linux_old1/tools/lib/traceevent/event-parse.c

6811 lines
146 KiB
C

/*
* Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License (not later!)
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The parts for function graph printing was taken and modified from the
* Linux Kernel that were written by
* - Copyright (C) 2009 Frederic Weisbecker,
* Frederic Weisbecker gave his permission to relicense the code to
* the Lesser General Public License.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <stdint.h>
#include <limits.h>
#include <linux/string.h>
#include <netinet/in.h>
#include "event-parse.h"
#include "event-utils.h"
static const char *input_buf;
static unsigned long long input_buf_ptr;
static unsigned long long input_buf_siz;
static int is_flag_field;
static int is_symbolic_field;
static int show_warning = 1;
#define do_warning(fmt, ...) \
do { \
if (show_warning) \
warning(fmt, ##__VA_ARGS__); \
} while (0)
#define do_warning_event(event, fmt, ...) \
do { \
if (!show_warning) \
continue; \
\
if (event) \
warning("[%s:%s] " fmt, event->system, \
event->name, ##__VA_ARGS__); \
else \
warning(fmt, ##__VA_ARGS__); \
} while (0)
static void init_input_buf(const char *buf, unsigned long long size)
{
input_buf = buf;
input_buf_siz = size;
input_buf_ptr = 0;
}
const char *pevent_get_input_buf(void)
{
return input_buf;
}
unsigned long long pevent_get_input_buf_ptr(void)
{
return input_buf_ptr;
}
struct event_handler {
struct event_handler *next;
int id;
const char *sys_name;
const char *event_name;
pevent_event_handler_func func;
void *context;
};
struct pevent_func_params {
struct pevent_func_params *next;
enum pevent_func_arg_type type;
};
struct pevent_function_handler {
struct pevent_function_handler *next;
enum pevent_func_arg_type ret_type;
char *name;
pevent_func_handler func;
struct pevent_func_params *params;
int nr_args;
};
static unsigned long long
process_defined_func(struct trace_seq *s, void *data, int size,
struct event_format *event, struct print_arg *arg);
static void free_func_handle(struct pevent_function_handler *func);
/**
* pevent_buffer_init - init buffer for parsing
* @buf: buffer to parse
* @size: the size of the buffer
*
* For use with pevent_read_token(), this initializes the internal
* buffer that pevent_read_token() will parse.
*/
void pevent_buffer_init(const char *buf, unsigned long long size)
{
init_input_buf(buf, size);
}
void breakpoint(void)
{
static int x;
x++;
}
struct print_arg *alloc_arg(void)
{
return calloc(1, sizeof(struct print_arg));
}
struct cmdline {
char *comm;
int pid;
};
static int cmdline_cmp(const void *a, const void *b)
{
const struct cmdline *ca = a;
const struct cmdline *cb = b;
if (ca->pid < cb->pid)
return -1;
if (ca->pid > cb->pid)
return 1;
return 0;
}
struct cmdline_list {
struct cmdline_list *next;
char *comm;
int pid;
};
static int cmdline_init(struct pevent *pevent)
{
struct cmdline_list *cmdlist = pevent->cmdlist;
struct cmdline_list *item;
struct cmdline *cmdlines;
int i;
cmdlines = malloc(sizeof(*cmdlines) * pevent->cmdline_count);
if (!cmdlines)
return -1;
i = 0;
while (cmdlist) {
cmdlines[i].pid = cmdlist->pid;
cmdlines[i].comm = cmdlist->comm;
i++;
item = cmdlist;
cmdlist = cmdlist->next;
free(item);
}
qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
pevent->cmdlines = cmdlines;
pevent->cmdlist = NULL;
return 0;
}
static const char *find_cmdline(struct pevent *pevent, int pid)
{
const struct cmdline *comm;
struct cmdline key;
if (!pid)
return "<idle>";
if (!pevent->cmdlines && cmdline_init(pevent))
return "<not enough memory for cmdlines!>";
key.pid = pid;
comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
sizeof(*pevent->cmdlines), cmdline_cmp);
if (comm)
return comm->comm;
return "<...>";
}
/**
* pevent_pid_is_registered - return if a pid has a cmdline registered
* @pevent: handle for the pevent
* @pid: The pid to check if it has a cmdline registered with.
*
* Returns 1 if the pid has a cmdline mapped to it
* 0 otherwise.
*/
int pevent_pid_is_registered(struct pevent *pevent, int pid)
{
const struct cmdline *comm;
struct cmdline key;
if (!pid)
return 1;
if (!pevent->cmdlines && cmdline_init(pevent))
return 0;
key.pid = pid;
comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
sizeof(*pevent->cmdlines), cmdline_cmp);
if (comm)
return 1;
return 0;
}
/*
* If the command lines have been converted to an array, then
* we must add this pid. This is much slower than when cmdlines
* are added before the array is initialized.
*/
static int add_new_comm(struct pevent *pevent, const char *comm, int pid)
{
struct cmdline *cmdlines = pevent->cmdlines;
const struct cmdline *cmdline;
struct cmdline key;
if (!pid)
return 0;
/* avoid duplicates */
key.pid = pid;
cmdline = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
sizeof(*pevent->cmdlines), cmdline_cmp);
if (cmdline) {
errno = EEXIST;
return -1;
}
cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (pevent->cmdline_count + 1));
if (!cmdlines) {
errno = ENOMEM;
return -1;
}
cmdlines[pevent->cmdline_count].comm = strdup(comm);
if (!cmdlines[pevent->cmdline_count].comm) {
free(cmdlines);
errno = ENOMEM;
return -1;
}
cmdlines[pevent->cmdline_count].pid = pid;
if (cmdlines[pevent->cmdline_count].comm)
pevent->cmdline_count++;
qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
pevent->cmdlines = cmdlines;
return 0;
}
/**
* pevent_register_comm - register a pid / comm mapping
* @pevent: handle for the pevent
* @comm: the command line to register
* @pid: the pid to map the command line to
*
* This adds a mapping to search for command line names with
* a given pid. The comm is duplicated.
*/
int pevent_register_comm(struct pevent *pevent, const char *comm, int pid)
{
struct cmdline_list *item;
if (pevent->cmdlines)
return add_new_comm(pevent, comm, pid);
item = malloc(sizeof(*item));
if (!item)
return -1;
if (comm)
item->comm = strdup(comm);
else
item->comm = strdup("<...>");
if (!item->comm) {
free(item);
return -1;
}
item->pid = pid;
item->next = pevent->cmdlist;
pevent->cmdlist = item;
pevent->cmdline_count++;
return 0;
}
int pevent_register_trace_clock(struct pevent *pevent, const char *trace_clock)
{
pevent->trace_clock = strdup(trace_clock);
if (!pevent->trace_clock) {
errno = ENOMEM;
return -1;
}
return 0;
}
struct func_map {
unsigned long long addr;
char *func;
char *mod;
};
struct func_list {
struct func_list *next;
unsigned long long addr;
char *func;
char *mod;
};
static int func_cmp(const void *a, const void *b)
{
const struct func_map *fa = a;
const struct func_map *fb = b;
if (fa->addr < fb->addr)
return -1;
if (fa->addr > fb->addr)
return 1;
return 0;
}
/*
* We are searching for a record in between, not an exact
* match.
*/
static int func_bcmp(const void *a, const void *b)
{
const struct func_map *fa = a;
const struct func_map *fb = b;
if ((fa->addr == fb->addr) ||
(fa->addr > fb->addr &&
fa->addr < (fb+1)->addr))
return 0;
if (fa->addr < fb->addr)
return -1;
return 1;
}
static int func_map_init(struct pevent *pevent)
{
struct func_list *funclist;
struct func_list *item;
struct func_map *func_map;
int i;
func_map = malloc(sizeof(*func_map) * (pevent->func_count + 1));
if (!func_map)
return -1;
funclist = pevent->funclist;
i = 0;
while (funclist) {
func_map[i].func = funclist->func;
func_map[i].addr = funclist->addr;
func_map[i].mod = funclist->mod;
i++;
item = funclist;
funclist = funclist->next;
free(item);
}
qsort(func_map, pevent->func_count, sizeof(*func_map), func_cmp);
/*
* Add a special record at the end.
