linux_old1/drivers/gpu/drm/radeon/radeon_pm.c

1420 lines
42 KiB
C

/*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include <drm/drmP.h>
#include "radeon.h"
#include "avivod.h"
#include "atom.h"
#include <linux/power_supply.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#define RADEON_IDLE_LOOP_MS 100
#define RADEON_RECLOCK_DELAY_MS 200
#define RADEON_WAIT_VBLANK_TIMEOUT 200
static const char *radeon_pm_state_type_name[5] = {
"",
"Powersave",
"Battery",
"Balanced",
"Performance",
};
static void radeon_dynpm_idle_work_handler(struct work_struct *work);
static int radeon_debugfs_pm_init(struct radeon_device *rdev);
static bool radeon_pm_in_vbl(struct radeon_device *rdev);
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish);
static void radeon_pm_update_profile(struct radeon_device *rdev);
static void radeon_pm_set_clocks(struct radeon_device *rdev);
int radeon_pm_get_type_index(struct radeon_device *rdev,
enum radeon_pm_state_type ps_type,
int instance)
{
int i;
int found_instance = -1;
for (i = 0; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.power_state[i].type == ps_type) {
found_instance++;
if (found_instance == instance)
return i;
}
}
/* return default if no match */
return rdev->pm.default_power_state_index;
}
void radeon_pm_acpi_event_handler(struct radeon_device *rdev)
{
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (rdev->pm.profile == PM_PROFILE_AUTO) {
mutex_lock(&rdev->pm.mutex);
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
mutex_unlock(&rdev->pm.mutex);
}
}
}
static void radeon_pm_update_profile(struct radeon_device *rdev)
{
switch (rdev->pm.profile) {
case PM_PROFILE_DEFAULT:
rdev->pm.profile_index = PM_PROFILE_DEFAULT_IDX;
break;
case PM_PROFILE_AUTO:
if (power_supply_is_system_supplied() > 0) {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
} else {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
}
break;
case PM_PROFILE_LOW:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX;
break;
case PM_PROFILE_MID:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
break;
case PM_PROFILE_HIGH:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
break;
}
if (rdev->pm.active_crtc_count == 0) {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_cm_idx;
} else {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_cm_idx;
}
}
static void radeon_unmap_vram_bos(struct radeon_device *rdev)
{
struct radeon_bo *bo, *n;
if (list_empty(&rdev->gem.objects))
return;
list_for_each_entry_safe(bo, n, &rdev->gem.objects, list) {
if (bo->tbo.mem.mem_type == TTM_PL_VRAM)
ttm_bo_unmap_virtual(&bo->tbo);
}
}
static void radeon_sync_with_vblank(struct radeon_device *rdev)
{
if (rdev->pm.active_crtcs) {
rdev->pm.vblank_sync = false;
wait_event_timeout(
rdev->irq.vblank_queue, rdev->pm.vblank_sync,
msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT));
}
}
static void radeon_set_power_state(struct radeon_device *rdev)
{
u32 sclk, mclk;
bool misc_after = false;
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
if (radeon_gui_idle(rdev)) {
sclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk;
if (sclk > rdev->pm.default_sclk)
sclk = rdev->pm.default_sclk;
/* starting with BTC, there is one state that is used for both
* MH and SH. Difference is that we always use the high clock index for
* mclk and vddci.
