231 lines
6.7 KiB
C
231 lines
6.7 KiB
C
/*
|
|
* Copyright © 2008-2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Chris Wilson <chris@chris-wilson.co.uuk>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include "i915_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_trace.h"
|
|
|
|
static bool
|
|
mark_free(struct i915_vma *vma, struct list_head *unwind)
|
|
{
|
|
if (vma->obj->pin_count)
|
|
return false;
|
|
|
|
if (WARN_ON(!list_empty(&vma->exec_list)))
|
|
return false;
|
|
|
|
list_add(&vma->exec_list, unwind);
|
|
return drm_mm_scan_add_block(&vma->node);
|
|
}
|
|
|
|
int
|
|
i915_gem_evict_something(struct drm_device *dev, struct i915_address_space *vm,
|
|
int min_size, unsigned alignment, unsigned cache_level,
|
|
bool mappable, bool nonblocking)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct list_head eviction_list, unwind_list;
|
|
struct i915_vma *vma;
|
|
int ret = 0;
|
|
|
|
trace_i915_gem_evict(dev, min_size, alignment, mappable);
|
|
|
|
/*
|
|
* The goal is to evict objects and amalgamate space in LRU order.
|
|
* The oldest idle objects reside on the inactive list, which is in
|
|
* retirement order. The next objects to retire are those on the (per
|
|
* ring) active list that do not have an outstanding flush. Once the
|
|
* hardware reports completion (the seqno is updated after the
|
|
* batchbuffer has been finished) the clean buffer objects would
|
|
* be retired to the inactive list. Any dirty objects would be added
|
|
* to the tail of the flushing list. So after processing the clean
|
|
* active objects we need to emit a MI_FLUSH to retire the flushing
|
|
* list, hence the retirement order of the flushing list is in
|
|
* advance of the dirty objects on the active lists.
|
|
*
|
|
* The retirement sequence is thus:
|
|
* 1. Inactive objects (already retired)
|
|
* 2. Clean active objects
|
|
* 3. Flushing list
|
|
* 4. Dirty active objects.
|
|
*
|
|
* On each list, the oldest objects lie at the HEAD with the freshest
|
|
* object on the TAIL.
|
|
*/
|
|
|
|
INIT_LIST_HEAD(&unwind_list);
|
|
if (mappable) {
|
|
BUG_ON(!i915_is_ggtt(vm));
|
|
drm_mm_init_scan_with_range(&vm->mm, min_size,
|
|
alignment, cache_level, 0,
|
|
dev_priv->gtt.mappable_end);
|
|
} else
|
|
drm_mm_init_scan(&vm->mm, min_size, alignment, cache_level);
|
|
|
|
/* First see if there is a large enough contiguous idle region... */
|
|
list_for_each_entry(vma, &vm->inactive_list, mm_list) {
|
|
if (mark_free(vma, &unwind_list))
|
|
goto found;
|
|
}
|
|
|
|
if (nonblocking)
|
|
goto none;
|
|
|
|
/* Now merge in the soon-to-be-expired objects... */
|
|
list_for_each_entry(vma, &vm->active_list, mm_list) {
|
|
if (mark_free(vma, &unwind_list))
|
|
goto found;
|
|
}
|
|
|
|
none:
|
|
/* Nothing found, clean up and bail out! */
|
|
while (!list_empty(&unwind_list)) {
|
|
vma = list_first_entry(&unwind_list,
|
|
struct i915_vma,
|
|
exec_list);
|
|
ret = drm_mm_scan_remove_block(&vma->node);
|
|
BUG_ON(ret);
|
|
|
|
list_del_init(&vma->exec_list);
|
|
}
|
|
|
|
/* We expect the caller to unpin, evict all and try again, or give up.
|
|
* So calling i915_gem_evict_vm() is unnecessary.
|
|
*/
|
|
return -ENOSPC;
|
|
|
|
found:
|
|
/* drm_mm doesn't allow any other other operations while
|
|
* scanning, therefore store to be evicted objects on a
|
|
* temporary list. */
|
|
INIT_LIST_HEAD(&eviction_list);
|
|
while (!list_empty(&unwind_list)) {
|
|
vma = list_first_entry(&unwind_list,
|
|
struct i915_vma,
|
|
exec_list);
|
|
if (drm_mm_scan_remove_block(&vma->node)) {
|
|
list_move(&vma->exec_list, &eviction_list);
|
|
drm_gem_object_reference(&vma->obj->base);
|
|
continue;
|
|
}
|
|
list_del_init(&vma->exec_list);
|
|
}
|
|
|
|
/* Unbinding will emit any required flushes */
|
|
while (!list_empty(&eviction_list)) {
|
|
struct drm_gem_object *obj;
|
|
vma = list_first_entry(&eviction_list,
|
|
struct i915_vma,
|
|
exec_list);
|
|
|
|
obj = &vma->obj->base;
|
|
list_del_init(&vma->exec_list);
|
|
if (ret == 0)
|
|
ret = i915_vma_unbind(vma);
|
|
|
|
drm_gem_object_unreference(obj);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_evict_vm - Try to free up VM space
|
|
*
|
|
* @vm: Address space to evict from
|
|
* @do_idle: Boolean directing whether to idle first.
|
|
*
|
|
* VM eviction is about freeing up virtual address space. If one wants fine
|
|
* grained eviction, they should see evict something for more details. In terms
|
|
* of freeing up actual system memory, this function may not accomplish the
|
|
* desired result. An object may be shared in multiple address space, and this
|
|
* function will not assert those objects be freed.
|
|
*
|
|
* Using do_idle will result in a more complete eviction because it retires, and
|
|
* inactivates current BOs.
|
|
*/
|
|
int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle)
|
|
{
|
|
struct i915_vma *vma, *next;
|
|
int ret;
|
|
|
|
trace_i915_gem_evict_vm(vm);
|
|
|
|
if (do_idle) {
|
|
ret = i915_gpu_idle(vm->dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests(vm->dev);
|
|
}
|
|
|
|
list_for_each_entry_safe(vma, next, &vm->inactive_list, mm_list)
|
|
if (vma->obj->pin_count == 0)
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_evict_everything(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct i915_address_space *vm;
|
|
bool lists_empty = true;
|
|
int ret;
|
|
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
|
|
lists_empty = (list_empty(&vm->inactive_list) &&
|
|
list_empty(&vm->active_list));
|
|
if (!lists_empty)
|
|
lists_empty = false;
|
|
}
|
|
|
|
if (lists_empty)
|
|
return -ENOSPC;
|
|
|
|
trace_i915_gem_evict_everything(dev);
|
|
|
|
/* The gpu_idle will flush everything in the write domain to the
|
|
* active list. Then we must move everything off the active list
|
|
* with retire requests.
|
|
*/
|
|
ret = i915_gpu_idle(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Having flushed everything, unbind() should never raise an error */
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link)
|
|
WARN_ON(i915_gem_evict_vm(vm, false));
|
|
|
|
return 0;
|
|
}
|