linux_old1/drivers/scsi/lpfc/lpfc_debugfs.c

2375 lines
71 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2007-2011 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.emulex.com *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/ctype.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc_scsi.h"
#include "lpfc.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
#include "lpfc_compat.h"
#include "lpfc_debugfs.h"
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/*
* debugfs interface
*
* To access this interface the user should:
* # mount -t debugfs none /sys/kernel/debug
*
* The lpfc debugfs directory hierarchy is:
* /sys/kernel/debug/lpfc/fnX/vportY
* where X is the lpfc hba function unique_id
* where Y is the vport VPI on that hba
*
* Debugging services available per vport:
* discovery_trace
* This is an ACSII readable file that contains a trace of the last
* lpfc_debugfs_max_disc_trc events that happened on a specific vport.
* See lpfc_debugfs.h for different categories of discovery events.
* To enable the discovery trace, the following module parameters must be set:
* lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support
* lpfc_debugfs_max_disc_trc=X Where X is the event trace depth for
* EACH vport. X MUST also be a power of 2.
* lpfc_debugfs_mask_disc_trc=Y Where Y is an event mask as defined in
* lpfc_debugfs.h .
*
* slow_ring_trace
* This is an ACSII readable file that contains a trace of the last
* lpfc_debugfs_max_slow_ring_trc events that happened on a specific HBA.
* To enable the slow ring trace, the following module parameters must be set:
* lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support
* lpfc_debugfs_max_slow_ring_trc=X Where X is the event trace depth for
* the HBA. X MUST also be a power of 2.
*/
static int lpfc_debugfs_enable = 1;
module_param(lpfc_debugfs_enable, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_enable, "Enable debugfs services");
/* This MUST be a power of 2 */
static int lpfc_debugfs_max_disc_trc;
module_param(lpfc_debugfs_max_disc_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_max_disc_trc,
"Set debugfs discovery trace depth");
/* This MUST be a power of 2 */
static int lpfc_debugfs_max_slow_ring_trc;
module_param(lpfc_debugfs_max_slow_ring_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_max_slow_ring_trc,
"Set debugfs slow ring trace depth");
static int lpfc_debugfs_mask_disc_trc;
module_param(lpfc_debugfs_mask_disc_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_mask_disc_trc,
"Set debugfs discovery trace mask");
#include <linux/debugfs.h>
static atomic_t lpfc_debugfs_seq_trc_cnt = ATOMIC_INIT(0);
static unsigned long lpfc_debugfs_start_time = 0L;
/* iDiag */
static struct lpfc_idiag idiag;
/**
* lpfc_debugfs_disc_trc_data - Dump discovery logging to a buffer
* @vport: The vport to gather the log info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine gathers the lpfc discovery debugfs data from the @vport and
* dumps it to @buf up to @size number of bytes. It will start at the next entry
* in the log and process the log until the end of the buffer. Then it will
* gather from the beginning of the log and process until the current entry.
*
* Notes:
* Discovery logging will be disabled while while this routine dumps the log.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_disc_trc_data(struct lpfc_vport *vport, char *buf, int size)
{
int i, index, len, enable;
uint32_t ms;
struct lpfc_debugfs_trc *dtp;
char buffer[LPFC_DEBUG_TRC_ENTRY_SIZE];
enable = lpfc_debugfs_enable;
lpfc_debugfs_enable = 0;
len = 0;
index = (atomic_read(&vport->disc_trc_cnt) + 1) &
(lpfc_debugfs_max_disc_trc - 1);
for (i = index; i < lpfc_debugfs_max_disc_trc; i++) {
dtp = vport->disc_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += snprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
for (i = 0; i < index; i++) {
dtp = vport->disc_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += snprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
lpfc_debugfs_enable = enable;
return len;
}
/**
* lpfc_debugfs_slow_ring_trc_data - Dump slow ring logging to a buffer
* @phba: The HBA to gather the log info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine gathers the lpfc slow ring debugfs data from the @phba and
* dumps it to @buf up to @size number of bytes. It will start at the next entry
* in the log and process the log until the end of the buffer. Then it will
* gather from the beginning of the log and process until the current entry.
*
* Notes:
* Slow ring logging will be disabled while while this routine dumps the log.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_slow_ring_trc_data(struct lpfc_hba *phba, char *buf, int size)
{
int i, index, len, enable;
uint32_t ms;
struct lpfc_debugfs_trc *dtp;
char buffer[LPFC_DEBUG_TRC_ENTRY_SIZE];
enable = lpfc_debugfs_enable;
lpfc_debugfs_enable = 0;
len = 0;
index = (atomic_read(&phba->slow_ring_trc_cnt) + 1) &
(lpfc_debugfs_max_slow_ring_trc - 1);
for (i = index; i < lpfc_debugfs_max_slow_ring_trc; i++) {
dtp = phba->slow_ring_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += snprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
for (i = 0; i < index; i++) {
dtp = phba->slow_ring_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += snprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
lpfc_debugfs_enable = enable;
return len;
}
static int lpfc_debugfs_last_hbq = -1;
/**
* lpfc_debugfs_hbqinfo_data - Dump host buffer queue info to a buffer
* @phba: The HBA to gather host buffer info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the host buffer queue info from the @phba to @buf up to
* @size number of bytes. A header that describes the current hbq state will be
* dumped to @buf first and then info on each hbq entry will be dumped to @buf
* until @size bytes have been dumped or all the hbq info has been dumped.