*/
if ((rdev->pm.pm_method == PM_METHOD_PROFILE) &&
(rdev->family >= CHIP_BARTS) &&
rdev->pm.active_crtc_count &&
((rdev->pm.profile_index == PM_PROFILE_MID_MH_IDX) ||
(rdev->pm.profile_index == PM_PROFILE_LOW_MH_IDX)))
mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx].mclk;
else
mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk;
if (mclk > rdev->pm.default_mclk)
mclk = rdev->pm.default_mclk;
/* upvolt before raising clocks, downvolt after lowering clocks */
if (sclk < rdev->pm.current_sclk)
misc_after = true;
radeon_sync_with_vblank(rdev);
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (!radeon_pm_in_vbl(rdev))
return;
}
radeon_pm_prepare(rdev);
if (!misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
/* set engine clock */
if (sclk != rdev->pm.current_sclk) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_engine_clock(rdev, sclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_sclk = sclk;
DRM_DEBUG_DRIVER("Setting: e: %d\n", sclk);
}
/* set memory clock */
if (rdev->asic->pm.set_memory_clock && (mclk != rdev->pm.current_mclk)) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_memory_clock(rdev, mclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_mclk = mclk;
DRM_DEBUG_DRIVER("Setting: m: %d\n", mclk);
}
if (misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
radeon_pm_finish(rdev);
rdev->pm.current_power_state_index = rdev->pm.requested_power_state_index;
rdev->pm.current_clock_mode_index = rdev->pm.requested_clock_mode_index;
} else
DRM_DEBUG_DRIVER("pm: GUI not idle!!!\n");
}
static void radeon_pm_set_clocks(struct radeon_device *rdev)
{
int i, r;
/* no need to take locks, etc. if nothing's going to change */
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
mutex_lock(&rdev->ddev->struct_mutex);
down_write(&rdev->pm.mclk_lock);
mutex_lock(&rdev->ring_lock);
/* wait for the rings to drain */
for (i = 0; i < RADEON_NUM_RINGS; i++) {
struct radeon_ring *ring = &rdev->ring[i];
if (!ring->ready) {
continue;
}
r = radeon_fence_wait_empty_locked(rdev, i);
if (r) {
/* needs a GPU reset dont reset here */
mutex_unlock(&rdev->ring_lock);
up_write(&rdev->pm.mclk_lock);
mutex_unlock(&rdev->ddev->struct_mutex);
return;
}
}
radeon_unmap_vram_bos(rdev);
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.active_crtcs & (1 << i)) {
rdev->pm.req_vblank |= (1 << i);
drm_vblank_get(rdev->ddev, i);
}
}
}
radeon_set_power_state(rdev);
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.req_vblank & (1 << i)) {
rdev->pm.req_vblank &= ~(1 << i);
drm_vblank_put(rdev->ddev, i);
}
}
}
/* update display watermarks based on new power state */
radeon_update_bandwidth_info(rdev);
if (rdev->pm.active_crtc_count)
radeon_bandwidth_update(rdev);
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
mutex_unlock(&rdev->ring_lock);
up_write(&rdev->pm.mclk_lock);
mutex_unlock(&rdev->ddev->struct_mutex);
}
static void radeon_pm_print_states(struct radeon_device *rdev)
{
int i, j;
struct radeon_power_state *power_state;
struct radeon_pm_clock_info *clock_info;
DRM_DEBUG_DRIVER("%d Power State(s)\n", rdev->pm.num_power_states);
for (i = 0; i < rdev->pm.num_power_states; i++) {
power_state = &rdev->pm.power_state[i];
DRM_DEBUG_DRIVER("State %d: %s\n", i,
radeon_pm_state_type_name[power_state->type]);
if (i == rdev->pm.default_power_state_index)
DRM_DEBUG_DRIVER("\tDefault");
if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP))
DRM_DEBUG_DRIVER("\t%d PCIE Lanes\n", power_state->pcie_lanes);
if (power_state->flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
DRM_DEBUG_DRIVER("\tSingle display only\n");
DRM_DEBUG_DRIVER("\t%d Clock Mode(s)\n", power_state->num_clock_modes);
for (j = 0; j < power_state->num_clock_modes; j++) {
clock_info = &(power_state->clock_info[j]);
if (rdev->flags & RADEON_IS_IGP)
DRM_DEBUG_DRIVER("\t\t%d e: %d\n",
j,
clock_info->sclk * 10);
else
DRM_DEBUG_DRIVER("\t\t%d e: %d\tm: %d\tv: %d\n",
j,
clock_info->sclk * 10,
clock_info->mclk * 10,
clock_info->voltage.voltage);
}
}
}
static ssize_t radeon_get_pm_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int cp = rdev->pm.profile;
return snprintf(buf, PAGE_SIZE, "%s\n",
(cp == PM_PROFILE_AUTO) ? "auto" :
(cp == PM_PROFILE_LOW) ? "low" :
(cp == PM_PROFILE_MID) ? "mid" :
(cp == PM_PROFILE_HIGH) ? "high" : "default");
}
