1344 lines
35 KiB
C
1344 lines
35 KiB
C
/*
|
|
*
|
|
* Alchemy Au1x00 ethernet driver
|
|
*
|
|
* Copyright 2001-2003, 2006 MontaVista Software Inc.
|
|
* Copyright 2002 TimeSys Corp.
|
|
* Added ethtool/mii-tool support,
|
|
* Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
|
|
* Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
|
|
* or riemer@riemer-nt.de: fixed the link beat detection with
|
|
* ioctls (SIOCGMIIPHY)
|
|
* Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
|
|
* converted to use linux-2.6.x's PHY framework
|
|
*
|
|
* Author: MontaVista Software, Inc.
|
|
* ppopov@mvista.com or source@mvista.com
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/phy.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
#include <asm/cpu.h>
|
|
#include "au1000_eth.h"
|
|
|
|
#ifdef AU1000_ETH_DEBUG
|
|
static int au1000_debug = 5;
|
|
#else
|
|
static int au1000_debug = 3;
|
|
#endif
|
|
|
|
#define DRV_NAME "au1000_eth"
|
|
#define DRV_VERSION "1.6"
|
|
#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
|
|
#define DRV_DESC "Au1xxx on-chip Ethernet driver"
|
|
|
|
MODULE_AUTHOR(DRV_AUTHOR);
|
|
MODULE_DESCRIPTION(DRV_DESC);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
// prototypes
|
|
static void hard_stop(struct net_device *);
|
|
static void enable_rx_tx(struct net_device *dev);
|
|
static struct net_device * au1000_probe(int port_num);
|
|
static int au1000_init(struct net_device *);
|
|
static int au1000_open(struct net_device *);
|
|
static int au1000_close(struct net_device *);
|
|
static int au1000_tx(struct sk_buff *, struct net_device *);
|
|
static int au1000_rx(struct net_device *);
|
|
static irqreturn_t au1000_interrupt(int, void *);
|
|
static void au1000_tx_timeout(struct net_device *);
|
|
static void set_rx_mode(struct net_device *);
|
|
static struct net_device_stats *au1000_get_stats(struct net_device *);
|
|
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
|
|
static int mdio_read(struct net_device *, int, int);
|
|
static void mdio_write(struct net_device *, int, int, u16);
|
|
static void au1000_adjust_link(struct net_device *);
|
|
static void enable_mac(struct net_device *, int);
|
|
|
|
// externs
|
|
extern int get_ethernet_addr(char *ethernet_addr);
|
|
extern void str2eaddr(unsigned char *ea, unsigned char *str);
|
|
extern char * prom_getcmdline(void);
|
|
|
|
/*
|
|
* Theory of operation
|
|
*
|
|
* The Au1000 MACs use a simple rx and tx descriptor ring scheme.
|
|
* There are four receive and four transmit descriptors. These
|
|
* descriptors are not in memory; rather, they are just a set of
|
|
* hardware registers.
|
|
*
|
|
* Since the Au1000 has a coherent data cache, the receive and
|
|
* transmit buffers are allocated from the KSEG0 segment. The
|
|
* hardware registers, however, are still mapped at KSEG1 to
|
|
* make sure there's no out-of-order writes, and that all writes
|
|
* complete immediately.
|
|
*/
|
|
|
|
/* These addresses are only used if yamon doesn't tell us what
|
|
* the mac address is, and the mac address is not passed on the
|
|
* command line.
|
|
*/
|
|
static unsigned char au1000_mac_addr[6] __devinitdata = {
|
|
0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
|
|
};
|
|
|
|
struct au1000_private *au_macs[NUM_ETH_INTERFACES];
|
|
|
|
/*
|
|
* board-specific configurations
|
|
*
|
|
* PHY detection algorithm
|
|
*
|
|
* If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
|
|
* autodetected:
|
|
*
|
|
* mii_probe() first searches the current MAC's MII bus for a PHY,
|
|
* selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
|
|
* defined) PHY address not already claimed by another netdev.
|
|
*
|
|
* If nothing was found that way when searching for the 2nd ethernet
|
|
* controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
|
|
* the first MII bus is searched as well for an unclaimed PHY; this is
|
|
* needed in case of a dual-PHY accessible only through the MAC0's MII
|
|
* bus.
|
|
*
|
|
* Finally, if no PHY is found, then the corresponding ethernet
|
|
* controller is not registered to the network subsystem.