*/
func_map[pevent->func_count].func = NULL;
func_map[pevent->func_count].addr = 0;
func_map[pevent->func_count].mod = NULL;
pevent->func_map = func_map;
pevent->funclist = NULL;
return 0;
}
static struct func_map *
__find_func(struct pevent *pevent, unsigned long long addr)
{
struct func_map *func;
struct func_map key;
if (!pevent->func_map)
func_map_init(pevent);
key.addr = addr;
func = bsearch(&key, pevent->func_map, pevent->func_count,
sizeof(*pevent->func_map), func_bcmp);
return func;
}
struct func_resolver {
pevent_func_resolver_t *func;
void *priv;
struct func_map map;
};
/**
* pevent_set_function_resolver - set an alternative function resolver
* @pevent: handle for the pevent
* @resolver: function to be used
* @priv: resolver function private state.
*
* Some tools may have already a way to resolve kernel functions, allow them to
* keep using it instead of duplicating all the entries inside
* pevent->funclist.
*/
int pevent_set_function_resolver(struct pevent *pevent,
pevent_func_resolver_t *func, void *priv)
{
struct func_resolver *resolver = malloc(sizeof(*resolver));
if (resolver == NULL)
return -1;
resolver->func = func;
resolver->priv = priv;
free(pevent->func_resolver);
pevent->func_resolver = resolver;
return 0;
}
/**
* pevent_reset_function_resolver - reset alternative function resolver
* @pevent: handle for the pevent
*
* Stop using whatever alternative resolver was set, use the default
* one instead.
*/
void pevent_reset_function_resolver(struct pevent *pevent)
{
free(pevent->func_resolver);
pevent->func_resolver = NULL;
}
static struct func_map *
find_func(struct pevent *pevent, unsigned long long addr)
{
struct func_map *map;
if (!pevent->func_resolver)
return __find_func(pevent, addr);
map = &pevent->func_resolver->map;
map->mod = NULL;
map->addr = addr;
map->func = pevent->func_resolver->func(pevent->func_resolver->priv,
&map->addr, &map->mod);
if (map->func == NULL)
return NULL;
return map;
}
/**
* pevent_find_function - find a function by a given address
* @pevent: handle for the pevent
* @addr: the address to find the function with
*
* Returns a pointer to the function stored that has the given
* address. Note, the address does not have to be exact, it
* will select the function that would contain the address.
*/
const char *pevent_find_function(struct pevent *pevent, unsigned long long addr)
{
struct func_map *map;
map = find_func(pevent, addr);
if (!map)
return NULL;
return map->func;
}
/**
* pevent_find_function_address - find a function address by a given address
* @pevent: handle for the pevent
* @addr: the address to find the function with
*
* Returns the address the function starts at. This can be used in
* conjunction with pevent_find_function to print both the function
* name and the function offset.
*/
unsigned long long
pevent_find_function_address(struct pevent *pevent, unsigned long long addr)
{
struct func_map *map;
map = find_func(pevent, addr);
if (!map)
return 0;
return map->addr;
}
/**
* pevent_register_function - register a function with a given address
* @pevent: handle for the pevent
* @function: the function name to register
* @addr: the address the function starts at
* @mod: the kernel module the function may be in (NULL for none)
*
* This registers a function name with an address and module.
* The @func passed in is duplicated.
*/
int pevent_register_function(struct pevent *pevent, char *func,
unsigned long long addr, char *mod)
{
struct func_list *item = malloc(sizeof(*item));
if (!item)
return -1;
item->next = pevent->funclist;
item->func = strdup(func);
if (!item->func)
goto out_free;
if (mod) {
item->mod = strdup(mod);
if (!item->mod)
goto out_free_func;
} else
item->mod = NULL;
item->addr = addr;
pevent->funclist = item;
pevent->func_count++;
return 0;
out_free_func:
free(item->func);
item->func = NULL;
out_free:
free(item);
errno = ENOMEM;
return -1;
}
/**
* pevent_print_funcs - print out the stored functions
* @pevent: handle for the pevent
*
* This prints out the stored functions.
*/
void pevent_print_funcs(struct pevent *pevent)
{
int i;
if (!pevent->func_map)
func_map_init(pevent);
for (i = 0; i < (int)pevent->func_count; i++) {
printf("%016llx %s",
pevent->func_map[i].addr,
pevent->func_map[i].func);
if (pevent->func_map[i].mod)
printf(" [%s]\n", pevent->func_map[i].mod);
else
printf("\n");
}
}
struct printk_map {
unsigned long long addr;
char *printk;
};
struct printk_list {
struct printk_list *next;
unsigned long long addr;
char *printk;
};
static int printk_cmp(const void *a, const void *b)
{
const struct printk_map *pa = a;
const struct printk_map *pb = b;
if (pa->addr < pb->addr)
return -1;
if (pa->addr > pb->addr)
return 1;
return 0;
}
static int printk_map_init(struct pevent *pevent)
{
struct printk_list *printklist;
struct printk_list *item;
struct printk_map *printk_map;
int i;
printk_map = malloc(sizeof(*printk_map) * (pevent->printk_count + 1));
if (!printk_map)
return -1;
printklist = pevent->printklist;
i = 0;
while (printklist) {
printk_map[i].printk = printklist->printk;
printk_map[i].addr = printklist->addr;
i++;
item = printklist;
printklist = printklist->next;
free(item);
}
qsort(printk_map, pevent->printk_count, sizeof(*printk_map), printk_cmp);
pevent->printk_map = printk_map;
pevent->printklist = NULL;
return 0;
}
static struct printk_map *
find_printk(struct pevent *pevent, unsigned long long addr)
{
struct printk_map *printk;
struct printk_map key;
if (!pevent->printk_map && printk_map_init(pevent))
return NULL;
key.addr = addr;
printk = bsearch(&key, pevent->printk_map, pevent->printk_count,
sizeof(*pevent->printk_map), printk_cmp);
return printk;
}
/**
* pevent_register_print_string - register a string by its address
* @pevent: handle for the pevent
* @fmt: the string format to register
* @addr: the address the string was located at
*
* This registers a string by the address it was stored in the kernel.
* The @fmt passed in is duplicated.
*/
int pevent_register_print_string(struct pevent *pevent, const char *fmt,
unsigned long long addr)
{
struct printk_list *item = malloc(sizeof(*item));
char *p;
if (!item)
return -1;
item->next = pevent->printklist;
item->addr = addr;
/* Strip off quotes and '\n' from the end */
if (fmt[0] == '"')
fmt++;
item->printk = strdup(fmt);
if (!item->printk)
goto out_free;
p = item->printk + strlen(item->printk) - 1;
if (*p == '"')
*p = 0;
p -= 2;
if (strcmp(p, "\\n") == 0)
*p = 0;
pevent->printklist = item;
pevent->printk_count++;
return 0;
out_free:
free(item);
errno = ENOMEM;
return -1;
}
/**
* pevent_print_printk - print out the stored strings
* @pevent: handle for the pevent
*
* This prints the string formats that were stored.