static ssize_t radeon_set_pm_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (strncmp("default", buf, strlen("default")) == 0)
rdev->pm.profile = PM_PROFILE_DEFAULT;
else if (strncmp("auto", buf, strlen("auto")) == 0)
rdev->pm.profile = PM_PROFILE_AUTO;
else if (strncmp("low", buf, strlen("low")) == 0)
rdev->pm.profile = PM_PROFILE_LOW;
else if (strncmp("mid", buf, strlen("mid")) == 0)
rdev->pm.profile = PM_PROFILE_MID;
else if (strncmp("high", buf, strlen("high")) == 0)
rdev->pm.profile = PM_PROFILE_HIGH;
else {
count = -EINVAL;
goto fail;
}
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else
count = -EINVAL;
fail:
mutex_unlock(&rdev->pm.mutex);
return count;
}
static ssize_t radeon_get_pm_method(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int pm = rdev->pm.pm_method;
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == PM_METHOD_DYNPM) ? "dynpm" :
(pm == PM_METHOD_PROFILE) ? "profile" : "dpm");
}
static ssize_t radeon_set_pm_method(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
/* we don't support the legacy modes with dpm */
if (rdev->pm.pm_method == PM_METHOD_DPM) {
count = -EINVAL;
goto fail;
}
if (strncmp("dynpm", buf, strlen("dynpm")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.pm_method = PM_METHOD_DYNPM;
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
mutex_unlock(&rdev->pm.mutex);
} else if (strncmp("profile", buf, strlen("profile")) == 0) {
mutex_lock(&rdev->pm.mutex);
/* disable dynpm */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.pm_method = PM_METHOD_PROFILE;
mutex_unlock(&rdev->pm.mutex);
cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
} else {
count = -EINVAL;
goto fail;
}
radeon_pm_compute_clocks(rdev);
fail:
return count;
}
static ssize_t radeon_get_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
enum radeon_pm_state_type pm = rdev->pm.dpm.user_state;
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t radeon_set_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
mutex_lock(&rdev->pm.mutex);
if (strncmp("battery", buf, strlen("battery")) == 0)
rdev->pm.dpm.user_state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
rdev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
rdev->pm.dpm.user_state = POWER_STATE_TYPE_PERFORMANCE;
else {
mutex_unlock(&rdev->pm.mutex);
count = -EINVAL;
goto fail;
}
mutex_unlock(&rdev->pm.mutex);
radeon_pm_compute_clocks(rdev);
fail:
return count;
}
static DEVICE_ATTR(power_profile, S_IRUGO | S_IWUSR, radeon_get_pm_profile, radeon_set_pm_profile);
static DEVICE_ATTR(power_method, S_IRUGO | S_IWUSR, radeon_get_pm_method, radeon_set_pm_method);
static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, radeon_get_dpm_state, radeon_set_dpm_state);
static ssize_t radeon_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int temp;
if (rdev->asic->pm.get_temperature)
temp = radeon_get_temperature(rdev);
else
temp = 0;
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t radeon_hwmon_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "radeon\n");
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, radeon_hwmon_show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(name, S_IRUGO, radeon_hwmon_show_name, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_name.dev_attr.attr,
NULL
};
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
};
static int radeon_hwmon_init(struct radeon_device *rdev)
{
int err = 0;
rdev->pm.int_hwmon_dev = NULL;
switch (rdev->pm.int_thermal_type) {
case THERMAL_TYPE_RV6XX:
case THERMAL_TYPE_RV770:
case THERMAL_TYPE_EVERGREEN:
case THERMAL_TYPE_NI:
case THERMAL_TYPE_SUMO:
case THERMAL_TYPE_SI:
if (rdev->asic->pm.get_temperature == NULL)
return err;
rdev->pm.int_hwmon_dev = hwmon_device_register(rdev->dev);
if (IS_ERR(rdev->pm.int_hwmon_dev)) {
err = PTR_ERR(rdev->pm.int_hwmon_dev);
dev_err(rdev->dev,
"Unable to register hwmon device: %d\n", err);
break;
}
dev_set_drvdata(rdev->pm.int_hwmon_dev, rdev->ddev);
err = sysfs_create_group(&rdev->pm.int_hwmon_dev->kobj,
&hwmon_attrgroup);
if (err) {
dev_err(rdev->dev,
"Unable to create hwmon sysfs file: %d\n", err);
hwmon_device_unregister(rdev->dev);
}
break;
default:
break;
}
return err;
}
static void radeon_hwmon_fini(struct radeon_device *rdev)
{
if (rdev->pm.int_hwmon_dev) {
sysfs_remove_group(&rdev->pm.int_hwmon_dev->kobj, &hwmon_attrgroup);
hwmon_device_unregister(rdev->pm.int_hwmon_dev);
}
}