|
|
*/
|
|
|
|
/* autodetection defaults */
|
|
#undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
|
|
#define AU1XXX_PHY1_SEARCH_ON_MAC0
|
|
|
|
/* static PHY setup
|
|
*
|
|
* most boards PHY setup should be detectable properly with the
|
|
* autodetection algorithm in mii_probe(), but in some cases (e.g. if
|
|
* you have a switch attached, or want to use the PHY's interrupt
|
|
* notification capabilities) you can provide a static PHY
|
|
* configuration here
|
|
*
|
|
* IRQs may only be set, if a PHY address was configured
|
|
* If a PHY address is given, also a bus id is required to be set
|
|
*
|
|
* ps: make sure the used irqs are configured properly in the board
|
|
* specific irq-map
|
|
*/
|
|
|
|
#if defined(CONFIG_MIPS_BOSPORUS)
|
|
/*
|
|
* Micrel/Kendin 5 port switch attached to MAC0,
|
|
* MAC0 is associated with PHY address 5 (== WAN port)
|
|
* MAC1 is not associated with any PHY, since it's connected directly
|
|
* to the switch.
|
|
* no interrupts are used
|
|
*/
|
|
# define AU1XXX_PHY_STATIC_CONFIG
|
|
|
|
# define AU1XXX_PHY0_ADDR 5
|
|
# define AU1XXX_PHY0_BUSID 0
|
|
# undef AU1XXX_PHY0_IRQ
|
|
|
|
# undef AU1XXX_PHY1_ADDR
|
|
# undef AU1XXX_PHY1_BUSID
|
|
# undef AU1XXX_PHY1_IRQ
|
|
#endif
|
|
|
|
#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
|
|
# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
|
|
#endif
|
|
|
|
/*
|
|
* MII operations
|
|
*/
|
|
static int mdio_read(struct net_device *dev, int phy_addr, int reg)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile u32 *const mii_control_reg = &aup->mac->mii_control;
|
|
volatile u32 *const mii_data_reg = &aup->mac->mii_data;
|
|
u32 timedout = 20;
|
|
u32 mii_control;
|
|
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: read_MII busy timeout!!\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
mii_control = MAC_SET_MII_SELECT_REG(reg) |
|
|
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
|
|
|
|
*mii_control_reg = mii_control;
|
|
|
|
timedout = 20;
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
return (int)*mii_data_reg;
|
|
}
|
|
|
|
static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile u32 *const mii_control_reg = &aup->mac->mii_control;
|
|
volatile u32 *const mii_data_reg = &aup->mac->mii_data;
|
|
u32 timedout = 20;
|
|
u32 mii_control;
|
|
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
|
|
dev->name);
|
|
return;
|
|
}
|
|
}
|
|
|
|
mii_control = MAC_SET_MII_SELECT_REG(reg) |
|
|
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
|
|
|
|
*mii_data_reg = value;
|
|
*mii_control_reg = mii_control;
|
|
}
|
|
|
|
static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
|
|
{
|
|
/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
|
|
* _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
|
|
struct net_device *const dev = bus->priv;
|
|
|
|
enable_mac(dev, 0); /* make sure the MAC associated with this
|
|
* mii_bus is enabled */
|
|
return mdio_read(dev, phy_addr, regnum);
|
|
}
|
|
|
|
static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
|
|
u16 value)
|
|
{
|
|
struct net_device *const dev = bus->priv;
|
|
|
|
enable_mac(dev, 0); /* make sure the MAC associated with this
|
|
* mii_bus is enabled */
|
|
mdio_write(dev, phy_addr, regnum, value);
|
|
return 0;
|
|
}
|
|
|
|
static int mdiobus_reset(struct mii_bus *bus)
|
|
{
|
|
struct net_device *const dev = bus->priv;
|
|
|
|
enable_mac(dev, 0); /* make sure the MAC associated with this
|
|
* mii_bus is enabled */
|
|
return 0;
|
|
}
|
|
|
|
static int mii_probe (struct net_device *dev)
|
|
{
|
|
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
|
|
struct phy_device *phydev = NULL;
|
|
|
|
#if defined(AU1XXX_PHY_STATIC_CONFIG)
|
|
BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
|
|
|
|
if(aup->mac_id == 0) { /* get PHY0 */
|
|
# if defined(AU1XXX_PHY0_ADDR)
|
|
phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
|
|
# else
|
|
printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
|
|
dev->name);
|
|
return 0;
|
|
# endif /* defined(AU1XXX_PHY0_ADDR) */
|
|
} else if (aup->mac_id == 1) { /* get PHY1 */
|
|
# if defined(AU1XXX_PHY1_ADDR)
|
|
phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
|
|
# else
|
|
printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
|
|
dev->name);
|
|
return 0;
|
|
# endif /* defined(AU1XXX_PHY1_ADDR) */
|
|
}
|
|
|
|
#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
|
|
int phy_addr;
|
|
|
|
/* find the first (lowest address) PHY on the current MAC's MII bus */
|
|
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
|
|
if (aup->mii_bus.phy_map[phy_addr]) {
|
|