*
* Notes:
* This routine will rotate through each configured HBQ each time called.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_hbqinfo_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int cnt, i, j, found, posted, low;
uint32_t phys, raw_index, getidx;
struct lpfc_hbq_init *hip;
struct hbq_s *hbqs;
struct lpfc_hbq_entry *hbqe;
struct lpfc_dmabuf *d_buf;
struct hbq_dmabuf *hbq_buf;
if (phba->sli_rev != 3)
return 0;
cnt = LPFC_HBQINFO_SIZE;
spin_lock_irq(&phba->hbalock);
/* toggle between multiple hbqs, if any */
i = lpfc_sli_hbq_count();
if (i > 1) {
lpfc_debugfs_last_hbq++;
if (lpfc_debugfs_last_hbq >= i)
lpfc_debugfs_last_hbq = 0;
}
else
lpfc_debugfs_last_hbq = 0;
i = lpfc_debugfs_last_hbq;
len += snprintf(buf+len, size-len, "HBQ %d Info\n", i);
hbqs = &phba->hbqs[i];
posted = 0;
list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list)
posted++;
hip = lpfc_hbq_defs[i];
len += snprintf(buf+len, size-len,
"idx:%d prof:%d rn:%d bufcnt:%d icnt:%d acnt:%d posted %d\n",
hip->hbq_index, hip->profile, hip->rn,
hip->buffer_count, hip->init_count, hip->add_count, posted);
raw_index = phba->hbq_get[i];
getidx = le32_to_cpu(raw_index);
len += snprintf(buf+len, size-len,
"entrys:%d bufcnt:%d Put:%d nPut:%d localGet:%d hbaGet:%d\n",
hbqs->entry_count, hbqs->buffer_count, hbqs->hbqPutIdx,
hbqs->next_hbqPutIdx, hbqs->local_hbqGetIdx, getidx);
hbqe = (struct lpfc_hbq_entry *) phba->hbqs[i].hbq_virt;
for (j=0; j<hbqs->entry_count; j++) {
len += snprintf(buf+len, size-len,
"%03d: %08x %04x %05x ", j,
le32_to_cpu(hbqe->bde.addrLow),
le32_to_cpu(hbqe->bde.tus.w),
le32_to_cpu(hbqe->buffer_tag));
i = 0;
found = 0;
/* First calculate if slot has an associated posted buffer */
low = hbqs->hbqPutIdx - posted;
if (low >= 0) {
if ((j >= hbqs->hbqPutIdx) || (j < low)) {
len += snprintf(buf+len, size-len, "Unused\n");
goto skipit;
}
}
else {
if ((j >= hbqs->hbqPutIdx) &&
(j < (hbqs->entry_count+low))) {
len += snprintf(buf+len, size-len, "Unused\n");
goto skipit;
}
}
/* Get the Buffer info for the posted buffer */
list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list) {
hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
phys = ((uint64_t)hbq_buf->dbuf.phys & 0xffffffff);
if (phys == le32_to_cpu(hbqe->bde.addrLow)) {
len += snprintf(buf+len, size-len,
"Buf%d: %p %06x\n", i,
hbq_buf->dbuf.virt, hbq_buf->tag);
found = 1;
break;
}
i++;
}
if (!found) {
len += snprintf(buf+len, size-len, "No DMAinfo?\n");
}
skipit:
hbqe++;
if (len > LPFC_HBQINFO_SIZE - 54)
break;
}
spin_unlock_irq(&phba->hbalock);
return len;
}
static int lpfc_debugfs_last_hba_slim_off;
/**
* lpfc_debugfs_dumpHBASlim_data - Dump HBA SLIM info to a buffer
* @phba: The HBA to gather SLIM info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current contents of HBA SLIM for the HBA associated
* with @phba to @buf up to @size bytes of data. This is the raw HBA SLIM data.
*
* Notes:
* This routine will only dump up to 1024 bytes of data each time called and
* should be called multiple times to dump the entire HBA SLIM.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_dumpHBASlim_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int i, off;
uint32_t *ptr;
char buffer[1024];
off = 0;
spin_lock_irq(&phba->hbalock);
len += snprintf(buf+len, size-len, "HBA SLIM\n");
lpfc_memcpy_from_slim(buffer,
phba->MBslimaddr + lpfc_debugfs_last_hba_slim_off, 1024);
ptr = (uint32_t *)&buffer[0];
off = lpfc_debugfs_last_hba_slim_off;
/* Set it up for the next time */
lpfc_debugfs_last_hba_slim_off += 1024;
if (lpfc_debugfs_last_hba_slim_off >= 4096)
lpfc_debugfs_last_hba_slim_off = 0;
i = 1024;
while (i > 0) {
len += snprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
spin_unlock_irq(&phba->hbalock);
return len;
}
/**
* lpfc_debugfs_dumpHostSlim_data - Dump host SLIM info to a buffer
* @phba: The HBA to gather Host SLIM info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current contents of host SLIM for the host associated
* with @phba to @buf up to @size bytes of data. The dump will contain the
* Mailbox, PCB, Rings, and Registers that are located in host memory.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_dumpHostSlim_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int i, off;
uint32_t word0, word1, word2, word3;
uint32_t *ptr;
struct lpfc_pgp *pgpp;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
off = 0;
spin_lock_irq(&phba->hbalock);
len += snprintf(buf+len, size-len, "SLIM Mailbox\n");
ptr = (uint32_t *)phba->slim2p.virt;
i = sizeof(MAILBOX_t);
while (i > 0) {
len += snprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
len += snprintf(buf+len, size-len, "SLIM PCB\n");
ptr = (uint32_t *)phba->pcb;
i = sizeof(PCB_t);
while (i > 0) {
len += snprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
for (i = 0; i < 4; i++) {
pgpp = &phba->port_gp[i];
pring = &psli->ring[i];
len += snprintf(buf+len, size-len,
"Ring %d: CMD GetInx:%d (Max:%d Next:%d "
"Local:%d flg:x%x) RSP PutInx:%d Max:%d\n",
i, pgpp->cmdGetInx, pring->numCiocb,
pring->next_cmdidx, pring->local_getidx,
pring->flag, pgpp->rspPutInx, pring->numRiocb);
}
if (phba->sli_rev <= LPFC_SLI_REV3) {
word0 = readl(phba->HAregaddr);
word1 = readl(phba->CAregaddr);
word2 = readl(phba->HSregaddr);
word3 = readl(phba->HCregaddr);
len += snprintf(buf+len, size-len, "HA:%08x CA:%08x HS:%08x "
"HC:%08x\n", word0, word1, word2, word3);
}
spin_unlock_irq(&phba->hbalock);
return len;
}
/**
* lpfc_debugfs_nodelist_data - Dump target node list to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current target node list associated with @vport to
* @buf up to @size bytes of data. Each node entry in the dump will contain a
* node state, DID, WWPN, WWNN, RPI, flags, type, and other useful fields.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_nodelist_data(struct lpfc_vport *vport, char *buf, int size)
{
int len = 0;
int cnt;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_nodelist *ndlp;
unsigned char *statep, *name;
cnt = (LPFC_NODELIST_SIZE / LPFC_NODELIST_ENTRY_SIZE);
spin_lock_irq(shost->host_lock);
list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
if (!cnt) {
len += snprintf(buf+len, size-len,
"Missing Nodelist Entries\n");
break;
}
cnt--;
switch (ndlp->nlp_state) {
case NLP_STE_UNUSED_NODE:
statep = "UNUSED";
break;
case NLP_STE_PLOGI_ISSUE:
statep = "PLOGI ";
break;
case NLP_STE_ADISC_ISSUE:
statep = "ADISC ";
break;
case NLP_STE_REG_LOGIN_ISSUE:
statep = "REGLOG";
break;
case NLP_STE_PRLI_ISSUE:
statep = "PRLI ";
break;
case NLP_STE_UNMAPPED_NODE:
statep = "UNMAP ";
break;
case NLP_STE_MAPPED_NODE:
statep = "MAPPED";
break;
case NLP_STE_NPR_NODE:
statep = "NPR ";
break;
default:
statep = "UNKNOWN";
}
len += snprintf(buf+len, size-len, "%s DID:x%06x ",
statep, ndlp->nlp_DID);
name = (unsigned char *)&ndlp->nlp_portname;
len += snprintf(buf+len, size-len,
"WWPN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
*name, *(name+1), *(name+2), *(name+3),
*(name+4), *(name+5), *(name+6), *(name+7));
name = (unsigned char *)&ndlp->nlp_nodename;
len += snprintf(buf+len, size-len,
"WWNN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
*name, *(name+1), *(name+2), *(name+3),
*(name+4), *(name+5), *(name+6), *(name+7));
len += snprintf(buf+len, size-len, "RPI:%03d flag:x%08x ",
ndlp->nlp_rpi, ndlp->nlp_flag);
if (!ndlp->nlp_type)
len += snprintf(buf+len, size-len, "UNKNOWN_TYPE ");
if (ndlp->nlp_type & NLP_FC_NODE)
len += snprintf(buf+len, size-len, "FC_NODE ");
if (ndlp->nlp_type & NLP_FABRIC)
len += snprintf(buf+len, size-len, "FABRIC ");
if (ndlp->nlp_type & NLP_FCP_TARGET)
len += snprintf(buf+len, size-len, "FCP_TGT sid:%d ",
ndlp->nlp_sid);
if (ndlp->nlp_type & NLP_FCP_INITIATOR)
len += snprintf(buf+len, size-len, "FCP_INITIATOR ");
len += snprintf(buf+len, size-len, "usgmap:%x ",
ndlp->nlp_usg_map);
len += snprintf(buf+len, size-len, "refcnt:%x",
atomic_read(&ndlp->kref.refcount));
len += snprintf(buf+len, size-len, "\n");
}
spin_unlock_irq(shost->host_lock);
return len;
}
#endif
/**
* lpfc_debugfs_disc_trc - Store discovery trace log
* @vport: The vport to associate this trace string with for retrieval.