static void radeon_dpm_thermal_work_handler(struct work_struct *work)
{
struct radeon_device *rdev =
container_of(work, struct radeon_device,
pm.dpm.thermal.work);
/* switch to the thermal state */
enum radeon_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL;
if (!rdev->pm.dpm_enabled)
return;
if (rdev->asic->pm.get_temperature) {
int temp = radeon_get_temperature(rdev);
if (temp < rdev->pm.dpm.thermal.min_temp)
/* switch back the user state */
dpm_state = rdev->pm.dpm.user_state;
} else {
if (rdev->pm.dpm.thermal.high_to_low)
/* switch back the user state */
dpm_state = rdev->pm.dpm.user_state;
}
radeon_dpm_enable_power_state(rdev, dpm_state);
}
static struct radeon_ps *radeon_dpm_pick_power_state(struct radeon_device *rdev,
enum radeon_pm_state_type dpm_state)
{
int i;
struct radeon_ps *ps;
u32 ui_class;
restart_search:
/* balanced states don't exist at the moment */
if (dpm_state == POWER_STATE_TYPE_BALANCED)
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
/* Pick the best power state based on current conditions */
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
ps = &rdev->pm.dpm.ps[i];
ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK;
switch (dpm_state) {
/* user states */
case POWER_STATE_TYPE_BATTERY:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (rdev->pm.dpm.new_active_crtc_count < 2)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_BALANCED:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (rdev->pm.dpm.new_active_crtc_count < 2)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_PERFORMANCE:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (rdev->pm.dpm.new_active_crtc_count < 2)
return ps;
} else
return ps;
}
break;
/* internal states */
case POWER_STATE_TYPE_INTERNAL_UVD:
return rdev->pm.dpm.uvd_ps;
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_BOOT:
return rdev->pm.dpm.boot_ps;
case POWER_STATE_TYPE_INTERNAL_THERMAL:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ACPI:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ULV:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
return ps;
break;
default:
break;
}
}
/* use a fallback state if we didn't match */
switch (dpm_state) {
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
return rdev->pm.dpm.uvd_ps;
case POWER_STATE_TYPE_INTERNAL_THERMAL:
dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI;
goto restart_search;
case POWER_STATE_TYPE_INTERNAL_ACPI:
dpm_state = POWER_STATE_TYPE_BATTERY;
goto restart_search;
case POWER_STATE_TYPE_BATTERY:
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
goto restart_search;
default:
break;
}
return NULL;
}
static void radeon_dpm_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *ps)
{
/* copy the ps to the hw ps and point the requested ps
* at the hw state in case the driver wants to modify
* the state dynamically.
*/
rdev->pm.dpm.hw_ps = *ps;
rdev->pm.dpm.requested_ps = &rdev->pm.dpm.hw_ps;
}
static void radeon_dpm_change_power_state_locked(struct radeon_device *rdev)
{
int i;
struct radeon_ps *ps;
enum radeon_pm_state_type dpm_state;
/* if dpm init failed */
if (!rdev->pm.dpm_enabled)
return;
if (rdev->pm.dpm.user_state != rdev->pm.dpm.state) {
/* add other state override checks here */
if ((!rdev->pm.dpm.thermal_active) &&
(!rdev->pm.dpm.uvd_active))
rdev->pm.dpm.state = rdev->pm.dpm.user_state;
}
dpm_state = rdev->pm.dpm.state;
ps = radeon_dpm_pick_power_state(rdev, dpm_state);
if (ps)
radeon_dpm_update_requested_ps(rdev, ps);
else
return;
/* no need to reprogram if nothing changed unless we are on BTC+ */
if (rdev->pm.dpm.current_ps == rdev->pm.dpm.requested_ps) {
if ((rdev->family < CHIP_BARTS) || (rdev->flags & RADEON_IS_IGP)) {
/* for pre-BTC and APUs if the num crtcs changed but state is the same,
* all we need to do is update the display configuration.
*/
if (rdev->pm.dpm.new_active_crtcs != rdev->pm.dpm.current_active_crtcs) {
/* update display watermarks based on new power state */
radeon_bandwidth_update(rdev);
/* update displays */
radeon_dpm_display_configuration_changed(rdev);
rdev->pm.dpm.current_active_crtcs = rdev->pm.dpm.new_active_crtcs;
rdev->pm.dpm.current_active_crtc_count = rdev->pm.dpm.new_active_crtc_count;
}
return;
} else {
/* for BTC+ if the num crtcs hasn't changed and state is the same,
* nothing to do, if the num crtcs is > 1 and state is the same,
* update display configuration.