phydev = aup->mii_bus.phy_map[phy_addr];
|
|
# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
|
|
break; /* break out with first one found */
|
|
# endif
|
|
}
|
|
|
|
# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
|
|
/* try harder to find a PHY */
|
|
if (!phydev && (aup->mac_id == 1)) {
|
|
/* no PHY found, maybe we have a dual PHY? */
|
|
printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
|
|
"let's see if it's attached to MAC0...\n");
|
|
|
|
BUG_ON(!au_macs[0]);
|
|
|
|
/* find the first (lowest address) non-attached PHY on
|
|
* the MAC0 MII bus */
|
|
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
|
|
struct phy_device *const tmp_phydev =
|
|
au_macs[0]->mii_bus.phy_map[phy_addr];
|
|
|
|
if (!tmp_phydev)
|
|
continue; /* no PHY here... */
|
|
|
|
if (tmp_phydev->attached_dev)
|
|
continue; /* already claimed by MAC0 */
|
|
|
|
phydev = tmp_phydev;
|
|
break; /* found it */
|
|
}
|
|
}
|
|
# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
|
|
|
|
#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
|
|
if (!phydev) {
|
|
printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
|
|
return -1;
|
|
}
|
|
|
|
/* now we are supposed to have a proper phydev, to attach to... */
|
|
BUG_ON(!phydev);
|
|
BUG_ON(phydev->attached_dev);
|
|
|
|
phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
|
|
PHY_INTERFACE_MODE_MII);
|
|
|
|
if (IS_ERR(phydev)) {
|
|
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
|
|
return PTR_ERR(phydev);
|
|
}
|
|
|
|
/* mask with MAC supported features */
|
|
phydev->supported &= (SUPPORTED_10baseT_Half
|
|
| SUPPORTED_10baseT_Full
|
|
| SUPPORTED_100baseT_Half
|
|
| SUPPORTED_100baseT_Full
|
|
| SUPPORTED_Autoneg
|
|
/* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
|
|
| SUPPORTED_MII
|
|
| SUPPORTED_TP);
|
|
|
|
phydev->advertising = phydev->supported;
|
|
|
|
aup->old_link = 0;
|
|
aup->old_speed = 0;
|
|
aup->old_duplex = -1;
|
|
aup->phy_dev = phydev;
|
|
|
|
printk(KERN_INFO "%s: attached PHY driver [%s] "
|
|
"(mii_bus:phy_addr=%s, irq=%d)\n",
|
|
dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Buffer allocation/deallocation routines. The buffer descriptor returned
|
|
* has the virtual and dma address of a buffer suitable for
|
|
* both, receive and transmit operations.
|
|
*/
|
|
static db_dest_t *GetFreeDB(struct au1000_private *aup)
|
|
{
|
|
db_dest_t *pDB;
|
|
pDB = aup->pDBfree;
|
|
|
|
if (pDB) {
|
|
aup->pDBfree = pDB->pnext;
|
|
}
|
|
return pDB;
|
|
}
|
|
|
|
void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
|
|
{
|
|
db_dest_t *pDBfree = aup->pDBfree;
|
|
if (pDBfree)
|
|
pDBfree->pnext = pDB;
|
|
aup->pDBfree = pDB;
|
|
}
|
|
|
|
static void enable_rx_tx(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
|
|
|
|
aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
|
|
au_sync_delay(10);
|
|
}
|
|
|
|
static void hard_stop(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: hard stop\n", dev->name);
|
|
|
|
aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
|
|
au_sync_delay(10);
|
|
}
|
|
|
|
static void enable_mac(struct net_device *dev, int force_reset)
|
|
{
|
|
unsigned long flags;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
if(force_reset || (!aup->mac_enabled)) {
|
|
*aup->enable = MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
|
|
| MAC_EN_CLOCK_ENABLE);
|
|
au_sync_delay(2);
|
|
|
|
aup->mac_enabled = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
}
|
|
|
|
static void reset_mac_unlocked(struct net_device *dev)
|
|
{
|
|
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
|
|
int i;
|
|
|
|
hard_stop(dev);
|
|
|
|
*aup->enable = MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
*aup->enable = 0;
|
|
au_sync_delay(2);
|
|
|
|
aup->tx_full = 0;
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
/* reset control bits */
|
|
aup->rx_dma_ring[i]->buff_stat &= ~0xf;
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
/* reset control bits */
|
|
aup->tx_dma_ring[i]->buff_stat &= ~0xf;
|
|
}
|
|
|
|
aup->mac_enabled = 0;
|
|
|
|
}
|
|
|
|
static void reset_mac(struct net_device *dev)
|
|
{
|
|
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
|
|
unsigned long flags;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: reset mac, aup %x\n",
|
|
dev->name, (unsigned)aup);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
reset_mac_unlocked (dev);
|
|
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Setup the receive and transmit "rings". These pointers are the addresses
|
|
* of the rx and tx MAC DMA registers so they are fixed by the hardware --
|
|
* these are not descriptors sitting in memory.