* @mask: Log entry classification.
* @fmt: Format string to be displayed when dumping the log.
* @data1: 1st data parameter to be applied to @fmt.
* @data2: 2nd data parameter to be applied to @fmt.
* @data3: 3rd data parameter to be applied to @fmt.
*
* Description:
* This routine is used by the driver code to add a debugfs log entry to the
* discovery trace buffer associated with @vport. Only entries with a @mask that
* match the current debugfs discovery mask will be saved. Entries that do not
* match will be thrown away. @fmt, @data1, @data2, and @data3 are used like
* printf when displaying the log.
**/
inline void
lpfc_debugfs_disc_trc(struct lpfc_vport *vport, int mask, char *fmt,
uint32_t data1, uint32_t data2, uint32_t data3)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_debugfs_trc *dtp;
int index;
if (!(lpfc_debugfs_mask_disc_trc & mask))
return;
if (!lpfc_debugfs_enable || !lpfc_debugfs_max_disc_trc ||
!vport || !vport->disc_trc)
return;
index = atomic_inc_return(&vport->disc_trc_cnt) &
(lpfc_debugfs_max_disc_trc - 1);
dtp = vport->disc_trc + index;
dtp->fmt = fmt;
dtp->data1 = data1;
dtp->data2 = data2;
dtp->data3 = data3;
dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
dtp->jif = jiffies;
#endif
return;
}
/**
* lpfc_debugfs_slow_ring_trc - Store slow ring trace log
* @phba: The phba to associate this trace string with for retrieval.
* @fmt: Format string to be displayed when dumping the log.
* @data1: 1st data parameter to be applied to @fmt.
* @data2: 2nd data parameter to be applied to @fmt.
* @data3: 3rd data parameter to be applied to @fmt.
*
* Description:
* This routine is used by the driver code to add a debugfs log entry to the
* discovery trace buffer associated with @vport. @fmt, @data1, @data2, and
* @data3 are used like printf when displaying the log.
**/
inline void
lpfc_debugfs_slow_ring_trc(struct lpfc_hba *phba, char *fmt,
uint32_t data1, uint32_t data2, uint32_t data3)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_debugfs_trc *dtp;
int index;
if (!lpfc_debugfs_enable || !lpfc_debugfs_max_slow_ring_trc ||
!phba || !phba->slow_ring_trc)
return;
index = atomic_inc_return(&phba->slow_ring_trc_cnt) &
(lpfc_debugfs_max_slow_ring_trc - 1);
dtp = phba->slow_ring_trc + index;
dtp->fmt = fmt;
dtp->data1 = data1;
dtp->data2 = data2;
dtp->data3 = data3;
dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
dtp->jif = jiffies;
#endif
return;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/**
* lpfc_debugfs_disc_trc_open - Open the discovery trace log
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_disc_trc_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int size;
int rc = -ENOMEM;
if (!lpfc_debugfs_max_disc_trc) {
rc = -ENOSPC;
goto out;
}
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
size = (lpfc_debugfs_max_disc_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
size = PAGE_ALIGN(size);
debug->buffer = kmalloc(size, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_disc_trc_data(vport, debug->buffer, size);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_slow_ring_trc_open - Open the Slow Ring trace log
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_slow_ring_trc_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int size;
int rc = -ENOMEM;
if (!lpfc_debugfs_max_slow_ring_trc) {
rc = -ENOSPC;
goto out;
}
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
size = (lpfc_debugfs_max_slow_ring_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
size = PAGE_ALIGN(size);
debug->buffer = kmalloc(size, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_slow_ring_trc_data(phba, debug->buffer, size);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_hbqinfo_open - Open the hbqinfo debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_hbqinfo_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_HBQINFO_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_hbqinfo_data(phba, debug->buffer,
LPFC_HBQINFO_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_dumpHBASlim_open - Open the Dump HBA SLIM debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_dumpHBASlim_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_DUMPHBASLIM_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_dumpHBASlim_data(phba, debug->buffer,
LPFC_DUMPHBASLIM_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_dumpHostSlim_open - Open the Dump Host SLIM debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_dumpHostSlim_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_DUMPHOSTSLIM_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_dumpHostSlim_data(phba, debug->buffer,
LPFC_DUMPHOSTSLIM_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
static int
lpfc_debugfs_dumpData_open(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug;
int rc = -ENOMEM;
if (!_dump_buf_data)
return -EBUSY;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundry */
printk(KERN_ERR "9059 BLKGRD: %s: _dump_buf_data=0x%p\n",
__func__, _dump_buf_data);
debug->buffer = _dump_buf_data;
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = (1 << _dump_buf_data_order) << PAGE_SHIFT;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static int
lpfc_debugfs_dumpDif_open(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug;
int rc = -ENOMEM;
if (!_dump_buf_dif)
return -EBUSY;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundry */
printk(KERN_ERR "9060 BLKGRD: %s: _dump_buf_dif=0x%p file=%s\n",
__func__, _dump_buf_dif, file->f_dentry->d_name.name);
debug->buffer = _dump_buf_dif;
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = (1 << _dump_buf_dif_order) << PAGE_SHIFT;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_dumpDataDif_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
/*
* The Data/DIF buffers only save one failing IO
* The write op is used as a reset mechanism after an IO has
* already been saved to the next one can be saved
*/
spin_lock(&_dump_buf_lock);
memset((void *)_dump_buf_data, 0,
((1 << PAGE_SHIFT) << _dump_buf_data_order));
memset((void *)_dump_buf_dif, 0,
((1 << PAGE_SHIFT) << _dump_buf_dif_order));
_dump_buf_done = 0;
spin_unlock(&_dump_buf_lock);
return nbytes;
}
/**
* lpfc_debugfs_nodelist_open - Open the nodelist debugfs file
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return an negative
* error value.