*/
void pevent_print_printk(struct pevent *pevent)
{
int i;
if (!pevent->printk_map)
printk_map_init(pevent);
for (i = 0; i < (int)pevent->printk_count; i++) {
printf("%016llx %s\n",
pevent->printk_map[i].addr,
pevent->printk_map[i].printk);
}
}
static struct event_format *alloc_event(void)
{
return calloc(1, sizeof(struct event_format));
}
static int add_event(struct pevent *pevent, struct event_format *event)
{
int i;
struct event_format **events = realloc(pevent->events, sizeof(event) *
(pevent->nr_events + 1));
if (!events)
return -1;
pevent->events = events;
for (i = 0; i < pevent->nr_events; i++) {
if (pevent->events[i]->id > event->id)
break;
}
if (i < pevent->nr_events)
memmove(&pevent->events[i + 1],
&pevent->events[i],
sizeof(event) * (pevent->nr_events - i));
pevent->events[i] = event;
pevent->nr_events++;
event->pevent = pevent;
return 0;
}
static int event_item_type(enum event_type type)
{
switch (type) {
case EVENT_ITEM ... EVENT_SQUOTE:
return 1;
case EVENT_ERROR ... EVENT_DELIM:
default:
return 0;
}
}
static void free_flag_sym(struct print_flag_sym *fsym)
{
struct print_flag_sym *next;
while (fsym) {
next = fsym->next;
free(fsym->value);
free(fsym->str);
free(fsym);
fsym = next;
}
}
static void free_arg(struct print_arg *arg)
{
struct print_arg *farg;
if (!arg)
return;
switch (arg->type) {
case PRINT_ATOM:
free(arg->atom.atom);
break;
case PRINT_FIELD:
free(arg->field.name);
break;
case PRINT_FLAGS:
free_arg(arg->flags.field);
free(arg->flags.delim);
free_flag_sym(arg->flags.flags);
break;
case PRINT_SYMBOL:
free_arg(arg->symbol.field);
free_flag_sym(arg->symbol.symbols);
break;
case PRINT_HEX:
free_arg(arg->hex.field);
free_arg(arg->hex.size);
break;
case PRINT_INT_ARRAY:
free_arg(arg->int_array.field);
free_arg(arg->int_array.count);
free_arg(arg->int_array.el_size);
break;
case PRINT_TYPE:
free(arg->typecast.type);
free_arg(arg->typecast.item);
break;
case PRINT_STRING:
case PRINT_BSTRING:
free(arg->string.string);
break;
case PRINT_BITMASK:
free(arg->bitmask.bitmask);
break;
case PRINT_DYNAMIC_ARRAY:
case PRINT_DYNAMIC_ARRAY_LEN:
free(arg->dynarray.index);
break;
case PRINT_OP:
free(arg->op.op);
free_arg(arg->op.left);
free_arg(arg->op.right);
break;
case PRINT_FUNC:
while (arg->func.args) {
farg = arg->func.args;
arg->func.args = farg->next;
free_arg(farg);
}
break;
case PRINT_NULL:
default:
break;
}
free(arg);
}
static enum event_type get_type(int ch)
{
if (ch == '\n')
return EVENT_NEWLINE;
if (isspace(ch))
return EVENT_SPACE;
if (isalnum(ch) || ch == '_')
return EVENT_ITEM;
if (ch == '\'')
return EVENT_SQUOTE;
if (ch == '"')
return EVENT_DQUOTE;
if (!isprint(ch))
return EVENT_NONE;
if (ch == '(' || ch == ')' || ch == ',')
return EVENT_DELIM;
return EVENT_OP;
}
static int __read_char(void)
{
if (input_buf_ptr >= input_buf_siz)
return -1;
return input_buf[input_buf_ptr++];
}
static int __peek_char(void)
{
if (input_buf_ptr >= input_buf_siz)
return -1;
return input_buf[input_buf_ptr];
}
/**
* pevent_peek_char - peek at the next character that will be read
*
* Returns the next character read, or -1 if end of buffer.
*/
int pevent_peek_char(void)
{
return __peek_char();
}
static int extend_token(char **tok, char *buf, int size)
{
char *newtok = realloc(*tok, size);
if (!newtok) {
free(*tok);
*tok = NULL;
return -1;
}
if (!*tok)
strcpy(newtok, buf);
else
strcat(newtok, buf);
*tok = newtok;
return 0;
}
static enum event_type force_token(const char *str, char **tok);
static enum event_type __read_token(char **tok)
{
char buf[BUFSIZ];
int ch, last_ch, quote_ch, next_ch;
int i = 0;
int tok_size = 0;
enum event_type type;
*tok = NULL;
ch = __read_char();
if (ch < 0)
return EVENT_NONE;
type = get_type(ch);
if (type == EVENT_NONE)
return type;
buf[i++] = ch;
switch (type) {
case EVENT_NEWLINE:
case EVENT_DELIM:
if (asprintf(tok, "%c", ch) < 0)
return EVENT_ERROR;
return type;
case EVENT_OP:
switch (ch) {
case '-':
next_ch = __peek_char();
if (next_ch == '>') {
buf[i++] = __read_char();
break;
}
/* fall through */
case '+':
case '|':
case '&':
case '>':
case '<':
last_ch = ch;
ch = __peek_char();
if (ch != last_ch)
goto test_equal;
buf[i++] = __read_char();
switch (last_ch) {
case '>':
case '<':
goto test_equal;
default:
break;
}
break;
case '!':
case '=':
goto test_equal;
default: /* what should we do instead? */
break;
}
buf[i] = 0;
*tok = strdup(buf);
return type;
test_equal:
ch = __peek_char();
if (ch == '=')
buf[i++] = __read_char();
goto out;
case EVENT_DQUOTE:
case EVENT_SQUOTE:
/* don't keep quotes */
i--;
quote_ch = ch;
last_ch = 0;
concat:
do {
if (i == (BUFSIZ - 1)) {
buf[i] = 0;
tok_size += BUFSIZ;
if (extend_token(tok, buf, tok_size) < 0)
return EVENT_NONE;
i = 0;
}
last_ch = ch;
ch = __read_char();
buf[i++] = ch;
/* the '\' '\' will cancel itself */
if (ch == '\\' && last_ch == '\\')
last_ch = 0;
} while (ch != quote_ch || last_ch == '\\');
/* remove the last quote */
i--;
/*
* For strings (double quotes) check the next token.
* If it is another string, concatinate the two.
*/
if (type == EVENT_DQUOTE) {
unsigned long long save_input_buf_ptr = input_buf_ptr;
do {
ch = __read_char();
} while (isspace(ch));
if (ch == '"')
goto concat;
input_buf_ptr = save_input_buf_ptr;
}
goto out;
case EVENT_ERROR ... EVENT_SPACE:
case EVENT_ITEM:
default:
break;
}
while (get_type(__peek_char()) == type) {
if (i == (BUFSIZ - 1)) {
buf[i] = 0;
tok_size += BUFSIZ;
if (extend_token(tok, buf, tok_size) < 0)
return EVENT_NONE;
i = 0;
}
ch = __read_char();
buf[i++] = ch;
}
out:
buf[i] = 0;
if (extend_token(tok, buf, tok_size + i + 1) < 0)
return EVENT_NONE;
if (type == EVENT_ITEM) {
/*
* Older versions of the kernel has a bug that
* creates invalid symbols and will break the mac80211
* parsing. This is a work around to that bug.
*
* See Linux kernel commit:
* 811cb50baf63461ce0bdb234927046131fc7fa8b
*/
if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
free(*tok);
*tok = NULL;
return force_token("\"\%s\" ", tok);
} else if (strcmp(*tok, "STA_PR_FMT") == 0) {
free(*tok);
*tok = NULL;
return force_token("\" sta:%pM\" ", tok);
} else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
free(*tok);
*tok = NULL;
return force_token("\" vif:%p(%d)\" ", tok);
}
}
return type;
}
static enum event_type force_token(const char *str, char **tok)
{
const char *save_input_buf;
unsigned long long save_input_buf_ptr;
unsigned long long save_input_buf_siz;
enum event_type type;
/* save off the current input pointers */
save_input_buf = input_buf;
save_input_buf_ptr = input_buf_ptr;
save_input_buf_siz = input_buf_siz;
init_input_buf(str, strlen(str));
type = __read_token(tok);
/* reset back to original token */
input_buf = save_input_buf;
input_buf_ptr = save_input_buf_ptr;
input_buf_siz = save_input_buf_siz;
return type;
}
static void free_token(char *tok)
{
if (tok)
free(tok);
}
static enum event_type read_token(char **tok)
{
enum event_type type;
for (;;) {
type = __read_token(tok);
if (type != EVENT_SPACE)
return type;
free_token(*tok);
}
/* not reached */
*tok = NULL;
return EVENT_NONE;
}
/**
* pevent_read_token - access to utilites to use the pevent parser
* @tok: The token to return
*
* This will parse tokens from the string given by
* pevent_init_data().