|
|
*/
|
|
static void
|
|
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
aup->rx_dma_ring[i] =
|
|
(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
aup->tx_dma_ring[i] =
|
|
(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
|
|
}
|
|
}
|
|
|
|
static struct {
|
|
u32 base_addr;
|
|
u32 macen_addr;
|
|
int irq;
|
|
struct net_device *dev;
|
|
} iflist[2] = {
|
|
#ifdef CONFIG_SOC_AU1000
|
|
{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
|
|
{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1100
|
|
{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1500
|
|
{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
|
|
{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1550
|
|
{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
|
|
{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
|
|
#endif
|
|
};
|
|
|
|
static int num_ifs;
|
|
|
|
/*
|
|
* Setup the base address and interupt of the Au1xxx ethernet macs
|
|
* based on cpu type and whether the interface is enabled in sys_pinfunc
|
|
* register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
|
|
*/
|
|
static int __init au1000_init_module(void)
|
|
{
|
|
int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
|
|
struct net_device *dev;
|
|
int i, found_one = 0;
|
|
|
|
num_ifs = NUM_ETH_INTERFACES - ni;
|
|
|
|
for(i = 0; i < num_ifs; i++) {
|
|
dev = au1000_probe(i);
|
|
iflist[i].dev = dev;
|
|
if (dev)
|
|
found_one++;
|
|
}
|
|
if (!found_one)
|
|
return -ENODEV;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ethtool operations
|
|
*/
|
|
|
|
static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
if (aup->phy_dev)
|
|
return phy_ethtool_gset(aup->phy_dev, cmd);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (aup->phy_dev)
|
|
return phy_ethtool_sset(aup->phy_dev, cmd);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void
|
|
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
info->fw_version[0] = '\0';
|
|
sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
|
|
info->regdump_len = 0;
|
|
}
|
|
|
|
static const struct ethtool_ops au1000_ethtool_ops = {
|
|
.get_settings = au1000_get_settings,
|
|
.set_settings = au1000_set_settings,
|
|
.get_drvinfo = au1000_get_drvinfo,
|
|
.get_link = ethtool_op_get_link,
|
|
};
|
|
|
|
static struct net_device * au1000_probe(int port_num)
|
|
{
|
|
static unsigned version_printed = 0;
|
|
struct au1000_private *aup = NULL;
|
|
struct net_device *dev = NULL;
|
|
db_dest_t *pDB, *pDBfree;
|
|
char *pmac, *argptr;
|
|
char ethaddr[6];
|
|
int irq, i, err;
|
|
u32 base, macen;
|
|
|
|
if (port_num >= NUM_ETH_INTERFACES)
|
|
return NULL;
|
|
|
|
base = CPHYSADDR(iflist[port_num].base_addr );
|
|
macen = CPHYSADDR(iflist[port_num].macen_addr);
|
|
irq = iflist[port_num].irq;
|
|
|
|
if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
|
|
!request_mem_region(macen, 4, "Au1x00 ENET"))
|
|
return NULL;
|
|
|
|
if (version_printed++ == 0)
|
|
printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
|
|
|
|
dev = alloc_etherdev(sizeof(struct au1000_private));
|
|
if (!dev) {
|
|
printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
|
|
return NULL;
|
|
}
|
|
|
|
if ((err = register_netdev(dev)) != 0) {
|
|
printk(KERN_ERR "%s: Cannot register net device, error %d\n",
|
|
DRV_NAME, err);
|
|
free_netdev(dev);
|
|
return NULL;
|
|
}
|
|
|
|
printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
|
|
dev->name, base, irq);
|
|
|
|
aup = dev->priv;
|
|
|
|
/* Allocate the data buffers */
|
|
/* Snooping works fine with eth on all au1xxx */
|
|
aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
|
|
(NUM_TX_BUFFS + NUM_RX_BUFFS),
|
|
&aup->dma_addr, 0);
|
|
if (!aup->vaddr) {
|
|
free_netdev(dev);
|
|
release_mem_region( base, MAC_IOSIZE);
|
|
release_mem_region(macen, 4);
|
|
return NULL;
|
|
}
|
|
|
|
/* aup->mac is the base address of the MAC's registers */
|
|
aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
|
|
|
|
/* Setup some variables for quick register address access */
|
|
aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
|
|
aup->mac_id = port_num;
|
|
au_macs[port_num] = aup;
|
|
|
|
if (port_num == 0) {
|
|
/* Check the environment variables first */
|
|
if (get_ethernet_addr(ethaddr) == 0)