**/
static int
lpfc_debugfs_nodelist_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_NODELIST_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_nodelist_data(vport, debug->buffer,
LPFC_NODELIST_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_lseek - Seek through a debugfs file
* @file: The file pointer to seek through.
* @off: The offset to seek to or the amount to seek by.
* @whence: Indicates how to seek.
*
* Description:
* This routine is the entry point for the debugfs lseek file operation. The
* @whence parameter indicates whether @off is the offset to directly seek to,
* or if it is a value to seek forward or reverse by. This function figures out
* what the new offset of the debugfs file will be and assigns that value to the
* f_pos field of @file.
*
* Returns:
* This function returns the new offset if successful and returns a negative
* error if unable to process the seek.
**/
static loff_t
lpfc_debugfs_lseek(struct file *file, loff_t off, int whence)
{
struct lpfc_debug *debug;
loff_t pos = -1;
debug = file->private_data;
switch (whence) {
case 0:
pos = off;
break;
case 1:
pos = file->f_pos + off;
break;
case 2:
pos = debug->len - off;
}
return (pos < 0 || pos > debug->len) ? -EINVAL : (file->f_pos = pos);
}
/**
* lpfc_debugfs_read - Read a debugfs file
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from from the buffer indicated in the private_data
* field of @file. It will start reading at @ppos and copy up to @nbytes of
* data to @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_debugfs_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
return simple_read_from_buffer(buf, nbytes, ppos, debug->buffer,
debug->len);
}
/**
* lpfc_debugfs_release - Release the buffer used to store debugfs file data
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine frees the buffer that was allocated when the debugfs file was
* opened.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_debugfs_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
kfree(debug->buffer);
kfree(debug);
return 0;
}
static int
lpfc_debugfs_dumpDataDif_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
debug->buffer = NULL;
kfree(debug);
return 0;
}
/*
* iDiag debugfs file access methods
*/
/*
* iDiag PCI config space register access methods:
*
* The PCI config space register accessees of read, write, read-modify-write
* for set bits, and read-modify-write for clear bits to SLI4 PCI functions
* are provided. In the proper SLI4 PCI function's debugfs iDiag directory,
*
* /sys/kernel/debug/lpfc/fn<#>/iDiag
*
* the access is through the debugfs entry pciCfg:
*
* 1. For PCI config space register read access, there are two read methods:
* A) read a single PCI config space register in the size of a byte
* (8 bits), a word (16 bits), or a dword (32 bits); or B) browse through
* the 4K extended PCI config space.
*
* A) Read a single PCI config space register consists of two steps:
*
* Step-1: Set up PCI config space register read command, the command
* syntax is,
*
* echo 1 <where> <count> > pciCfg
*
* where, 1 is the iDiag command for PCI config space read, <where> is the
* offset from the beginning of the device's PCI config space to read from,
* and <count> is the size of PCI config space register data to read back,
* it will be 1 for reading a byte (8 bits), 2 for reading a word (16 bits
* or 2 bytes), or 4 for reading a dword (32 bits or 4 bytes).
*
* Setp-2: Perform the debugfs read operation to execute the idiag command
* set up in Step-1,
*
* cat pciCfg
*
* Examples:
* To read PCI device's vendor-id and device-id from PCI config space,
*
* echo 1 0 4 > pciCfg
* cat pciCfg
*
* To read PCI device's currnt command from config space,
*
* echo 1 4 2 > pciCfg
* cat pciCfg
*
* B) Browse through the entire 4K extended PCI config space also consists
* of two steps:
*
* Step-1: Set up PCI config space register browsing command, the command
* syntax is,
*
* echo 1 0 4096 > pciCfg
*
* where, 1 is the iDiag command for PCI config space read, 0 must be used
* as the offset for PCI config space register browse, and 4096 must be
* used as the count for PCI config space register browse.
*
* Step-2: Repeately issue the debugfs read operation to browse through
* the entire PCI config space registers:
*
* cat pciCfg
* cat pciCfg
* cat pciCfg
* ...
*
* When browsing to the end of the 4K PCI config space, the browse method
* shall wrap around to start reading from beginning again, and again...
*
* 2. For PCI config space register write access, it supports a single PCI
* config space register write in the size of a byte (8 bits), a word
* (16 bits), or a dword (32 bits). The command syntax is,
*
* echo 2 <where> <count> <value> > pciCfg
*
* where, 2 is the iDiag command for PCI config space write, <where> is
* the offset from the beginning of the device's PCI config space to write
* into, <count> is the size of data to write into the PCI config space,
* it will be 1 for writing a byte (8 bits), 2 for writing a word (16 bits
* or 2 bytes), or 4 for writing a dword (32 bits or 4 bytes), and <value>
* is the data to be written into the PCI config space register at the
* offset.
*
* Examples:
* To disable PCI device's interrupt assertion,
*
* 1) Read in device's PCI config space register command field <cmd>:
*
* echo 1 4 2 > pciCfg
* cat pciCfg
*
* 2) Set bit 10 (Interrupt Disable bit) in the <cmd>:
*
* <cmd> = <cmd> | (1 < 10)
*
* 3) Write the modified command back:
*
* echo 2 4 2 <cmd> > pciCfg
*
* 3. For PCI config space register set bits access, it supports a single PCI
* config space register set bits in the size of a byte (8 bits), a word
* (16 bits), or a dword (32 bits). The command syntax is,
*
* echo 3 <where> <count> <bitmask> > pciCfg
*
* where, 3 is the iDiag command for PCI config space set bits, <where> is
* the offset from the beginning of the device's PCI config space to set
* bits into, <count> is the size of the bitmask to set into the PCI config
* space, it will be 1 for setting a byte (8 bits), 2 for setting a word
* (16 bits or 2 bytes), or 4 for setting a dword (32 bits or 4 bytes), and
* <bitmask> is the bitmask, indicating the bits to be set into the PCI
* config space register at the offset. The logic performed to the content
* of the PCI config space register, regval, is,
*
* regval |= <bitmask>
*
* 4. For PCI config space register clear bits access, it supports a single
* PCI config space register clear bits in the size of a byte (8 bits),
* a word (16 bits), or a dword (32 bits). The command syntax is,
*
* echo 4 <where> <count> <bitmask> > pciCfg
*
* where, 4 is the iDiag command for PCI config space clear bits, <where>
* is the offset from the beginning of the device's PCI config space to
* clear bits from, <count> is the size of the bitmask to set into the PCI
* config space, it will be 1 for setting a byte (8 bits), 2 for setting
* a word(16 bits or 2 bytes), or 4 for setting a dword (32 bits or 4
* bytes), and <bitmask> is the bitmask, indicating the bits to be cleared
* from the PCI config space register at the offset. the logic performed
* to the content of the PCI config space register, regval, is,
*
* regval &= ~<bitmask>
*
* Note, for all single register read, write, set bits, or clear bits access,
* the offset (<where>) must be aligned with the size of the data:
*
* For data size of byte (8 bits), the offset must be aligned to the byte
* boundary; for data size of word (16 bits), the offset must be aligned
* to the word boundary; while for data size of dword (32 bits), the offset
* must be aligned to the dword boundary. Otherwise, the interface will
* return the error:
*
* "-bash: echo: write error: Invalid argument".