*/
if (rdev->pm.dpm.new_active_crtcs ==
rdev->pm.dpm.current_active_crtcs) {
return;
} else {
if ((rdev->pm.dpm.current_active_crtc_count > 1) &&
(rdev->pm.dpm.new_active_crtc_count > 1)) {
/* update display watermarks based on new power state */
radeon_bandwidth_update(rdev);
/* update displays */
radeon_dpm_display_configuration_changed(rdev);
rdev->pm.dpm.current_active_crtcs = rdev->pm.dpm.new_active_crtcs;
rdev->pm.dpm.current_active_crtc_count = rdev->pm.dpm.new_active_crtc_count;
return;
}
}
}
}
printk("switching from power state:\n");
radeon_dpm_print_power_state(rdev, rdev->pm.dpm.current_ps);
printk("switching to power state:\n");
radeon_dpm_print_power_state(rdev, rdev->pm.dpm.requested_ps);
mutex_lock(&rdev->ddev->struct_mutex);
down_write(&rdev->pm.mclk_lock);
mutex_lock(&rdev->ring_lock);
/* update display watermarks based on new power state */
radeon_bandwidth_update(rdev);
/* update displays */
radeon_dpm_display_configuration_changed(rdev);
rdev->pm.dpm.current_active_crtcs = rdev->pm.dpm.new_active_crtcs;
rdev->pm.dpm.current_active_crtc_count = rdev->pm.dpm.new_active_crtc_count;
/* wait for the rings to drain */
for (i = 0; i < RADEON_NUM_RINGS; i++) {
struct radeon_ring *ring = &rdev->ring[i];
if (ring->ready)
radeon_fence_wait_empty_locked(rdev, i);
}
/* program the new power state */
radeon_dpm_set_power_state(rdev);
/* update current power state */
rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps;
mutex_unlock(&rdev->ring_lock);
up_write(&rdev->pm.mclk_lock);
mutex_unlock(&rdev->ddev->struct_mutex);
}
void radeon_dpm_enable_power_state(struct radeon_device *rdev,
enum radeon_pm_state_type dpm_state)
{
if (!rdev->pm.dpm_enabled)
return;
mutex_lock(&rdev->pm.mutex);
switch (dpm_state) {
case POWER_STATE_TYPE_INTERNAL_THERMAL:
rdev->pm.dpm.thermal_active = true;
break;
case POWER_STATE_TYPE_INTERNAL_UVD:
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
rdev->pm.dpm.uvd_active = true;
break;
default:
rdev->pm.dpm.thermal_active = false;
rdev->pm.dpm.uvd_active = false;
break;
}
rdev->pm.dpm.state = dpm_state;
mutex_unlock(&rdev->pm.mutex);
radeon_pm_compute_clocks(rdev);
}
static void radeon_pm_suspend_old(struct radeon_device *rdev)
{
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE)
rdev->pm.dynpm_state = DYNPM_STATE_SUSPENDED;
}
mutex_unlock(&rdev->pm.mutex);
cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
}
static void radeon_pm_suspend_dpm(struct radeon_device *rdev)
{
mutex_lock(&rdev->pm.mutex);
/* disable dpm */
radeon_dpm_disable(rdev);
/* reset the power state */
rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps;
rdev->pm.dpm_enabled = false;
mutex_unlock(&rdev->pm.mutex);
}
void radeon_pm_suspend(struct radeon_device *rdev)
{
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_suspend_dpm(rdev);
else
radeon_pm_suspend_old(rdev);
}
static void radeon_pm_resume_old(struct radeon_device *rdev)
{
/* set up the default clocks if the MC ucode is loaded */
if ((rdev->family >= CHIP_BARTS) &&
(rdev->family <= CHIP_CAYMAN) &&
rdev->mc_fw) {
if (rdev->pm.default_vddc)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
if (rdev->pm.default_vddci)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddci,
SET_VOLTAGE_TYPE_ASIC_VDDCI);
if (rdev->pm.default_sclk)
radeon_set_engine_clock(rdev, rdev->pm.default_sclk);
if (rdev->pm.default_mclk)
radeon_set_memory_clock(rdev, rdev->pm.default_mclk);
}
/* asic init will reset the default power state */
mutex_lock(&rdev->pm.mutex);
rdev->pm.current_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.current_clock_mode_index = 0;
rdev->pm.current_sclk = rdev->pm.default_sclk;
rdev->pm.current_mclk = rdev->pm.default_mclk;
rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage;
rdev->pm.current_vddci = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.vddci;
if (rdev->pm.pm_method == PM_METHOD_DYNPM
&& rdev->pm.dynpm_state == DYNPM_STATE_SUSPENDED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
schedule_delayed_work(&rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
mutex_unlock(&rdev->pm.mutex);
radeon_pm_compute_clocks(rdev);
}
static void radeon_pm_resume_dpm(struct radeon_device *rdev)
{
int ret;
/* asic init will reset to the boot state */