|
|
memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
|
|
else {
|
|
/* Check command line */
|
|
argptr = prom_getcmdline();
|
|
if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
|
|
printk(KERN_INFO "%s: No MAC address found\n",
|
|
dev->name);
|
|
/* Use the hard coded MAC addresses */
|
|
else {
|
|
str2eaddr(ethaddr, pmac + strlen("ethaddr="));
|
|
memcpy(au1000_mac_addr, ethaddr,
|
|
sizeof(au1000_mac_addr));
|
|
}
|
|
}
|
|
|
|
setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
|
|
} else if (port_num == 1)
|
|
setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
|
|
|
|
/*
|
|
* Assign to the Ethernet ports two consecutive MAC addresses
|
|
* to match those that are printed on their stickers
|
|
*/
|
|
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
|
|
dev->dev_addr[5] += port_num;
|
|
|
|
*aup->enable = 0;
|
|
aup->mac_enabled = 0;
|
|
|
|
aup->mii_bus.priv = dev;
|
|
aup->mii_bus.read = mdiobus_read;
|
|
aup->mii_bus.write = mdiobus_write;
|
|
aup->mii_bus.reset = mdiobus_reset;
|
|
aup->mii_bus.name = "au1000_eth_mii";
|
|
aup->mii_bus.id = aup->mac_id;
|
|
aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
|
|
for(i = 0; i < PHY_MAX_ADDR; ++i)
|
|
aup->mii_bus.irq[i] = PHY_POLL;
|
|
|
|
/* if known, set corresponding PHY IRQs */
|
|
#if defined(AU1XXX_PHY_STATIC_CONFIG)
|
|
# if defined(AU1XXX_PHY0_IRQ)
|
|
if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
|
|
aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
|
|
# endif
|
|
# if defined(AU1XXX_PHY1_IRQ)
|
|
if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
|
|
aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
|
|
# endif
|
|
#endif
|
|
mdiobus_register(&aup->mii_bus);
|
|
|
|
if (mii_probe(dev) != 0) {
|
|
goto err_out;
|
|
}
|
|
|
|
pDBfree = NULL;
|
|
/* setup the data buffer descriptors and attach a buffer to each one */
|
|
pDB = aup->db;
|
|
for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
|
|
pDB->pnext = pDBfree;
|
|
pDBfree = pDB;
|
|
pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
|
|
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
|
|
pDB++;
|
|
}
|
|
aup->pDBfree = pDBfree;
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
pDB = GetFreeDB(aup);
|
|
if (!pDB) {
|
|
goto err_out;
|
|
}
|
|
aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
|
|
aup->rx_db_inuse[i] = pDB;
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
pDB = GetFreeDB(aup);
|
|
if (!pDB) {
|
|
goto err_out;
|
|
}
|
|
aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
|
|
aup->tx_dma_ring[i]->len = 0;
|
|
aup->tx_db_inuse[i] = pDB;
|
|
}
|
|
|
|
spin_lock_init(&aup->lock);
|
|
dev->base_addr = base;
|
|
dev->irq = irq;
|
|
dev->open = au1000_open;
|
|
dev->hard_start_xmit = au1000_tx;
|
|
dev->stop = au1000_close;
|
|
dev->get_stats = au1000_get_stats;
|
|
dev->set_multicast_list = &set_rx_mode;
|
|
dev->do_ioctl = &au1000_ioctl;
|
|
SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
|
|
dev->tx_timeout = au1000_tx_timeout;
|
|
dev->watchdog_timeo = ETH_TX_TIMEOUT;
|
|
|
|
/*
|
|
* The boot code uses the ethernet controller, so reset it to start
|
|
* fresh. au1000_init() expects that the device is in reset state.
|
|
*/
|
|
reset_mac(dev);
|
|
|
|
return dev;
|
|
|
|
err_out:
|
|
/* here we should have a valid dev plus aup-> register addresses
|
|
* so we can reset the mac properly.*/
|
|
reset_mac(dev);
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
if (aup->rx_db_inuse[i])
|
|
ReleaseDB(aup, aup->rx_db_inuse[i]);
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
if (aup->tx_db_inuse[i])
|
|
ReleaseDB(aup, aup->tx_db_inuse[i]);
|
|
}
|
|
dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
|
|
(void *)aup->vaddr, aup->dma_addr);
|
|
unregister_netdev(dev);
|
|
free_netdev(dev);
|
|
release_mem_region( base, MAC_IOSIZE);
|
|
release_mem_region(macen, 4);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface.
|
|
*
|
|
* When the device powers up, the clocks are disabled and the
|
|
* mac is in reset state. When the interface is closed, we
|
|
* do the same -- reset the device and disable the clocks to
|
|
* conserve power. Thus, whenever au1000_init() is called,
|
|
* the device should already be in reset state.
