.cmd.ctxt_info);
dest = &cmd.cmd.ctxt_info;
src = &ucmd->cmd.ctxt_info;
break;
case QIB_CMD_TID_UPDATE:
case QIB_CMD_TID_FREE:
copy = sizeof(cmd.cmd.tid_info);
dest = &cmd.cmd.tid_info;
src = &ucmd->cmd.tid_info;
break;
case QIB_CMD_SET_PART_KEY:
copy = sizeof(cmd.cmd.part_key);
dest = &cmd.cmd.part_key;
src = &ucmd->cmd.part_key;
break;
case QIB_CMD_DISARM_BUFS:
case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
copy = 0;
src = NULL;
dest = NULL;
break;
case QIB_CMD_POLL_TYPE:
copy = sizeof(cmd.cmd.poll_type);
dest = &cmd.cmd.poll_type;
src = &ucmd->cmd.poll_type;
break;
case QIB_CMD_ARMLAUNCH_CTRL:
copy = sizeof(cmd.cmd.armlaunch_ctrl);
dest = &cmd.cmd.armlaunch_ctrl;
src = &ucmd->cmd.armlaunch_ctrl;
break;
case QIB_CMD_SDMA_INFLIGHT:
copy = sizeof(cmd.cmd.sdma_inflight);
dest = &cmd.cmd.sdma_inflight;
src = &ucmd->cmd.sdma_inflight;
break;
case QIB_CMD_SDMA_COMPLETE:
copy = sizeof(cmd.cmd.sdma_complete);
dest = &cmd.cmd.sdma_complete;
src = &ucmd->cmd.sdma_complete;
break;
case QIB_CMD_ACK_EVENT:
copy = sizeof(cmd.cmd.event_mask);
dest = &cmd.cmd.event_mask;
src = &ucmd->cmd.event_mask;
break;
default:
ret = -EINVAL;
goto bail;
}
if (copy) {
if ((count - consumed) < copy) {
ret = -EINVAL;
goto bail;
}
if (copy_from_user(dest, src, copy)) {
ret = -EFAULT;
goto bail;
}
consumed += copy;
}
rcd = ctxt_fp(fp);
if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
ret = -EINVAL;
goto bail;
}
switch (cmd.type) {
case QIB_CMD_ASSIGN_CTXT:
ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
break;
case QIB_CMD_USER_INIT:
ret = qib_do_user_init(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
ret = qib_get_base_info(fp, (void __user *) (unsigned long)
cmd.cmd.user_info.spu_base_info,
cmd.cmd.user_info.spu_base_info_size);
break;
case QIB_CMD_RECV_CTRL:
ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
break;
case QIB_CMD_CTXT_INFO:
ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
(unsigned long) cmd.cmd.ctxt_info);
break;
case QIB_CMD_TID_UPDATE:
ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
break;
case QIB_CMD_TID_FREE:
ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
break;
case QIB_CMD_SET_PART_KEY:
ret = qib_set_part_key(rcd, cmd.cmd.part_key);
break;
case QIB_CMD_DISARM_BUFS:
(void)qib_disarm_piobufs_ifneeded(rcd);
ret = disarm_req_delay(rcd);
break;
case QIB_CMD_PIOAVAILUPD:
qib_force_pio_avail_update(rcd->dd);
break;
case QIB_CMD_POLL_TYPE:
rcd->poll_type = cmd.cmd.poll_type;
break;
case QIB_CMD_ARMLAUNCH_CTRL:
rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
break;
case QIB_CMD_SDMA_INFLIGHT:
ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
(u32 __user *) (unsigned long)
cmd.cmd.sdma_inflight);
break;
case QIB_CMD_SDMA_COMPLETE:
ret = qib_sdma_get_complete(rcd->ppd,
user_sdma_queue_fp(fp),
(u32 __user *) (unsigned long)
cmd.cmd.sdma_complete);
break;
case QIB_CMD_ACK_EVENT:
ret = qib_user_event_ack(rcd, subctxt_fp(fp),
cmd.cmd.event_mask);
break;
}
if (ret >= 0)
ret = consumed;
bail:
return ret;
}
static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long dim, loff_t off)
{