mutex_lock(&rdev->pm.mutex);
rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps;
radeon_dpm_setup_asic(rdev);
ret = radeon_dpm_enable(rdev);
mutex_unlock(&rdev->pm.mutex);
if (ret) {
DRM_ERROR("radeon: dpm resume failed\n");
if ((rdev->family >= CHIP_BARTS) &&
(rdev->family <= CHIP_CAYMAN) &&
rdev->mc_fw) {
if (rdev->pm.default_vddc)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
if (rdev->pm.default_vddci)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddci,
SET_VOLTAGE_TYPE_ASIC_VDDCI);
if (rdev->pm.default_sclk)
radeon_set_engine_clock(rdev, rdev->pm.default_sclk);
if (rdev->pm.default_mclk)
radeon_set_memory_clock(rdev, rdev->pm.default_mclk);
}
} else {
rdev->pm.dpm_enabled = true;
radeon_pm_compute_clocks(rdev);
}
}
void radeon_pm_resume(struct radeon_device *rdev)
{
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_resume_dpm(rdev);
else
radeon_pm_resume_old(rdev);
}
static int radeon_pm_init_old(struct radeon_device *rdev)
{
int ret;
rdev->pm.profile = PM_PROFILE_DEFAULT;
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
rdev->pm.default_sclk = rdev->clock.default_sclk;
rdev->pm.default_mclk = rdev->clock.default_mclk;
rdev->pm.current_sclk = rdev->clock.default_sclk;
rdev->pm.current_mclk = rdev->clock.default_mclk;
rdev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (rdev->bios) {
if (rdev->is_atom_bios)
radeon_atombios_get_power_modes(rdev);
else
radeon_combios_get_power_modes(rdev);
radeon_pm_print_states(rdev);
radeon_pm_init_profile(rdev);
/* set up the default clocks if the MC ucode is loaded */
if ((rdev->family >= CHIP_BARTS) &&
(rdev->family <= CHIP_CAYMAN) &&
rdev->mc_fw) {
if (rdev->pm.default_vddc)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
if (rdev->pm.default_vddci)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddci,
SET_VOLTAGE_TYPE_ASIC_VDDCI);
if (rdev->pm.default_sclk)
radeon_set_engine_clock(rdev, rdev->pm.default_sclk);
if (rdev->pm.default_mclk)
radeon_set_memory_clock(rdev, rdev->pm.default_mclk);
}
}
/* set up the internal thermal sensor if applicable */
ret = radeon_hwmon_init(rdev);
if (ret)
return ret;
INIT_DELAYED_WORK(&rdev->pm.dynpm_idle_work, radeon_dynpm_idle_work_handler);
if (rdev->pm.num_power_states > 1) {
/* where's the best place to put these? */
ret = device_create_file(rdev->dev, &dev_attr_power_profile);
if (ret)
DRM_ERROR("failed to create device file for power profile\n");
ret = device_create_file(rdev->dev, &dev_attr_power_method);
if (ret)
DRM_ERROR("failed to create device file for power method\n");
if (radeon_debugfs_pm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for PM!\n");
}
DRM_INFO("radeon: power management initialized\n");
}
return 0;
}
static void radeon_dpm_print_power_states(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
printk("== power state %d ==\n", i);
radeon_dpm_print_power_state(rdev, &rdev->pm.dpm.ps[i]);
}
}
static int radeon_pm_init_dpm(struct radeon_device *rdev)
{
int ret;
/* default to performance state */
rdev->pm.dpm.state = POWER_STATE_TYPE_PERFORMANCE;
rdev->pm.dpm.user_state = POWER_STATE_TYPE_PERFORMANCE;
rdev->pm.default_sclk = rdev->clock.default_sclk;
rdev->pm.default_mclk = rdev->clock.default_mclk;
rdev->pm.current_sclk = rdev->clock.default_sclk;
rdev->pm.current_mclk = rdev->clock.default_mclk;
rdev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (rdev->bios && rdev->is_atom_bios)
radeon_atombios_get_power_modes(rdev);
else
return -EINVAL;
/* set up the internal thermal sensor if applicable */
ret = radeon_hwmon_init(rdev);
if (ret)
return ret;
INIT_WORK(&rdev->pm.dpm.thermal.work, radeon_dpm_thermal_work_handler);
mutex_lock(&rdev->pm.mutex);
radeon_dpm_init(rdev);
rdev->pm.dpm.current_ps = rdev->pm.dpm.requested_ps = rdev->pm.dpm.boot_ps;
radeon_dpm_print_power_states(rdev);
radeon_dpm_setup_asic(rdev);
ret = radeon_dpm_enable(rdev);
mutex_unlock(&rdev->pm.mutex);
if (ret) {
rdev->pm.dpm_enabled = false;
if ((rdev->family >= CHIP_BARTS) &&
(rdev->family <= CHIP_CAYMAN) &&
rdev->mc_fw) {
if (rdev->pm.default_vddc)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
if (rdev->pm.default_vddci)
radeon_atom_set_voltage(rdev, rdev->pm.default_vddci,
SET_VOLTAGE_TYPE_ASIC_VDDCI);
if (rdev->pm.default_sclk)