|
|
*/
|
|
static int au1000_init(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
u32 flags;
|
|
int i;
|
|
u32 control;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: au1000_init\n", dev->name);
|
|
|
|
/* bring the device out of reset */
|
|
enable_mac(dev, 1);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
aup->mac->control = 0;
|
|
aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
|
|
aup->tx_tail = aup->tx_head;
|
|
aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
|
|
|
|
aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
|
|
aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
|
|
dev->dev_addr[1]<<8 | dev->dev_addr[0];
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
|
|
}
|
|
au_sync();
|
|
|
|
control = MAC_RX_ENABLE | MAC_TX_ENABLE;
|
|
#ifndef CONFIG_CPU_LITTLE_ENDIAN
|
|
control |= MAC_BIG_ENDIAN;
|
|
#endif
|
|
if (aup->phy_dev) {
|
|
if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
|
|
control |= MAC_FULL_DUPLEX;
|
|
else
|
|
control |= MAC_DISABLE_RX_OWN;
|
|
} else { /* PHY-less op, assume full-duplex */
|
|
control |= MAC_FULL_DUPLEX;
|
|
}
|
|
|
|
aup->mac->control = control;
|
|
aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
|
|
au_sync();
|
|
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
au1000_adjust_link(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct phy_device *phydev = aup->phy_dev;
|
|
unsigned long flags;
|
|
|
|
int status_change = 0;
|
|
|
|
BUG_ON(!aup->phy_dev);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
if (phydev->link && (aup->old_speed != phydev->speed)) {
|
|
// speed changed
|
|
|
|
switch(phydev->speed) {
|
|
case SPEED_10:
|
|
case SPEED_100:
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"%s: Speed (%d) is not 10/100 ???\n",
|
|
dev->name, phydev->speed);
|
|
break;
|
|
}
|
|
|
|
aup->old_speed = phydev->speed;
|
|
|
|
status_change = 1;
|
|
}
|
|
|
|
if (phydev->link && (aup->old_duplex != phydev->duplex)) {
|
|
// duplex mode changed
|
|
|
|
/* switching duplex mode requires to disable rx and tx! */
|
|
hard_stop(dev);
|
|
|
|
if (DUPLEX_FULL == phydev->duplex)
|
|
aup->mac->control = ((aup->mac->control
|
|
| MAC_FULL_DUPLEX)
|
|
& ~MAC_DISABLE_RX_OWN);
|
|
else
|
|
aup->mac->control = ((aup->mac->control
|
|
& ~MAC_FULL_DUPLEX)
|
|
| MAC_DISABLE_RX_OWN);
|
|
au_sync_delay(1);
|
|
|
|
enable_rx_tx(dev);
|
|
aup->old_duplex = phydev->duplex;
|
|
|
|
status_change = 1;
|
|
}
|
|
|
|
if(phydev->link != aup->old_link) {
|
|
// link state changed
|
|
|
|
if (phydev->link) // link went up
|
|
netif_schedule(dev);
|
|
else { // link went down
|
|
aup->old_speed = 0;
|
|
aup->old_duplex = -1;
|
|
}
|
|
|
|
aup->old_link = phydev->link;
|
|
status_change = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
|
|
if (status_change) {
|
|
if (phydev->link)
|
|
printk(KERN_INFO "%s: link up (%d/%s)\n",
|
|
dev->name, phydev->speed,
|
|
DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
|
|
else
|
|
printk(KERN_INFO "%s: link down\n", dev->name);
|
|
}
|
|
}
|
|
|
|
static int au1000_open(struct net_device *dev)
|
|
{
|
|
int retval;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: open: dev=%p\n", dev->name, dev);
|
|
|
|
if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
|
|
dev->name, dev))) {
|
|
printk(KERN_ERR "%s: unable to get IRQ %d\n",
|
|
dev->name, dev->irq);
|
|
return retval;
|
|
}
|
|
|
|
if ((retval = au1000_init(dev))) {
|
|
printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
|
|
free_irq(dev->irq, dev);
|
|
return retval;
|
|
}
|
|
|
|
if (aup->phy_dev) {
|
|
/* cause the PHY state machine to schedule a link state check */
|
|
aup->phy_dev->state = PHY_CHANGELINK;
|
|
phy_start(aup->phy_dev);
|
|
}
|
|
|
|
netif_start_queue(dev);
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: open: Initialization done.\n", dev->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_close(struct net_device *dev)
|
|
{
|
|
unsigned long flags;
|
|
struct au1000_private *const aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: close: dev=%p\n", dev->name, dev);
|
|
|
|
if (aup->phy_dev)
|
|
phy_stop(aup->phy_dev);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
reset_mac_unlocked (dev);
|
|
|
|
/* stop the device */
|
|
netif_stop_queue(dev);
|
|
|
|
/* disable the interrupt */
|
|
free_irq(dev->irq, dev);
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit au1000_cleanup_module(void)
|
|
{
|
|
int i, j;
|
|
struct net_device *dev;
|
|
struct au1000_private *aup;
|
|
|
|
for (i = 0; i < num_ifs; i++) {
|
|
dev = iflist[i].dev;
|
|
if (dev) {
|
|
aup = (struct au1000_private *) dev->priv;
|
|
unregister_netdev(dev);
|
|
for (j = 0; j < NUM_RX_DMA; j++)
|
|
if (aup->rx_db_inuse[j])
|
|
ReleaseDB(aup, aup->rx_db_inuse[j]);
|
|
for (j = 0; j < NUM_TX_DMA; j++)
|
|
if (aup->tx_db_inuse[j])
|
|
ReleaseDB(aup, aup->tx_db_inuse[j]);
|
|
dma_free_noncoherent(NULL, MAX_BUF_SIZE *
|
|
(NUM_TX_BUFFS + NUM_RX_BUFFS),
|
|
(void *)aup->vaddr, aup->dma_addr);
|
|
release_mem_region(dev->base_addr, MAC_IOSIZE);
|
|
release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
|
|
free_netdev(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_tx_stats(struct net_device *dev, u32 status)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct net_device_stats *ps = &aup->stats;
|
|
|
|
if (status & TX_FRAME_ABORTED) {
|
|
if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
|
|
if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
|
|
/* any other tx errors are only valid
|
|
* in half duplex mode */
|
|
ps->tx_errors++;
|
|
ps->tx_aborted_errors++;
|
|
}
|
|
}
|
|
else {
|
|
ps->tx_errors++;
|
|
ps->tx_aborted_errors++;
|
|
if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
|
|
ps->tx_carrier_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Called from the interrupt service routine to acknowledge
|
|
* the TX DONE bits. This is a must if the irq is setup as
|
|
* edge triggered.