struct qib_filedata *fp = iocb->ki_filp->private_data;
struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
struct qib_user_sdma_queue *pq = fp->pq;
if (!dim || !pq)
return -EINVAL;
return qib_user_sdma_writev(rcd, pq, iov, dim);
}
static struct class *qib_class;
static dev_t qib_dev;
int qib_cdev_init(int minor, const char *name,
const struct file_operations *fops,
struct cdev **cdevp, struct device **devp)
{
const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
struct cdev *cdev;
struct device *device = NULL;
int ret;
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_ERR QIB_DRV_NAME
": Could not allocate cdev for minor %d, %s\n",
minor, name);
ret = -ENOMEM;
goto done;
}
cdev->owner = THIS_MODULE;
cdev->ops = fops;
kobject_set_name(&cdev->kobj, name);
ret = cdev_add(cdev, dev, 1);
if (ret < 0) {
printk(KERN_ERR QIB_DRV_NAME
": Could not add cdev for minor %d, %s (err %d)\n",
minor, name, -ret);
goto err_cdev;
}
device = device_create(qib_class, NULL, dev, NULL, name);
if (!IS_ERR(device))
goto done;
ret = PTR_ERR(device);
device = NULL;
printk(KERN_ERR QIB_DRV_NAME ": Could not create "
"device for minor %d, %s (err %d)\n",
minor, name, -ret);
err_cdev:
cdev_del(cdev);
cdev = NULL;
done:
*cdevp = cdev;
*devp = device;
return ret;
}
void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
{
struct device *device = *devp;
if (device) {
device_unregister(device);
*devp = NULL;
}
if (*cdevp) {
cdev_del(*cdevp);
*cdevp = NULL;
}
}
static struct cdev *wildcard_cdev;
static struct device *wildcard_device;
int __init qib_dev_init(void)
{
int ret;
ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
if (ret < 0) {
printk(KERN_ERR QIB_DRV_NAME ": Could not allocate "
"chrdev region (err %d)\n", -ret);
goto done;
}
qib_class = class_create(THIS_MODULE, "ipath");
if (IS_ERR(qib_class)) {
ret = PTR_ERR(qib_class);
printk(KERN_ERR QIB_DRV_NAME ": Could not create "
"device class (err %d)\n", -ret);
unregister_chrdev_region(qib_dev, QIB_NMINORS);
}
done:
return ret;
}
void qib_dev_cleanup(void)
{
if (qib_class) {
class_destroy(qib_class);
qib_class = NULL;
}
unregister_chrdev_region(qib_dev, QIB_NMINORS);
}
static atomic_t user_count = ATOMIC_INIT(0);
static void qib_user_remove(struct qib_devdata *dd)
{
if (atomic_dec_return(&user_count) == 0)
qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
}
static int qib_user_add(struct qib_devdata *dd)
{
char name[10];
int ret;
if (atomic_inc_return(&user_count) == 1) {
ret = qib_cdev_init(0, "ipath", &qib_file_ops,
&wildcard_cdev, &wildcard_device);
if (ret)
goto done;
}
snprintf(name, sizeof(name), "ipath%d", dd->unit);
ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
&dd->user_cdev, &dd->user_device);
if (ret)
qib_user_remove(dd);
done:
return ret;
}
/*
* Create per-unit files in /dev
*/
int qib_device_create(struct qib_devdata *dd)
{
int r, ret;
r = qib_user_add(dd);
ret = qib_diag_add(dd);
if (r && !ret)
ret = r;
return ret;
}
/*
* Remove per-unit files in /dev
* void, core kernel returns no errors for this stuff
*/
void qib_device_remove(struct qib_devdata *dd)
{
qib_user_remove(dd);
qib_diag_remove(dd);
}