radeon_set_engine_clock(rdev, rdev->pm.default_sclk);
if (rdev->pm.default_mclk)
radeon_set_memory_clock(rdev, rdev->pm.default_mclk);
}
DRM_ERROR("radeon: dpm initialization failed\n");
return ret;
}
rdev->pm.dpm_enabled = true;
radeon_pm_compute_clocks(rdev);
if (rdev->pm.num_power_states > 1) {
ret = device_create_file(rdev->dev, &dev_attr_power_dpm_state);
if (ret)
DRM_ERROR("failed to create device file for dpm state\n");
/* XXX: these are noops for dpm but are here for backwards compat */
ret = device_create_file(rdev->dev, &dev_attr_power_profile);
if (ret)
DRM_ERROR("failed to create device file for power profile\n");
ret = device_create_file(rdev->dev, &dev_attr_power_method);
if (ret)
DRM_ERROR("failed to create device file for power method\n");
DRM_INFO("radeon: dpm initialized\n");
}
return 0;
}
int radeon_pm_init(struct radeon_device *rdev)
{
/* enable dpm on rv6xx+ */
switch (rdev->family) {
case CHIP_RV610:
case CHIP_RV630:
case CHIP_RV620:
case CHIP_RV635:
case CHIP_RV670:
case CHIP_RS780:
case CHIP_RS880:
case CHIP_RV770:
case CHIP_RV730:
case CHIP_RV710:
case CHIP_RV740:
case CHIP_CEDAR:
case CHIP_REDWOOD:
case CHIP_JUNIPER:
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_BARTS:
case CHIP_TURKS:
case CHIP_CAICOS:
case CHIP_CAYMAN:
case CHIP_ARUBA:
if (radeon_dpm == 1)
rdev->pm.pm_method = PM_METHOD_DPM;
else
rdev->pm.pm_method = PM_METHOD_PROFILE;
break;
default:
/* default to profile method */
rdev->pm.pm_method = PM_METHOD_PROFILE;
break;
}
if (rdev->pm.pm_method == PM_METHOD_DPM)
return radeon_pm_init_dpm(rdev);
else
return radeon_pm_init_old(rdev);
}
static void radeon_pm_fini_old(struct radeon_device *rdev)
{
if (rdev->pm.num_power_states > 1) {
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
rdev->pm.profile = PM_PROFILE_DEFAULT;
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
/* reset default clocks */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev);
}
mutex_unlock(&rdev->pm.mutex);
cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
device_remove_file(rdev->dev, &dev_attr_power_profile);
device_remove_file(rdev->dev, &dev_attr_power_method);
}
if (rdev->pm.power_state)
kfree(rdev->pm.power_state);
radeon_hwmon_fini(rdev);
}
static void radeon_pm_fini_dpm(struct radeon_device *rdev)
{
if (rdev->pm.num_power_states > 1) {
mutex_lock(&rdev->pm.mutex);
radeon_dpm_disable(rdev);
mutex_unlock(&rdev->pm.mutex);
device_remove_file(rdev->dev, &dev_attr_power_dpm_state);
/* XXX backwards compat */
device_remove_file(rdev->dev, &dev_attr_power_profile);
device_remove_file(rdev->dev, &dev_attr_power_method);
}
radeon_dpm_fini(rdev);
if (rdev->pm.power_state)
kfree(rdev->pm.power_state);
radeon_hwmon_fini(rdev);
}
void radeon_pm_fini(struct radeon_device *rdev)
{
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_fini_dpm(rdev);
else
radeon_pm_fini_old(rdev);
}
static void radeon_pm_compute_clocks_old(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
if (rdev->pm.num_power_states < 2)
return;
INIT_WORK(&rdev->pm.dpm.thermal.work, radeon_dpm_thermal_work_handler);
mutex_lock(&rdev->pm.mutex);
rdev->pm.active_crtcs = 0;
rdev->pm.active_crtc_count = 0;
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id);
rdev->pm.active_crtc_count++;
}
}
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state != DYNPM_STATE_DISABLED) {
if (rdev->pm.active_crtc_count > 1) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
DRM_DEBUG_DRIVER("radeon: dynamic power management deactivated\n");
}
} else if (rdev->pm.active_crtc_count == 1) {
/* TODO: Increase clocks if needed for current mode */
if (rdev->pm.dynpm_state == DYNPM_STATE_MINIMUM) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
schedule_delayed_work(&rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
} else if (rdev->pm.dynpm_state == DYNPM_STATE_PAUSED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
schedule_delayed_work(&rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
DRM_DEBUG_DRIVER("radeon: dynamic power management activated\n");
}
} else { /* count == 0 */
if (rdev->pm.dynpm_state != DYNPM_STATE_MINIMUM) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
rdev->pm.dynpm_state = DYNPM_STATE_MINIMUM;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_MINIMUM;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