*
* Returns the token type.
*/
enum event_type pevent_read_token(char **tok)
{
return read_token(tok);
}
/**
* pevent_free_token - free a token returned by pevent_read_token
* @token: the token to free
*/
void pevent_free_token(char *token)
{
free_token(token);
}
/* no newline */
static enum event_type read_token_item(char **tok)
{
enum event_type type;
for (;;) {
type = __read_token(tok);
if (type != EVENT_SPACE && type != EVENT_NEWLINE)
return type;
free_token(*tok);
*tok = NULL;
}
/* not reached */
*tok = NULL;
return EVENT_NONE;
}
static int test_type(enum event_type type, enum event_type expect)
{
if (type != expect) {
do_warning("Error: expected type %d but read %d",
expect, type);
return -1;
}
return 0;
}
static int test_type_token(enum event_type type, const char *token,
enum event_type expect, const char *expect_tok)
{
if (type != expect) {
do_warning("Error: expected type %d but read %d",
expect, type);
return -1;
}
if (strcmp(token, expect_tok) != 0) {
do_warning("Error: expected '%s' but read '%s'",
expect_tok, token);
return -1;
}
return 0;
}
static int __read_expect_type(enum event_type expect, char **tok, int newline_ok)
{
enum event_type type;
if (newline_ok)
type = read_token(tok);
else
type = read_token_item(tok);
return test_type(type, expect);
}
static int read_expect_type(enum event_type expect, char **tok)
{
return __read_expect_type(expect, tok, 1);
}
static int __read_expected(enum event_type expect, const char *str,
int newline_ok)
{
enum event_type type;
char *token;
int ret;
if (newline_ok)
type = read_token(&token);
else
type = read_token_item(&token);
ret = test_type_token(type, token, expect, str);
free_token(token);
return ret;
}
static int read_expected(enum event_type expect, const char *str)
{
return __read_expected(expect, str, 1);
}
static int read_expected_item(enum event_type expect, const char *str)
{
return __read_expected(expect, str, 0);
}
static char *event_read_name(void)
{
char *token;
if (read_expected(EVENT_ITEM, "name") < 0)
return NULL;
if (read_expected(EVENT_OP, ":") < 0)
return NULL;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
return token;
fail:
free_token(token);
return NULL;
}
static int event_read_id(void)
{
char *token;
int id;
if (read_expected_item(EVENT_ITEM, "ID") < 0)
return -1;
if (read_expected(EVENT_OP, ":") < 0)
return -1;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
id = strtoul(token, NULL, 0);
free_token(token);
return id;
fail:
free_token(token);
return -1;
}
static int field_is_string(struct format_field *field)
{
if ((field->flags & FIELD_IS_ARRAY) &&
(strstr(field->type, "char") || strstr(field->type, "u8") ||
strstr(field->type, "s8")))
return 1;
return 0;
}
static int field_is_dynamic(struct format_field *field)
{
if (strncmp(field->type, "__data_loc", 10) == 0)
return 1;
return 0;
}
static int field_is_long(struct format_field *field)
{
/* includes long long */
if (strstr(field->type, "long"))
return 1;
return 0;
}
static unsigned int type_size(const char *name)
{
/* This covers all FIELD_IS_STRING types. */
static struct {
const char *type;
unsigned int size;
} table[] = {
{ "u8", 1 },
{ "u16", 2 },
{ "u32", 4 },
{ "u64", 8 },
{ "s8", 1 },
{ "s16", 2 },
{ "s32", 4 },
{ "s64", 8 },
{ "char", 1 },
{ },
};
int i;
for (i = 0; table[i].type; i++) {
if (!strcmp(table[i].type, name))
return table[i].size;
}
return 0;
}
static int event_read_fields(struct event_format *event, struct format_field **fields)
{
struct format_field *field = NULL;
enum event_type type;
char *token;
char *last_token;
int count = 0;
do {
unsigned int size_dynamic = 0;
type = read_token(&token);
if (type == EVENT_NEWLINE) {
free_token(token);
return count;
}
count++;
if (test_type_token(type, token, EVENT_ITEM, "field"))
goto fail;
free_token(token);
type = read_token(&token);
/*
* The ftrace fields may still use the "special" name.
* Just ignore it.
*/
if (event->flags & EVENT_FL_ISFTRACE &&
type == EVENT_ITEM && strcmp(token, "special") == 0) {
free_token(token);
type = read_token(&token);
}
if (test_type_token(type, token, EVENT_OP, ":") < 0)
goto fail;
free_token(token);
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
last_token = token;
field = calloc(1, sizeof(*field));
if (!field)
goto fail;
field->event = event;
/* read the rest of the type */
for (;;) {
type = read_token(&token);
if (type == EVENT_ITEM ||
(type == EVENT_OP && strcmp(token, "*") == 0) ||
/*
* Some of the ftrace fields are broken and have
* an illegal "." in them.
*/
(event->flags & EVENT_FL_ISFTRACE &&
type == EVENT_OP && strcmp(token, ".") == 0)) {
if (strcmp(token, "*") == 0)
field->flags |= FIELD_IS_POINTER;
if (field->type) {
char *new_type;
new_type = realloc(field->type,
strlen(field->type) +
strlen(last_token) + 2);
if (!new_type) {
free(last_token);
goto fail;
}
field->type = new_type;
strcat(field->type, " ");
strcat(field->type, last_token);
free(last_token);
} else
field->type = last_token;
last_token = token;
continue;
}
break;
}
if (!field->type) {
do_warning_event(event, "%s: no type found", __func__);
goto fail;
}
field->name = field->alias = last_token;
if (test_type(type, EVENT_OP))
goto fail;
if (strcmp(token, "[") == 0) {
enum event_type last_type = type;
char *brackets = token;
char *new_brackets;
int len;
field->flags |= FIELD_IS_ARRAY;
type = read_token(&token);
if (type == EVENT_ITEM)
field->arraylen = strtoul(token, NULL, 0);
else
field->arraylen = 0;
while (strcmp(token, "]") != 0) {
if (last_type == EVENT_ITEM &&
type == EVENT_ITEM)
len = 2;
else
len = 1;
last_type = type;
new_brackets = realloc(brackets,
strlen(brackets) +
strlen(token) + len);
if (!new_brackets) {
free(brackets);
goto fail;
}
brackets = new_brackets;
if (len == 2)
strcat(brackets, " ");
strcat(brackets, token);
/* We only care about the last token */
field->arraylen = strtoul(token, NULL, 0);
free_token(token);
type = read_token(&token);
if (type == EVENT_NONE) {
do_warning_event(event, "failed to find token");
goto fail;
}
}
free_token(token);
new_brackets = realloc(brackets, strlen(brackets) + 2);
if (!new_brackets) {
free(brackets);
goto fail;
}
brackets = new_brackets;
strcat(brackets, "]");
/* add brackets to type */
type = read_token(&token);
/*
* If the next token is not an OP, then it is of
* the format: type [] item;
*/
if (type == EVENT_ITEM) {
char *new_type;
new_type = realloc(field->type,
strlen(field->type) +
strlen(field->name) +
strlen(brackets) + 2);
if (!new_type) {
free(brackets);
goto fail;
}
field->type = new_type;
strcat(field->type, " ");
strcat(field->type, field->name);
size_dynamic = type_size(field->name);
free_token(field->name);
strcat(field->type, brackets);
field->name = field->alias = token;
type = read_token(&token);
} else {
char *new_type;
new_type = realloc(field->type,
strlen(field->type) +
strlen(brackets) + 1);
if (!new_type) {
free(brackets);
goto fail;
}
field->type = new_type;
strcat(field->type, brackets);
}
free(brackets);
}
if (field_is_string(field))
field->flags |= FIELD_IS_STRING;
if (field_is_dynamic(field))
field->flags |= FIELD_IS_DYNAMIC;
if (field_is_long(field))
field->flags |= FIELD_IS_LONG;
if (test_type_token(type, token, EVENT_OP, ";"))
goto fail;
free_token(token);
if (read_expected(EVENT_ITEM, "offset") < 0)
goto fail_expect;
if (read_expected(EVENT_OP, ":") < 0)
goto fail_expect;
if (read_expect_type(EVENT_ITEM, &token))
goto fail;
field->offset = strtoul(token, NULL, 0);
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
goto fail_expect;
if (read_expected(EVENT_ITEM, "size") < 0)
goto fail_expect;
if (read_expected(EVENT_OP, ":") < 0)
goto fail_expect;
if (read_expect_type(EVENT_ITEM, &token))
goto fail;
field->size = strtoul(token, NULL, 0);
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
goto fail_expect;
type = read_token(&token);
if (type != EVENT_NEWLINE) {
/* newer versions of the kernel have a "signed" type */
if (test_type_token(type, token, EVENT_ITEM, "signed"))
goto fail;
free_token(token);
if (read_expected(EVENT_OP, ":") < 0)
goto fail_expect;
if (read_expect_type(EVENT_ITEM, &token))
goto fail;
if (strtoul(token, NULL, 0))
field->flags |= FIELD_IS_SIGNED;
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
goto fail_expect;
if (read_expect_type(EVENT_NEWLINE, &token))
goto fail;
}
free_token(token);
if (field->flags & FIELD_IS_ARRAY) {
if (field->arraylen)
field->elementsize = field->size / field->arraylen;
else if (field->flags & FIELD_IS_DYNAMIC)
field->elementsize = size_dynamic;
else if (field->flags & FIELD_IS_STRING)
field->elementsize = 1;
else if (field->flags & FIELD_IS_LONG)
field->elementsize = event->pevent ?