|
|
*/
|
|
static void au1000_tx_ack(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile tx_dma_t *ptxd;
|
|
|
|
ptxd = aup->tx_dma_ring[aup->tx_tail];
|
|
|
|
while (ptxd->buff_stat & TX_T_DONE) {
|
|
update_tx_stats(dev, ptxd->status);
|
|
ptxd->buff_stat &= ~TX_T_DONE;
|
|
ptxd->len = 0;
|
|
au_sync();
|
|
|
|
aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
|
|
ptxd = aup->tx_dma_ring[aup->tx_tail];
|
|
|
|
if (aup->tx_full) {
|
|
aup->tx_full = 0;
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Au1000 transmit routine.
|
|
*/
|
|
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct net_device_stats *ps = &aup->stats;
|
|
volatile tx_dma_t *ptxd;
|
|
u32 buff_stat;
|
|
db_dest_t *pDB;
|
|
int i;
|
|
|
|
if (au1000_debug > 5)
|
|
printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
|
|
dev->name, (unsigned)aup, skb->len,
|
|
skb->data, aup->tx_head);
|
|
|
|
ptxd = aup->tx_dma_ring[aup->tx_head];
|
|
buff_stat = ptxd->buff_stat;
|
|
if (buff_stat & TX_DMA_ENABLE) {
|
|
/* We've wrapped around and the transmitter is still busy */
|
|
netif_stop_queue(dev);
|
|
aup->tx_full = 1;
|
|
return 1;
|
|
}
|
|
else if (buff_stat & TX_T_DONE) {
|
|
update_tx_stats(dev, ptxd->status);
|
|
ptxd->len = 0;
|
|
}
|
|
|
|
if (aup->tx_full) {
|
|
aup->tx_full = 0;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
pDB = aup->tx_db_inuse[aup->tx_head];
|
|
memcpy((void *)pDB->vaddr, skb->data, skb->len);
|
|
if (skb->len < ETH_ZLEN) {
|
|
for (i=skb->len; i<ETH_ZLEN; i++) {
|
|
((char *)pDB->vaddr)[i] = 0;
|
|
}
|
|
ptxd->len = ETH_ZLEN;
|
|
}
|
|
else
|
|
ptxd->len = skb->len;
|
|
|
|
ps->tx_packets++;
|
|
ps->tx_bytes += ptxd->len;
|
|
|
|
ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
|
|
au_sync();
|
|
dev_kfree_skb(skb);
|
|
aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
|
|
dev->trans_start = jiffies;
|
|
return 0;
|
|
}
|
|
|
|
static inline void update_rx_stats(struct net_device *dev, u32 status)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct net_device_stats *ps = &aup->stats;
|
|
|
|
ps->rx_packets++;
|
|
if (status & RX_MCAST_FRAME)
|
|
ps->multicast++;
|
|
|
|
if (status & RX_ERROR) {
|
|
ps->rx_errors++;
|
|
if (status & RX_MISSED_FRAME)
|
|
ps->rx_missed_errors++;
|
|
if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
|
|
ps->rx_length_errors++;
|
|
if (status & RX_CRC_ERROR)
|
|
ps->rx_crc_errors++;
|
|
if (status & RX_COLL)
|
|
ps->collisions++;
|
|
}
|
|
else
|
|
ps->rx_bytes += status & RX_FRAME_LEN_MASK;
|
|
|
|
}
|
|
|
|
/*
|
|
* Au1000 receive routine.