*
* For example:
*
* echo 1 2 4 > pciCfg
* -bash: echo: write error: Invalid argument
*
* Note also, all of the numbers in the command fields for all read, write,
* set bits, and clear bits PCI config space register command fields can be
* either decimal or hex.
*
* For example,
* echo 1 0 4096 > pciCfg
*
* will be the same as
* echo 1 0 0x1000 > pciCfg
*
* And,
* echo 2 155 1 10 > pciCfg
*
* will be
* echo 2 0x9b 1 0xa > pciCfg
*/
/**
* lpfc_idiag_cmd_get - Get and parse idiag debugfs comands from user space
* @buf: The pointer to the user space buffer.
* @nbytes: The number of bytes in the user space buffer.
* @idiag_cmd: pointer to the idiag command struct.
*
* This routine reads data from debugfs user space buffer and parses the
* buffer for getting the idiag command and arguments. The while space in
* between the set of data is used as the parsing separator.
*
* This routine returns 0 when successful, it returns proper error code
* back to the user space in error conditions.
*/
static int lpfc_idiag_cmd_get(const char __user *buf, size_t nbytes,
struct lpfc_idiag_cmd *idiag_cmd)
{
char mybuf[64];
char *pbuf, *step_str;
int bsize, i;
/* Protect copy from user */
if (!access_ok(VERIFY_READ, buf, nbytes))
return -EFAULT;
memset(mybuf, 0, sizeof(mybuf));
memset(idiag_cmd, 0, sizeof(*idiag_cmd));
bsize = min(nbytes, (sizeof(mybuf)-1));
if (copy_from_user(mybuf, buf, bsize))
return -EFAULT;
pbuf = &mybuf[0];
step_str = strsep(&pbuf, "\t ");
/* The opcode must present */
if (!step_str)
return -EINVAL;
idiag_cmd->opcode = simple_strtol(step_str, NULL, 0);
if (idiag_cmd->opcode == 0)
return -EINVAL;
for (i = 0; i < LPFC_IDIAG_CMD_DATA_SIZE; i++) {
step_str = strsep(&pbuf, "\t ");
if (!step_str)
return 0;
idiag_cmd->data[i] = simple_strtol(step_str, NULL, 0);
}
return 0;
}
/**
* lpfc_idiag_open - idiag open debugfs
* @inode: The inode pointer that contains a pointer to phba.
* @file: The file pointer to attach the file operation.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It
* gets the reference to phba from the i_private field in @inode, it then
* allocates buffer for the file operation, performs the necessary PCI config
* space read into the allocated buffer according to the idiag user command
* setup, and then returns a pointer to buffer in the private_data field in
* @file.
*
* Returns:
* This function returns zero if successful. On error it will return an
* negative error value.
**/
static int
lpfc_idiag_open(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
return -ENOMEM;
debug->i_private = inode->i_private;
debug->buffer = NULL;
file->private_data = debug;
return 0;
}
/**
* lpfc_idiag_release - Release idiag access file operation
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine is the generic release routine for the idiag access file
* operation, it frees the buffer that was allocated when the debugfs file
* was opened.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_idiag_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
/* Free the buffers to the file operation */
kfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_idiag_cmd_release - Release idiag cmd access file operation
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine frees the buffer that was allocated when the debugfs file
* was opened. It also reset the fields in the idiag command struct in the
* case the command is not continuous browsing of the data structure.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_idiag_cmd_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
/* Read PCI config register, if not read all, clear command fields */
if ((debug->op == LPFC_IDIAG_OP_RD) &&
(idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD))
if ((idiag.cmd.data[1] == sizeof(uint8_t)) ||
(idiag.cmd.data[1] == sizeof(uint16_t)) ||
(idiag.cmd.data[1] == sizeof(uint32_t)))
memset(&idiag, 0, sizeof(idiag));
/* Write PCI config register, clear command fields */
if ((debug->op == LPFC_IDIAG_OP_WR) &&
(idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR))
memset(&idiag, 0, sizeof(idiag));
/* Free the buffers to the file operation */
kfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_idiag_pcicfg_read - idiag debugfs read pcicfg
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba pci config space according to the
* idiag command, and copies to user @buf. Depending on the PCI config space
* read command setup, it does either a single register read of a byte
* (8 bits), a word (16 bits), or a dword (32 bits) or browsing through all
* registers from the 4K extended PCI config space.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_pcicfg_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
int offset_label, offset, len = 0, index = LPFC_PCI_CFG_RD_SIZE;
int where, count;
char *pbuffer;
struct pci_dev *pdev;
uint32_t u32val;
uint16_t u16val;
uint8_t u8val;
pdev = phba->pcidev;
if (!pdev)
return 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_PCI_CFG_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
where = idiag.cmd.data[0];
count = idiag.cmd.data[1];
} else
return 0;
/* Read single PCI config space register */
switch (count) {
case SIZE_U8: /* byte (8 bits) */
pci_read_config_byte(pdev, where, &u8val);
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %02x\n", where, u8val);
break;
case SIZE_U16: /* word (16 bits) */
pci_read_config_word(pdev, where, &u16val);
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %04x\n", where, u16val);
break;
case SIZE_U32: /* double word (32 bits) */
pci_read_config_dword(pdev, where, &u32val);
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %08x\n", where, u32val);
break;
case LPFC_PCI_CFG_SIZE: /* browse all */
goto pcicfg_browse;
break;
default:
/* illegal count */
len = 0;
break;
}
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
pcicfg_browse:
/* Browse all PCI config space registers */
offset_label = idiag.offset.last_rd;
offset = offset_label;
/* Read PCI config space */
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: ", offset_label);
while (index > 0) {
pci_read_config_dword(pdev, offset, &u32val);
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%08x ", u32val);
offset += sizeof(uint32_t);
index -= sizeof(uint32_t);
if (!index)
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"\n");
else if (!(index % (8 * sizeof(uint32_t)))) {
offset_label += (8 * sizeof(uint32_t));
len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"\n%03x: ", offset_label);
}
}
/* Set up the offset for next portion of pci cfg read */
idiag.offset.last_rd += LPFC_PCI_CFG_RD_SIZE;
if (idiag.offset.last_rd >= LPFC_PCI_CFG_SIZE)
idiag.offset.last_rd = 0;
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_pcicfg_write - Syntax check and set up idiag pcicfg commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and
* then perform the syntax check for PCI config space read or write command
* accordingly. In the case of PCI config space read command, it sets up
* the command in the idiag command struct for the debugfs read operation.