event->pevent->long_size :
sizeof(long);
} else
field->elementsize = field->size;
*fields = field;
fields = &field->next;
} while (1);
return 0;
fail:
free_token(token);
fail_expect:
if (field) {
free(field->type);
free(field->name);
free(field);
}
return -1;
}
static int event_read_format(struct event_format *event)
{
char *token;
int ret;
if (read_expected_item(EVENT_ITEM, "format") < 0)
return -1;
if (read_expected(EVENT_OP, ":") < 0)
return -1;
if (read_expect_type(EVENT_NEWLINE, &token))
goto fail;
free_token(token);
ret = event_read_fields(event, &event->format.common_fields);
if (ret < 0)
return ret;
event->format.nr_common = ret;
ret = event_read_fields(event, &event->format.fields);
if (ret < 0)
return ret;
event->format.nr_fields = ret;
return 0;
fail:
free_token(token);
return -1;
}
static enum event_type
process_arg_token(struct event_format *event, struct print_arg *arg,
char **tok, enum event_type type);
static enum event_type
process_arg(struct event_format *event, struct print_arg *arg, char **tok)
{
enum event_type type;
char *token;
type = read_token(&token);
*tok = token;
return process_arg_token(event, arg, tok, type);
}
static enum event_type
process_op(struct event_format *event, struct print_arg *arg, char **tok);
/*
* For __print_symbolic() and __print_flags, we need to completely
* evaluate the first argument, which defines what to print next.
*/
static enum event_type
process_field_arg(struct event_format *event, struct print_arg *arg, char **tok)
{
enum event_type type;
type = process_arg(event, arg, tok);
while (type == EVENT_OP) {
type = process_op(event, arg, tok);
}
return type;
}
static enum event_type
process_cond(struct event_format *event, struct print_arg *top, char **tok)
{
struct print_arg *arg, *left, *right;
enum event_type type;
char *token = NULL;
arg = alloc_arg();
left = alloc_arg();
right = alloc_arg();
if (!arg || !left || !right) {
do_warning_event(event, "%s: not enough memory!", __func__);
/* arg will be freed at out_free */
free_arg(left);
free_arg(right);
goto out_free;
}
arg->type = PRINT_OP;
arg->op.left = left;
arg->op.right = right;
*tok = NULL;
type = process_arg(event, left, &token);
again:
if (type == EVENT_ERROR)
goto out_free;
/* Handle other operations in the arguments */
if (type == EVENT_OP && strcmp(token, ":") != 0) {
type = process_op(event, left, &token);
goto again;
}
if (test_type_token(type, token, EVENT_OP, ":"))
goto out_free;
arg->op.op = token;
type = process_arg(event, right, &token);
top->op.right = arg;
*tok = token;
return type;
out_free:
/* Top may point to itself */
top->op.right = NULL;
free_token(token);
free_arg(arg);
return EVENT_ERROR;
}
static enum event_type
process_array(struct event_format *event, struct print_arg *top, char **tok)
{
struct print_arg *arg;
enum event_type type;
char *token = NULL;
arg = alloc_arg();
if (!arg) {
do_warning_event(event, "%s: not enough memory!", __func__);
/* '*tok' is set to top->op.op. No need to free. */
*tok = NULL;
return EVENT_ERROR;
}
*tok = NULL;
type = process_arg(event, arg, &token);
if (test_type_token(type, token, EVENT_OP, "]"))
goto out_free;
top->op.right = arg;
free_token(token);
type = read_token_item(&token);
*tok = token;
return type;
out_free:
free_token(token);
free_arg(arg);
return EVENT_ERROR;
}
static int get_op_prio(char *op)
{
if (!op[1]) {
switch (op[0]) {
case '~':
case '!':
return 4;
case '*':
case '/':
case '%':
return 6;
case '+':
case '-':
return 7;
/* '>>' and '<<' are 8 */
case '<':
case '>':
return 9;
/* '==' and '!=' are 10 */
case '&':
return 11;
case '^':
return 12;
case '|':
return 13;
case '?':
return 16;
default:
do_warning("unknown op '%c'", op[0]);
return -1;
}
} else {
if (strcmp(op, "++") == 0 ||
strcmp(op, "--") == 0) {
return 3;
} else if (strcmp(op, ">>") == 0 ||
strcmp(op, "<<") == 0) {
return 8;
} else if (strcmp(op, ">=") == 0 ||
strcmp(op, "<=") == 0) {
return 9;
} else if (strcmp(op, "==") == 0 ||
strcmp(op, "!=") == 0) {
return 10;
} else if (strcmp(op, "&&") == 0) {
return 14;
} else if (strcmp(op, "||") == 0) {
return 15;
} else {
do_warning("unknown op '%s'", op);
return -1;
}
}
}
static int set_op_prio(struct print_arg *arg)
{
/* single ops are the greatest */
if (!arg->op.left || arg->op.left->type == PRINT_NULL)
arg->op.prio = 0;
else
arg->op.prio = get_op_prio(arg->op.op);
return arg->op.prio;
}
/* Note, *tok does not get freed, but will most likely be saved */
static enum event_type
process_op(struct event_format *event, struct print_arg *arg, char **tok)
{
struct print_arg *left, *right = NULL;
enum event_type type;
char *token;
/* the op is passed in via tok */
token = *tok;
if (arg->type == PRINT_OP && !arg->op.left) {
/* handle single op */
if (token[1]) {
do_warning_event(event, "bad op token %s", token);
goto out_free;
}
switch (token[0]) {
case '~':
case '!':
case '+':
case '-':
break;
default:
do_warning_event(event, "bad op token %s", token);
goto out_free;
}
/* make an empty left */
left = alloc_arg();
if (!left)
goto out_warn_free;
left->type = PRINT_NULL;
arg->op.left = left;
right = alloc_arg();
if (!right)
goto out_warn_free;
arg->op.right = right;
/* do not free the token, it belongs to an op */
*tok = NULL;
type = process_arg(event, right, tok);
} else if (strcmp(token, "?") == 0) {
left = alloc_arg();
if (!left)
goto out_warn_free;
/* copy the top arg to the left */
*left = *arg;
arg->type = PRINT_OP;
arg->op.op = token;
arg->op.left = left;
arg->op.prio = 0;
/* it will set arg->op.right */
type = process_cond(event, arg, tok);
} else if (strcmp(token, ">>") == 0 ||