}
}
mutex_unlock(&rdev->pm.mutex);
}
static void radeon_pm_compute_clocks_dpm(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
mutex_lock(&rdev->pm.mutex);
/* update active crtc counts */
rdev->pm.dpm.new_active_crtcs = 0;
rdev->pm.dpm.new_active_crtc_count = 0;
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (crtc->enabled) {
rdev->pm.dpm.new_active_crtcs |= (1 << radeon_crtc->crtc_id);
rdev->pm.dpm.new_active_crtc_count++;
}
}
/* update battery/ac status */
if (power_supply_is_system_supplied() > 0)
rdev->pm.dpm.ac_power = true;
else
rdev->pm.dpm.ac_power = false;
radeon_dpm_change_power_state_locked(rdev);
mutex_unlock(&rdev->pm.mutex);
}
void radeon_pm_compute_clocks(struct radeon_device *rdev)
{
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_compute_clocks_dpm(rdev);
else
radeon_pm_compute_clocks_old(rdev);
}
static bool radeon_pm_in_vbl(struct radeon_device *rdev)
{
int crtc, vpos, hpos, vbl_status;
bool in_vbl = true;
/* Iterate over all active crtc's. All crtc's must be in vblank,
* otherwise return in_vbl == false.
*/
for (crtc = 0; (crtc < rdev->num_crtc) && in_vbl; crtc++) {
if (rdev->pm.active_crtcs & (1 << crtc)) {
vbl_status = radeon_get_crtc_scanoutpos(rdev->ddev, crtc, &vpos, &hpos);
if ((vbl_status & DRM_SCANOUTPOS_VALID) &&
!(vbl_status & DRM_SCANOUTPOS_INVBL))
in_vbl = false;
}
}
return in_vbl;
}
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
{
u32 stat_crtc = 0;
bool in_vbl = radeon_pm_in_vbl(rdev);
if (in_vbl == false)
DRM_DEBUG_DRIVER("not in vbl for pm change %08x at %s\n", stat_crtc,
finish ? "exit" : "entry");
return in_vbl;
}
static void radeon_dynpm_idle_work_handler(struct work_struct *work)
{
struct radeon_device *rdev;
int resched;
rdev = container_of(work, struct radeon_device,
pm.dynpm_idle_work.work);
resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
int not_processed = 0;
int i;
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
struct radeon_ring *ring = &rdev->ring[i];
if (ring->ready) {
not_processed += radeon_fence_count_emitted(rdev, i);
if (not_processed >= 3)
break;
}
}
if (not_processed >= 3) { /* should upclock */
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_DOWNCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_upclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_UPCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
} else if (not_processed == 0) { /* should downclock */
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_UPCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_downclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_DOWNCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
}
/* Note, radeon_pm_set_clocks is called with static_switch set
* to false since we want to wait for vbl to avoid flicker.
*/
if (rdev->pm.dynpm_planned_action != DYNPM_ACTION_NONE &&
jiffies > rdev->pm.dynpm_action_timeout) {
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
schedule_delayed_work(&rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
mutex_unlock(&rdev->pm.mutex);
ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int radeon_debugfs_pm_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
seq_printf(m, "default engine clock: %u0 kHz\n", rdev->pm.default_sclk);
/* radeon_get_engine_clock is not reliable on APUs so just print the current clock */
if ((rdev->family >= CHIP_PALM) && (rdev->flags & RADEON_IS_IGP))
seq_printf(m, "current engine clock: %u0 kHz\n", rdev->pm.current_sclk);
else
seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev));
seq_printf(m, "default memory clock: %u0 kHz\n", rdev->pm.default_mclk);
if (rdev->asic->pm.get_memory_clock)
seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev));
if (rdev->pm.current_vddc)
seq_printf(m, "voltage: %u mV\n", rdev->pm.current_vddc);
if (rdev->asic->pm.get_pcie_lanes)
seq_printf(m, "PCIE lanes: %d\n", radeon_get_pcie_lanes(rdev));
return 0;
}
static struct drm_info_list radeon_pm_info_list[] = {
{"radeon_pm_info", radeon_debugfs_pm_info, 0, NULL},
};
#endif
static int radeon_debugfs_pm_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, radeon_pm_info_list, ARRAY_SIZE(radeon_pm_info_list));
#else
return 0;
#endif
}