* In the case of PCI config space write operation, it executes the write
* operation into the PCI config space accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
*/
static ssize_t
lpfc_idiag_pcicfg_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t where, value, count;
uint32_t u32val;
uint16_t u16val;
uint8_t u8val;
struct pci_dev *pdev;
int rc;
pdev = phba->pcidev;
if (!pdev)
return -EFAULT;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc)
return rc;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
/* Read command from PCI config space, set up command fields */
where = idiag.cmd.data[0];
count = idiag.cmd.data[1];
if (count == LPFC_PCI_CFG_SIZE) {
if (where != 0)
goto error_out;
} else if ((count != sizeof(uint8_t)) &&
(count != sizeof(uint16_t)) &&
(count != sizeof(uint32_t)))
goto error_out;
if (count == sizeof(uint8_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
goto error_out;
if (where % sizeof(uint8_t))
goto error_out;
}
if (count == sizeof(uint16_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
goto error_out;
if (where % sizeof(uint16_t))
goto error_out;
}
if (count == sizeof(uint32_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
goto error_out;
if (where % sizeof(uint32_t))
goto error_out;
}
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
/* Write command to PCI config space, read-modify-write */
where = idiag.cmd.data[0];
count = idiag.cmd.data[1];
value = idiag.cmd.data[2];
/* Sanity checks */
if ((count != sizeof(uint8_t)) &&
(count != sizeof(uint16_t)) &&
(count != sizeof(uint32_t)))
goto error_out;
if (count == sizeof(uint8_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
goto error_out;
if (where % sizeof(uint8_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_byte(pdev, where,
(uint8_t)value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_byte(pdev, where, &u8val);
if (!rc) {
u8val |= (uint8_t)value;
pci_write_config_byte(pdev, where,
u8val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_byte(pdev, where, &u8val);
if (!rc) {
u8val &= (uint8_t)(~value);
pci_write_config_byte(pdev, where,
u8val);
}
}
}
if (count == sizeof(uint16_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
goto error_out;
if (where % sizeof(uint16_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_word(pdev, where,
(uint16_t)value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_word(pdev, where, &u16val);
if (!rc) {
u16val |= (uint16_t)value;
pci_write_config_word(pdev, where,
u16val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_word(pdev, where, &u16val);
if (!rc) {
u16val &= (uint16_t)(~value);
pci_write_config_word(pdev, where,
u16val);
}
}
}
if (count == sizeof(uint32_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
goto error_out;
if (where % sizeof(uint32_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_dword(pdev, where, value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_dword(pdev, where,
&u32val);
if (!rc) {
u32val |= value;
pci_write_config_dword(pdev, where,
u32val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_dword(pdev, where,
&u32val);
if (!rc) {
u32val &= ~value;
pci_write_config_dword(pdev, where,
u32val);
}
}
}
} else
/* All other opecodes are illegal for now */
goto error_out;
return nbytes;
error_out:
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_queinfo_read - idiag debugfs read queue information
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba SLI4 PCI function queue information,
* and copies to user @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_queinfo_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
int len = 0, fcp_qidx;
char *pbuffer;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_QUE_INFO_GET_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
/* Get slow-path event queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Slow-path EQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], EQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
phba->sli4_hba.sp_eq->queue_id,
phba->sli4_hba.sp_eq->entry_count,
phba->sli4_hba.sp_eq->host_index,
phba->sli4_hba.sp_eq->hba_index);
/* Get fast-path event queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Fast-path EQ information:\n");
for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_eq_count; fcp_qidx++) {
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], EQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
phba->sli4_hba.fp_eq[fcp_qidx]->queue_id,
phba->sli4_hba.fp_eq[fcp_qidx]->entry_count,
phba->sli4_hba.fp_eq[fcp_qidx]->host_index,
phba->sli4_hba.fp_eq[fcp_qidx]->hba_index);
}
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
/* Get mailbox complete queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Mailbox CQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated EQ-ID [%02d]:\n",
phba->sli4_hba.mbx_cq->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], CQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
phba->sli4_hba.mbx_cq->queue_id,
phba->sli4_hba.mbx_cq->entry_count,
phba->sli4_hba.mbx_cq->host_index,
phba->sli4_hba.mbx_cq->hba_index);
/* Get slow-path complete queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Slow-path CQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated EQ-ID [%02d]:\n",
phba->sli4_hba.els_cq->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], CQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
phba->sli4_hba.els_cq->queue_id,
phba->sli4_hba.els_cq->entry_count,
phba->sli4_hba.els_cq->host_index,
phba->sli4_hba.els_cq->hba_index);
/* Get fast-path complete queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Fast-path CQ information:\n");
for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_eq_count; fcp_qidx++) {
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated EQ-ID [%02d]:\n",
phba->sli4_hba.fcp_cq[fcp_qidx]->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], EQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
phba->sli4_hba.fcp_cq[fcp_qidx]->queue_id,
phba->sli4_hba.fcp_cq[fcp_qidx]->entry_count,
phba->sli4_hba.fcp_cq[fcp_qidx]->host_index,
phba->sli4_hba.fcp_cq[fcp_qidx]->hba_index);
}
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
/* Get mailbox queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Mailbox MQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated CQ-ID [%02d]:\n",
phba->sli4_hba.mbx_wq->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], MQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
phba->sli4_hba.mbx_wq->queue_id,
phba->sli4_hba.mbx_wq->entry_count,
phba->sli4_hba.mbx_wq->host_index,
phba->sli4_hba.mbx_wq->hba_index);
/* Get slow-path work queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Slow-path WQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated CQ-ID [%02d]:\n",