strcmp(token, "<<") == 0 ||
strcmp(token, "&") == 0 ||
strcmp(token, "|") == 0 ||
strcmp(token, "&&") == 0 ||
strcmp(token, "||") == 0 ||
strcmp(token, "-") == 0 ||
strcmp(token, "+") == 0 ||
strcmp(token, "*") == 0 ||
strcmp(token, "^") == 0 ||
strcmp(token, "/") == 0 ||
strcmp(token, "%") == 0 ||
strcmp(token, "<") == 0 ||
strcmp(token, ">") == 0 ||
strcmp(token, "<=") == 0 ||
strcmp(token, ">=") == 0 ||
strcmp(token, "==") == 0 ||
strcmp(token, "!=") == 0) {
left = alloc_arg();
if (!left)
goto out_warn_free;
/* copy the top arg to the left */
*left = *arg;
arg->type = PRINT_OP;
arg->op.op = token;
arg->op.left = left;
arg->op.right = NULL;
if (set_op_prio(arg) == -1) {
event->flags |= EVENT_FL_FAILED;
/* arg->op.op (= token) will be freed at out_free */
arg->op.op = NULL;
goto out_free;
}
type = read_token_item(&token);
*tok = token;
/* could just be a type pointer */
if ((strcmp(arg->op.op, "*") == 0) &&
type == EVENT_DELIM && (strcmp(token, ")") == 0)) {
char *new_atom;
if (left->type != PRINT_ATOM) {
do_warning_event(event, "bad pointer type");
goto out_free;
}
new_atom = realloc(left->atom.atom,
strlen(left->atom.atom) + 3);
if (!new_atom)
goto out_warn_free;
left->atom.atom = new_atom;
strcat(left->atom.atom, " *");
free(arg->op.op);
*arg = *left;
free(left);
return type;
}
right = alloc_arg();
if (!right)
goto out_warn_free;
type = process_arg_token(event, right, tok, type);
if (type == EVENT_ERROR) {
free_arg(right);
/* token was freed in process_arg_token() via *tok */
token = NULL;
goto out_free;
}
if (right->type == PRINT_OP &&
get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
struct print_arg tmp;
/* rotate ops according to the priority */
arg->op.right = right->op.left;
tmp = *arg;
*arg = *right;
*right = tmp;
arg->op.left = right;
} else {
arg->op.right = right;
}
} else if (strcmp(token, "[") == 0) {
left = alloc_arg();
if (!left)
goto out_warn_free;
*left = *arg;
arg->type = PRINT_OP;
arg->op.op = token;
arg->op.left = left;
arg->op.prio = 0;
/* it will set arg->op.right */
type = process_array(event, arg, tok);
} else {
do_warning_event(event, "unknown op '%s'", token);
event->flags |= EVENT_FL_FAILED;
/* the arg is now the left side */
goto out_free;
}
if (type == EVENT_OP && strcmp(*tok, ":") != 0) {
int prio;
/* higher prios need to be closer to the root */
prio = get_op_prio(*tok);
if (prio > arg->op.prio)
return process_op(event, arg, tok);
return process_op(event, right, tok);
}
return type;
out_warn_free:
do_warning_event(event, "%s: not enough memory!", __func__);
out_free:
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_entry(struct event_format *event __maybe_unused, struct print_arg *arg,
char **tok)
{
enum event_type type;
char *field;
char *token;
if (read_expected(EVENT_OP, "->") < 0)
goto out_err;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto out_free;
field = token;
arg->type = PRINT_FIELD;
arg->field.name = field;
if (is_flag_field) {
arg->field.field = pevent_find_any_field(event, arg->field.name);
arg->field.field->flags |= FIELD_IS_FLAG;
is_flag_field = 0;
} else if (is_symbolic_field) {
arg->field.field = pevent_find_any_field(event, arg->field.name);
arg->field.field->flags |= FIELD_IS_SYMBOLIC;
is_symbolic_field = 0;
}
type = read_token(&token);
*tok = token;
return type;
out_free:
free_token(token);
out_err:
*tok = NULL;
return EVENT_ERROR;
}
static int alloc_and_process_delim(struct event_format *event, char *next_token,
struct print_arg **print_arg)
{
struct print_arg *field;
enum event_type type;
char *token;
int ret = 0;
field = alloc_arg();
if (!field) {
do_warning_event(event, "%s: not enough memory!", __func__);
errno = ENOMEM;
return -1;
}
type = process_arg(event, field, &token);
if (test_type_token(type, token, EVENT_DELIM, next_token)) {
errno = EINVAL;
ret = -1;
free_arg(field);
goto out_free_token;
}
*print_arg = field;
out_free_token:
free_token(token);
return ret;
}
static char *arg_eval (struct print_arg *arg);
static unsigned long long
eval_type_str(unsigned long long val, const char *type, int pointer)
{
int sign = 0;
char *ref;
int len;
len = strlen(type);
if (pointer) {
if (type[len-1] != '*') {
do_warning("pointer expected with non pointer type");
return val;
}
ref = malloc(len);
if (!ref) {
do_warning("%s: not enough memory!", __func__);
return val;
}
memcpy(ref, type, len);
/* chop off the " *" */
ref[len - 2] = 0;
val = eval_type_str(val, ref, 0);
free(ref);
return val;
}
/* check if this is a pointer */
if (type[len - 1] == '*')
return val;
/* Try to figure out the arg size*/
if (strncmp(type, "struct", 6) == 0)
/* all bets off */
return val;
if (strcmp(type, "u8") == 0)
return val & 0xff;
if (strcmp(type, "u16") == 0)
return val & 0xffff;
if (strcmp(type, "u32") == 0)
return val & 0xffffffff;
if (strcmp(type, "u64") == 0 ||
strcmp(type, "s64"))
return val;
if (strcmp(type, "s8") == 0)
return (unsigned long long)(char)val & 0xff;
if (strcmp(type, "s16") == 0)
return (unsigned long long)(short)val & 0xffff;
if (strcmp(type, "s32") == 0)
return (unsigned long long)(int)val & 0xffffffff;
if (strncmp(type, "unsigned ", 9) == 0) {
sign = 0;
type += 9;
}
if (strcmp(type, "char") == 0) {
if (sign)
return (unsigned long long)(char)val & 0xff;
else
return val & 0xff;
}
if (strcmp(type, "short") == 0) {
if (sign)
return (unsigned long long)(short)val & 0xffff;
else
return val & 0xffff;
}
if (strcmp(type, "int") == 0) {
if (sign)
return (unsigned long long)(int)val & 0xffffffff;
else
return val & 0xffffffff;
}
return val;
}
/*
* Try to figure out the type.