|
|
*/
|
|
static int au1000_rx(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct sk_buff *skb;
|
|
volatile rx_dma_t *prxd;
|
|
u32 buff_stat, status;
|
|
db_dest_t *pDB;
|
|
u32 frmlen;
|
|
|
|
if (au1000_debug > 5)
|
|
printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
|
|
|
|
prxd = aup->rx_dma_ring[aup->rx_head];
|
|
buff_stat = prxd->buff_stat;
|
|
while (buff_stat & RX_T_DONE) {
|
|
status = prxd->status;
|
|
pDB = aup->rx_db_inuse[aup->rx_head];
|
|
update_rx_stats(dev, status);
|
|
if (!(status & RX_ERROR)) {
|
|
|
|
/* good frame */
|
|
frmlen = (status & RX_FRAME_LEN_MASK);
|
|
frmlen -= 4; /* Remove FCS */
|
|
skb = dev_alloc_skb(frmlen + 2);
|
|
if (skb == NULL) {
|
|
printk(KERN_ERR
|
|
"%s: Memory squeeze, dropping packet.\n",
|
|
dev->name);
|
|
aup->stats.rx_dropped++;
|
|
continue;
|
|
}
|
|
skb->dev = dev;
|
|
skb_reserve(skb, 2); /* 16 byte IP header align */
|
|
eth_copy_and_sum(skb,
|
|
(unsigned char *)pDB->vaddr, frmlen, 0);
|
|
skb_put(skb, frmlen);
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
netif_rx(skb); /* pass the packet to upper layers */
|
|
}
|
|
else {
|
|
if (au1000_debug > 4) {
|
|
if (status & RX_MISSED_FRAME)
|
|
printk("rx miss\n");
|
|
if (status & RX_WDOG_TIMER)
|
|
printk("rx wdog\n");
|
|
if (status & RX_RUNT)
|
|
printk("rx runt\n");
|
|
if (status & RX_OVERLEN)
|
|
printk("rx overlen\n");
|
|
if (status & RX_COLL)
|
|
printk("rx coll\n");
|
|
if (status & RX_MII_ERROR)
|
|
printk("rx mii error\n");
|
|
if (status & RX_CRC_ERROR)
|
|
printk("rx crc error\n");
|
|
if (status & RX_LEN_ERROR)
|
|
printk("rx len error\n");
|
|
if (status & RX_U_CNTRL_FRAME)
|
|
printk("rx u control frame\n");
|
|
if (status & RX_MISSED_FRAME)
|
|
printk("rx miss\n");
|
|
}
|
|
}
|
|
prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
|
|
aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
|
|
au_sync();
|
|
|
|
/* next descriptor */
|
|
prxd = aup->rx_dma_ring[aup->rx_head];
|
|
buff_stat = prxd->buff_stat;
|
|
dev->last_rx = jiffies;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Au1000 interrupt service routine.
|
|
*/
|
|
static irqreturn_t au1000_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = (struct net_device *) dev_id;
|
|
|
|
if (dev == NULL) {
|
|
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
/* Handle RX interrupts first to minimize chance of overrun */
|
|
|
|
au1000_rx(dev);
|
|
au1000_tx_ack(dev);
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* The Tx ring has been full longer than the watchdog timeout
|
|
* value. The transmitter must be hung?
|
|
*/
|
|
static void au1000_tx_timeout(struct net_device *dev)
|
|
{
|
|
printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
|
|
reset_mac(dev);
|
|
au1000_init(dev);
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
aup->mac->control |= MAC_PROMISCUOUS;
|
|
} else if ((dev->flags & IFF_ALLMULTI) ||
|
|
dev->mc_count > MULTICAST_FILTER_LIMIT) {
|
|
aup->mac->control |= MAC_PASS_ALL_MULTI;
|
|
aup->mac->control &= ~MAC_PROMISCUOUS;
|
|
printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
|
|
} else {
|
|
int i;
|
|
struct dev_mc_list *mclist;
|
|
u32 mc_filter[2]; /* Multicast hash filter */
|
|
|
|
mc_filter[1] = mc_filter[0] = 0;
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
|
|
(long *)mc_filter);
|
|
}
|
|
aup->mac->multi_hash_high = mc_filter[1];
|
|
aup->mac->multi_hash_low = mc_filter[0];
|
|
aup->mac->control &= ~MAC_PROMISCUOUS;
|
|
aup->mac->control |= MAC_HASH_MODE;
|
|
}
|
|
}
|
|
|
|
static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
if (!netif_running(dev)) return -EINVAL;
|
|
|
|
if (!aup->phy_dev) return -EINVAL; // PHY not controllable
|
|
|
|
return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
|
|
}
|
|
|
|
static struct net_device_stats *au1000_get_stats(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
|
|
|
|
if (netif_device_present(dev)) {
|
|
return &aup->stats;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
module_init(au1000_init_module);
|
|
module_exit(au1000_cleanup_module);
|