phba->sli4_hba.els_wq->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], WQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n\n",
phba->sli4_hba.els_wq->queue_id,
phba->sli4_hba.els_wq->entry_count,
phba->sli4_hba.els_wq->host_index,
phba->sli4_hba.els_wq->hba_index);
/* Get fast-path work queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Fast-path WQ information:\n");
for (fcp_qidx = 0; fcp_qidx < phba->cfg_fcp_wq_count; fcp_qidx++) {
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated CQ-ID [%02d]:\n",
phba->sli4_hba.fcp_wq[fcp_qidx]->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], WQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
phba->sli4_hba.fcp_wq[fcp_qidx]->queue_id,
phba->sli4_hba.fcp_wq[fcp_qidx]->entry_count,
phba->sli4_hba.fcp_wq[fcp_qidx]->host_index,
phba->sli4_hba.fcp_wq[fcp_qidx]->hba_index);
}
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len, "\n");
/* Get receive queue information */
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"Slow-path RQ information:\n");
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\t\tAssociated CQ-ID [%02d]:\n",
phba->sli4_hba.hdr_rq->assoc_qid);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], RHQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
phba->sli4_hba.hdr_rq->queue_id,
phba->sli4_hba.hdr_rq->entry_count,
phba->sli4_hba.hdr_rq->host_index,
phba->sli4_hba.hdr_rq->hba_index);
len += snprintf(pbuffer+len, LPFC_QUE_INFO_GET_BUF_SIZE-len,
"\tID [%02d], RDQE-COUNT [%04d], "
"HOST-INDEX [%04x], PORT-INDEX [%04x]\n",
phba->sli4_hba.dat_rq->queue_id,
phba->sli4_hba.dat_rq->entry_count,
phba->sli4_hba.dat_rq->host_index,
phba->sli4_hba.dat_rq->hba_index);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
#undef lpfc_debugfs_op_disc_trc
static const struct file_operations lpfc_debugfs_op_disc_trc = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_disc_trc_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_nodelist
static const struct file_operations lpfc_debugfs_op_nodelist = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_nodelist_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_hbqinfo
static const struct file_operations lpfc_debugfs_op_hbqinfo = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_hbqinfo_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_dumpHBASlim
static const struct file_operations lpfc_debugfs_op_dumpHBASlim = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpHBASlim_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_dumpHostSlim
static const struct file_operations lpfc_debugfs_op_dumpHostSlim = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpHostSlim_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_dumpData
static const struct file_operations lpfc_debugfs_op_dumpData = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpData_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_dumpDataDif_write,
.release = lpfc_debugfs_dumpDataDif_release,
};
#undef lpfc_debugfs_op_dumpDif
static const struct file_operations lpfc_debugfs_op_dumpDif = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpDif_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_dumpDataDif_write,
.release = lpfc_debugfs_dumpDataDif_release,
};
#undef lpfc_debugfs_op_slow_ring_trc
static const struct file_operations lpfc_debugfs_op_slow_ring_trc = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_slow_ring_trc_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
static struct dentry *lpfc_debugfs_root = NULL;
static atomic_t lpfc_debugfs_hba_count;
/*
* File operations for the iDiag debugfs
*/
#undef lpfc_idiag_op_pciCfg
static const struct file_operations lpfc_idiag_op_pciCfg = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_pcicfg_read,
.write = lpfc_idiag_pcicfg_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_queInfo
static const struct file_operations lpfc_idiag_op_queInfo = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.read = lpfc_idiag_queinfo_read,
.release = lpfc_idiag_release,
};
#endif
/**
* lpfc_debugfs_initialize - Initialize debugfs for a vport
* @vport: The vport pointer to initialize.
*
* Description:
* When Debugfs is configured this routine sets up the lpfc debugfs file system.
* If not already created, this routine will create the lpfc directory, and
* lpfcX directory (for this HBA), and vportX directory for this vport. It will
* also create each file used to access lpfc specific debugfs information.
**/
inline void
lpfc_debugfs_initialize(struct lpfc_vport *vport)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_hba *phba = vport->phba;
char name[64];
uint32_t num, i;
if (!lpfc_debugfs_enable)
return;
/* Setup lpfc root directory */
if (!lpfc_debugfs_root) {
lpfc_debugfs_root = debugfs_create_dir("lpfc", NULL);
atomic_set(&lpfc_debugfs_hba_count, 0);
if (!lpfc_debugfs_root) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0408 Cannot create debugfs root\n");
goto debug_failed;
}
}
if (!lpfc_debugfs_start_time)
lpfc_debugfs_start_time = jiffies;
/* Setup funcX directory for specific HBA PCI function */
snprintf(name, sizeof(name), "fn%d", phba->brd_no);
if (!phba->hba_debugfs_root) {
phba->hba_debugfs_root =
debugfs_create_dir(name, lpfc_debugfs_root);
if (!phba->hba_debugfs_root) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0412 Cannot create debugfs hba\n");
goto debug_failed;
}
atomic_inc(&lpfc_debugfs_hba_count);
atomic_set(&phba->debugfs_vport_count, 0);
/* Setup hbqinfo */
snprintf(name, sizeof(name), "hbqinfo");
phba->debug_hbqinfo =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_hbqinfo);
if (!phba->debug_hbqinfo) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0411 Cannot create debugfs hbqinfo\n");
goto debug_failed;
}
/* Setup dumpHBASlim */
if (phba->sli_rev < LPFC_SLI_REV4) {
snprintf(name, sizeof(name), "dumpHBASlim");
phba->debug_dumpHBASlim =
debugfs_create_file(name,
S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpHBASlim);
if (!phba->debug_dumpHBASlim) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0413 Cannot create debugfs "
"dumpHBASlim\n");
goto debug_failed;
}
} else
phba->debug_dumpHBASlim = NULL;
/* Setup dumpHostSlim */
if (phba->sli_rev < LPFC_SLI_REV4) {
snprintf(name, sizeof(name), "dumpHostSlim");
phba->debug_dumpHostSlim =
debugfs_create_file(name,
S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpHostSlim);
if (!phba->debug_dumpHostSlim) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0414 Cannot create debugfs "
"dumpHostSlim\n");
goto debug_failed;
}
} else
phba->debug_dumpHBASlim = NULL;
/* Setup dumpData */
snprintf(name, sizeof(name), "dumpData");
phba->debug_dumpData =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpData);
if (!phba->debug_dumpData) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0800 Cannot create debugfs dumpData\n");
goto debug_failed;
}
/* Setup dumpDif */