*/
static unsigned long long
eval_type(unsigned long long val, struct print_arg *arg, int pointer)
{
if (arg->type != PRINT_TYPE) {
do_warning("expected type argument");
return 0;
}
return eval_type_str(val, arg->typecast.type, pointer);
}
static int arg_num_eval(struct print_arg *arg, long long *val)
{
long long left, right;
int ret = 1;
switch (arg->type) {
case PRINT_ATOM:
*val = strtoll(arg->atom.atom, NULL, 0);
break;
case PRINT_TYPE:
ret = arg_num_eval(arg->typecast.item, val);
if (!ret)
break;
*val = eval_type(*val, arg, 0);
break;
case PRINT_OP:
switch (arg->op.op[0]) {
case '|':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
if (arg->op.op[1])
*val = left || right;
else
*val = left | right;
break;
case '&':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
if (arg->op.op[1])
*val = left && right;
else
*val = left & right;
break;
case '<':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
switch (arg->op.op[1]) {
case 0:
*val = left < right;
break;
case '<':
*val = left << right;
break;
case '=':
*val = left <= right;
break;
default:
do_warning("unknown op '%s'", arg->op.op);
ret = 0;
}
break;
case '>':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
switch (arg->op.op[1]) {
case 0:
*val = left > right;
break;
case '>':
*val = left >> right;
break;
case '=':
*val = left >= right;
break;
default:
do_warning("unknown op '%s'", arg->op.op);
ret = 0;
}
break;
case '=':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
if (arg->op.op[1] != '=') {
do_warning("unknown op '%s'", arg->op.op);
ret = 0;
} else
*val = left == right;
break;
case '!':
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
switch (arg->op.op[1]) {
case '=':
*val = left != right;
break;
default:
do_warning("unknown op '%s'", arg->op.op);
ret = 0;
}
break;
case '-':
/* check for negative */
if (arg->op.left->type == PRINT_NULL)
left = 0;
else
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
*val = left - right;
break;
case '+':
if (arg->op.left->type == PRINT_NULL)
left = 0;
else
ret = arg_num_eval(arg->op.left, &left);
if (!ret)
break;
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
*val = left + right;
break;
case '~':
ret = arg_num_eval(arg->op.right, &right);
if (!ret)
break;
*val = ~right;
break;
default:
do_warning("unknown op '%s'", arg->op.op);
ret = 0;
}
break;
case PRINT_NULL:
case PRINT_FIELD ... PRINT_SYMBOL:
case PRINT_STRING:
case PRINT_BSTRING:
case PRINT_BITMASK:
default:
do_warning("invalid eval type %d", arg->type);
ret = 0;
}
return ret;
}
static char *arg_eval (struct print_arg *arg)
{
long long val;
static char buf[20];
switch (arg->type) {
case PRINT_ATOM:
return arg->atom.atom;
case PRINT_TYPE:
return arg_eval(arg->typecast.item);
case PRINT_OP:
if (!arg_num_eval(arg, &val))
break;
sprintf(buf, "%lld", val);
return buf;
case PRINT_NULL:
case PRINT_FIELD ... PRINT_SYMBOL:
case PRINT_STRING:
case PRINT_BSTRING:
case PRINT_BITMASK:
default:
do_warning("invalid eval type %d", arg->type);
break;
}
return NULL;
}
static enum event_type
process_fields(struct event_format *event, struct print_flag_sym **list, char **tok)
{
enum event_type type;
struct print_arg *arg = NULL;
struct print_flag_sym *field;
char *token = *tok;
char *value;
do {
free_token(token);
type = read_token_item(&token);
if (test_type_token(type, token, EVENT_OP, "{"))
break;
arg = alloc_arg();
if (!arg)
goto out_free;
free_token(token);
type = process_arg(event, arg, &token);
if (type == EVENT_OP)
type = process_op(event, arg, &token);
if (type == EVENT_ERROR)
goto out_free;
if (test_type_token(type, token, EVENT_DELIM, ","))
goto out_free;
field = calloc(1, sizeof(*field));
if (!field)
goto out_free;
value = arg_eval(arg);
if (value == NULL)
goto out_free_field;
field->value = strdup(value);
if (field->value == NULL)
goto out_free_field;
free_arg(arg);
arg = alloc_arg();
if (!arg)
goto out_free;
free_token(token);
type = process_arg(event, arg, &token);
if (test_type_token(type, token, EVENT_OP, "}"))
goto out_free_field;
value = arg_eval(arg);
if (value == NULL)
goto out_free_field;
field->str = strdup(value);
if (field->str == NULL)
goto out_free_field;
free_arg(arg);
arg = NULL;
*list = field;
list = &field->next;
free_token(token);
type = read_token_item(&token);
} while (type == EVENT_DELIM && strcmp(token, ",") == 0);
*tok = token;
return type;
out_free_field:
free_flag_sym(field);
out_free:
free_arg(arg);
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_flags(struct event_format *event, struct print_arg *arg, char **tok)
{
struct print_arg *field;
enum event_type type;
char *token = NULL;
memset(arg, 0, sizeof(*arg));
arg->type = PRINT_FLAGS;
field = alloc_arg();
if (!field) {
do_warning_event(event, "%s: not enough memory!", __func__);
goto out_free;
}
type = process_field_arg(event, field, &token);
/* Handle operations in the first argument */
while (type == EVENT_OP)
type = process_op(event, field, &token);
if (test_type_token(type, token, EVENT_DELIM, ","))
goto out_free_field;
free_token(token);
arg->flags.field = field;
type = read_token_item(&token);
if (event_item_type(type)) {
arg->flags.delim = token;
type = read_token_item(&token);
}
if (test_type_token(type, token, EVENT_DELIM, ","))
goto out_free;
type = process_fields(event, &arg->flags.flags, &token);
if (test_type_token(type, token, EVENT_DELIM, ")"))
goto out_free;
free_token(token);
type = read_token_item(tok);
return type;
out_free_field:
free_arg(field);
out_free:
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_symbols(struct event_format *event, struct print_arg *arg, char **tok)
{
struct print_arg *field;
enum event_type type;
char *token = NULL;
memset(arg, 0, sizeof(*arg));
arg->type = PRINT_SYMBOL;
field = alloc_arg();
if (!field) {
do_warning_event(event, "%s: not enough memory!", __func__);
goto out_free;
}
type = process_field_arg(event, field, &token);
if (test_type_token(type, token, EVENT_DELIM, ","))
goto out_free_field;
arg->symbol.field = field;
type = process_fields(event, &arg->symbol.symbols, &token);
if (test_type_token(type, token, EVENT_DELIM, ")"))
goto out_free;
free_token(token);
type = read_token_item(tok);
return type;
out_free_field:
free_arg(field);
out_free:
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_hex(struct event_format *event, struct print_arg *arg, char **tok)
{
memset(arg, 0, sizeof(*arg));
arg->type = PRINT_HEX;
if (alloc_and_process_delim(event, ",", &arg->hex.field))
goto out;
if (alloc_and_process_delim(event, ")", &arg->hex.size))
goto free_field;
return read_token_item(tok);
free_field:
free_arg(arg->hex.field);
arg->hex.field = NULL;
out:
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_int_array(struct event_format *event, struct print_arg *arg, char **tok)
{
memset(arg, 0, sizeof(*arg));
arg->type = PRINT_INT_ARRAY;
if (alloc_and_process_delim(event, ",", &arg->int_array.field))
goto out;
if (alloc_and_process_delim(event, ",", &arg->int_array.count))
goto free_field;
if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
goto free_size;
return read_token_item(tok);
free_size:
free_arg(arg->int_array.count);
arg->int_array.count = NULL;
free_field:
free_arg(arg->int_array.field);
arg->int_array.field = NULL;
out:
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_dynamic_array(struct event_format *event, struct print_arg *arg, char **tok)
{
struct format_field *field;
enum event_type type;
char *token;
memset(arg, 0, sizeof(*arg));
arg->type = PRINT_DYNAMIC_ARRAY;
/*
* The item within the parenthesis is another field that holds
* the index into where the array starts.