snprintf(name, sizeof(name), "dumpDif");
phba->debug_dumpDif =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpDif);
if (!phba->debug_dumpDif) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0801 Cannot create debugfs dumpDif\n");
goto debug_failed;
}
/* Setup slow ring trace */
if (lpfc_debugfs_max_slow_ring_trc) {
num = lpfc_debugfs_max_slow_ring_trc - 1;
if (num & lpfc_debugfs_max_slow_ring_trc) {
/* Change to be a power of 2 */
num = lpfc_debugfs_max_slow_ring_trc;
i = 0;
while (num > 1) {
num = num >> 1;
i++;
}
lpfc_debugfs_max_slow_ring_trc = (1 << i);
printk(KERN_ERR
"lpfc_debugfs_max_disc_trc changed to "
"%d\n", lpfc_debugfs_max_disc_trc);
}
}
snprintf(name, sizeof(name), "slow_ring_trace");
phba->debug_slow_ring_trc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_slow_ring_trc);
if (!phba->debug_slow_ring_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0415 Cannot create debugfs "
"slow_ring_trace\n");
goto debug_failed;
}
if (!phba->slow_ring_trc) {
phba->slow_ring_trc = kmalloc(
(sizeof(struct lpfc_debugfs_trc) *
lpfc_debugfs_max_slow_ring_trc),
GFP_KERNEL);
if (!phba->slow_ring_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0416 Cannot create debugfs "
"slow_ring buffer\n");
goto debug_failed;
}
atomic_set(&phba->slow_ring_trc_cnt, 0);
memset(phba->slow_ring_trc, 0,
(sizeof(struct lpfc_debugfs_trc) *
lpfc_debugfs_max_slow_ring_trc));
}
}
snprintf(name, sizeof(name), "vport%d", vport->vpi);
if (!vport->vport_debugfs_root) {
vport->vport_debugfs_root =
debugfs_create_dir(name, phba->hba_debugfs_root);
if (!vport->vport_debugfs_root) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0417 Cant create debugfs\n");
goto debug_failed;
}
atomic_inc(&phba->debugfs_vport_count);
}
if (lpfc_debugfs_max_disc_trc) {
num = lpfc_debugfs_max_disc_trc - 1;
if (num & lpfc_debugfs_max_disc_trc) {
/* Change to be a power of 2 */
num = lpfc_debugfs_max_disc_trc;
i = 0;
while (num > 1) {
num = num >> 1;
i++;
}
lpfc_debugfs_max_disc_trc = (1 << i);
printk(KERN_ERR
"lpfc_debugfs_max_disc_trc changed to %d\n",
lpfc_debugfs_max_disc_trc);
}
}
vport->disc_trc = kzalloc(
(sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_disc_trc),
GFP_KERNEL);
if (!vport->disc_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0418 Cannot create debugfs disc trace "
"buffer\n");
goto debug_failed;
}
atomic_set(&vport->disc_trc_cnt, 0);
snprintf(name, sizeof(name), "discovery_trace");
vport->debug_disc_trc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_disc_trc);
if (!vport->debug_disc_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0419 Cannot create debugfs "
"discovery_trace\n");
goto debug_failed;
}
snprintf(name, sizeof(name), "nodelist");
vport->debug_nodelist =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_nodelist);
if (!vport->debug_nodelist) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0409 Cant create debugfs nodelist\n");
goto debug_failed;
}
/*
* iDiag debugfs root entry points for SLI4 device only
*/
if (phba->sli_rev < LPFC_SLI_REV4)
goto debug_failed;
snprintf(name, sizeof(name), "iDiag");
if (!phba->idiag_root) {
phba->idiag_root =
debugfs_create_dir(name, phba->hba_debugfs_root);
if (!phba->idiag_root) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"2922 Can't create idiag debugfs\n");
goto debug_failed;
}
/* Initialize iDiag data structure */
memset(&idiag, 0, sizeof(idiag));
}
/* iDiag read PCI config space */
snprintf(name, sizeof(name), "pciCfg");
if (!phba->idiag_pci_cfg) {
phba->idiag_pci_cfg =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_pciCfg);
if (!phba->idiag_pci_cfg) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"2923 Can't create idiag debugfs\n");
goto debug_failed;
}
idiag.offset.last_rd = 0;
}
/* iDiag get PCI function queue information */
snprintf(name, sizeof(name), "queInfo");
if (!phba->idiag_que_info) {
phba->idiag_que_info =
debugfs_create_file(name, S_IFREG|S_IRUGO,
phba->idiag_root, phba, &lpfc_idiag_op_queInfo);
if (!phba->idiag_que_info) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"2924 Can't create idiag debugfs\n");
goto debug_failed;
}
}
debug_failed:
return;
#endif
}
/**
* lpfc_debugfs_terminate - Tear down debugfs infrastructure for this vport
* @vport: The vport pointer to remove from debugfs.
*
* Description:
* When Debugfs is configured this routine removes debugfs file system elements
* that are specific to this vport. It also checks to see if there are any
* users left for the debugfs directories associated with the HBA and driver. If
* this is the last user of the HBA directory or driver directory then it will
* remove those from the debugfs infrastructure as well.
**/
inline void
lpfc_debugfs_terminate(struct lpfc_vport *vport)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_hba *phba = vport->phba;
if (vport->disc_trc) {
kfree(vport->disc_trc);
vport->disc_trc = NULL;
}
if (vport->debug_disc_trc) {
debugfs_remove(vport->debug_disc_trc); /* discovery_trace */
vport->debug_disc_trc = NULL;
}
if (vport->debug_nodelist) {
debugfs_remove(vport->debug_nodelist); /* nodelist */
vport->debug_nodelist = NULL;
}
if (vport->vport_debugfs_root) {
debugfs_remove(vport->vport_debugfs_root); /* vportX */
vport->vport_debugfs_root = NULL;
atomic_dec(&phba->debugfs_vport_count);
}
if (atomic_read(&phba->debugfs_vport_count) == 0) {
if (phba->debug_hbqinfo) {
debugfs_remove(phba->debug_hbqinfo); /* hbqinfo */
phba->debug_hbqinfo = NULL;
}
if (phba->debug_dumpHBASlim) {
debugfs_remove(phba->debug_dumpHBASlim); /* HBASlim */
phba->debug_dumpHBASlim = NULL;
}
if (phba->debug_dumpHostSlim) {
debugfs_remove(phba->debug_dumpHostSlim); /* HostSlim */
phba->debug_dumpHostSlim = NULL;
}
if (phba->debug_dumpData) {
debugfs_remove(phba->debug_dumpData); /* dumpData */
phba->debug_dumpData = NULL;
}
if (phba->debug_dumpDif) {
debugfs_remove(phba->debug_dumpDif); /* dumpDif */
phba->debug_dumpDif = NULL;
}
if (phba->slow_ring_trc) {
kfree(phba->slow_ring_trc);
phba->slow_ring_trc = NULL;
}
if (phba->debug_slow_ring_trc) {
/* slow_ring_trace */
debugfs_remove(phba->debug_slow_ring_trc);
phba->debug_slow_ring_trc = NULL;
}
/*
* iDiag release
*/
if (phba->sli_rev == LPFC_SLI_REV4) {
if (phba->idiag_que_info) {
/* iDiag queInfo */
debugfs_remove(phba->idiag_que_info);
phba->idiag_que_info = NULL;
}
if (phba->idiag_pci_cfg) {
/* iDiag pciCfg */
debugfs_remove(phba->idiag_pci_cfg);
phba->idiag_pci_cfg = NULL;
}
/* Finally remove the iDiag debugfs root */
if (phba->idiag_root) {
/* iDiag root */
debugfs_remove(phba->idiag_root);
phba->idiag_root = NULL;
}
}
if (phba->hba_debugfs_root) {
debugfs_remove(phba->hba_debugfs_root); /* fnX */
phba->hba_debugfs_root = NULL;
atomic_dec(&lpfc_debugfs_hba_count);
}
if (atomic_read(&lpfc_debugfs_hba_count) == 0) {
debugfs_remove(lpfc_debugfs_root); /* lpfc */
lpfc_debugfs_root = NULL;
}
}
#endif
return;
}