*/
type = read_token(&token);
*tok = token;
if (type != EVENT_ITEM)
goto out_free;
/* Find the field */
field = pevent_find_field(event, token);
if (!field)
goto out_free;
arg->dynarray.field = field;
arg->dynarray.index = 0;
if (read_expected(EVENT_DELIM, ")") < 0)
goto out_free;
free_token(token);
type = read_token_item(&token);
*tok = token;
if (type != EVENT_OP || strcmp(token, "[") != 0)
return type;
free_token(token);
arg = alloc_arg();
if (!arg) {
do_warning_event(event, "%s: not enough memory!", __func__);
*tok = NULL;
return EVENT_ERROR;
}
type = process_arg(event, arg, &token);
if (type == EVENT_ERROR)
goto out_free_arg;
if (!test_type_token(type, token, EVENT_OP, "]"))
goto out_free_arg;
free_token(token);
type = read_token_item(tok);
return type;
out_free_arg:
free_arg(arg);
out_free:
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_dynamic_array_len(struct event_format *event, struct print_arg *arg,
char **tok)
{
struct format_field *field;
enum event_type type;
char *token;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto out_free;
arg->type = PRINT_DYNAMIC_ARRAY_LEN;
/* Find the field */
field = pevent_find_field(event, token);
if (!field)
goto out_free;
arg->dynarray.field = field;
arg->dynarray.index = 0;
if (read_expected(EVENT_DELIM, ")") < 0)
goto out_err;
type = read_token(&token);
*tok = token;
return type;
out_free:
free_token(token);
out_err:
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_paren(struct event_format *event, struct print_arg *arg, char **tok)
{
struct print_arg *item_arg;
enum event_type type;
char *token;
type = process_arg(event, arg, &token);
if (type == EVENT_ERROR)
goto out_free;
if (type == EVENT_OP)
type = process_op(event, arg, &token);
if (type == EVENT_ERROR)
goto out_free;
if (test_type_token(type, token, EVENT_DELIM, ")"))
goto out_free;
free_token(token);
type = read_token_item(&token);
/*
* If the next token is an item or another open paren, then
* this was a typecast.
*/
if (event_item_type(type) ||
(type == EVENT_DELIM && strcmp(token, "(") == 0)) {
/* make this a typecast and contine */
/* prevous must be an atom */
if (arg->type != PRINT_ATOM) {
do_warning_event(event, "previous needed to be PRINT_ATOM");
goto out_free;
}
item_arg = alloc_arg();
if (!item_arg) {
do_warning_event(event, "%s: not enough memory!",
__func__);
goto out_free;
}
arg->type = PRINT_TYPE;
arg->typecast.type = arg->atom.atom;
arg->typecast.item = item_arg;
type = process_arg_token(event, item_arg, &token, type);
}
*tok = token;
return type;
out_free:
free_token(token);
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_str(struct event_format *event __maybe_unused, struct print_arg *arg,
char **tok)
{
enum event_type type;
char *token;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto out_free;
arg->type = PRINT_STRING;
arg->string.string = token;
arg->string.offset = -1;
if (read_expected(EVENT_DELIM, ")") < 0)
goto out_err;
type = read_token(&token);
*tok = token;
return type;
out_free:
free_token(token);
out_err:
*tok = NULL;
return EVENT_ERROR;
}
static enum event_type
process_bitmask(struct event_format *event __maybe_unused, struct print_arg *arg,
char **tok)
{
enum event_type type;
char *token;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto out_free;
arg->type = PRINT_BITMASK;
arg->bitmask.bitmask = token;
arg->bitmask.offset = -1;
if (read_expected(EVENT_DELIM, ")") < 0)
goto out_err;
type = read_token(&token);
*tok = token;
return type;
out_free:
free_token(token);
out_err:
*tok = NULL;
return EVENT_ERROR;
}
static struct pevent_function_handler *
find_func_handler(struct pevent *pevent, char *func_name)
{
struct pevent_function_handler *func;
if (!pevent)
return NULL;
for (func = pevent->func_handlers; func; func = func->next) {
if (strcmp(func->name, func_name) == 0)
break;
}
return func;
}
static void remove_func_handler(struct pevent *pevent, char *func_name)
{
struct pevent_function_handler *func;
struct pevent_function_handler **next;
next = &pevent->func_handlers;
while ((func = *next)) {
if (strcmp(func->name, func_name) == 0) {
*next = func->next;
free_func_handle(func);
break;
}
next = &func->next;
}
}
static enum event_type
process_func_handler(struct event_format *event, struct pevent_function_handler *func,
struct print_arg *arg, char **tok)
{
struct print_arg **next_arg;
struct print_arg *farg;
enum event_type type;
char *token;
int i;
arg->type = PRINT_FUNC;
arg->func.func = func;
*tok = NULL;
next_arg = &(arg->func.args);
for (i = 0; i < func->nr_args; i++) {
farg = alloc_arg();
if (!farg) {
do_warning_event(event, "%s: not enough memory!",
__func__);
return EVENT_ERROR;
}
type = process_arg(event, farg, &token);
if (i < (func->nr_args - 1)) {
if (type != EVENT_DELIM || strcmp(token, ",") != 0) {
do_warning_event(event,
"Error: function '%s()' expects %d arguments but event %s only uses %d",
func->name, func->nr_args,
event->name, i + 1);
goto err;
}
} else {
if (type != EVENT_DELIM || strcmp(token, ")") != 0) {
do_warning_event(event,
"Error: function '%s()' only expects %d arguments but event %s has more",
func->name, func->nr_args, event->name);
goto err;
}
}
*next_arg = farg;
next_arg = &(farg->next);
free_token(token);
}
type = read_token(&token);
*tok = token;
return type;
err:
free_arg(farg);
free_token(token);
return EVENT_ERROR;
}
static enum event_type
process_function(struct event_format *event, struct print_arg *arg,
char *token, char **tok)
{
struct pevent_function_handler *func;
if (strcmp(token, "__print_flags") == 0) {
free_token(token);
is_flag_field = 1;
return process_flags(event, arg, tok);
}
if (strcmp(token, "__print_symbolic") == 0) {
free_token(token);
is_symbolic_field = 1;
return process_symbols(event, arg, tok);
}
if (strcmp(token, "__print_hex") == 0) {
free_token(token);
return process_hex(event, arg, tok);
}
if (strcmp(token, "__print_array") == 0) {
free_token(token);
return process_int_array(event, arg, tok);
}
if (strcmp(token, "__get_str") == 0) {
free_token(token);
return process_str(event, arg, tok);
}
if (strcmp(token, "__get_bitmask") == 0) {
free_token(token);
return process_bitmask(event, arg, tok);
}
if (strcmp(token, "__get_dynamic_array") == 0) {
free_token(token);
return process_dynamic_array(event, arg, tok);
}
if (strcmp(token, "__get_dynamic_array_len") == 0) {
free_token(token);
return process_dynamic_array_len(event, arg, tok);
}
func = find_func_handler(event->pevent, token);
if (func) {
free_token(token);
return process_func_handler(event, func, arg, tok);
}
do_warning_event(event, "function %s not defined", token);
free_token(token);
return EVENT_ERROR;
}
static enum event_type
process_arg_token(struct event_format *event, struct print_arg *arg,
char **tok, enum event_type type)
{
char *token;
char *atom;
token = *tok;
switch (type) {
case EVENT_ITEM:
if (strcmp(token, "REC") == 0) {
free_token(token);
type = process_entry(event, arg, &token);
break;
}
atom = token;
/* test the next token */
type = read_token_item(&token);
/*
* If the next token is a parenthesis, then this
* is a function.
*/
if (type == EVENT_DELIM && strcmp(token, "(") == 0) {
free_token(token);
token = NULL;
/* this will free atom. */
type = process_function(event, arg, atom, &token);
break;
}
/* atoms can be more than one token long */
while (type == EVENT_ITEM) {
char *new_atom;
new_atom = realloc(atom,
strlen(atom) + strlen(token) + 2);
if (!new_atom) {
free(atom);
*tok = NULL;
free_token(token);
return EVENT_ERROR;
}
atom = new_atom;
strcat(atom, " ");
strcat(atom, token);
free_token(token);
type = read_token_item(&token);
}
arg->type = PRINT_ATOM;
arg->atom.atom = atom;
break;
case EVENT_DQUOTE:
case EVENT_SQUOTE:
arg->type = PRINT_ATOM;
arg->atom.atom = token;
type = read_token_item(&token);
break;
case EVENT_DELIM:
if (strcmp(token, "(") == 0) {
free_token(token);
type = process_paren(event, arg, &token);
break;
}
case EVENT_OP:
/* handle single ops */
arg->type = PRINT_OP;
arg->op.op = token;
arg->op.left = NULL;
type = process_op(event, arg, &token);
/* On error, the op is freed */
if (type == EVENT_ERROR)
arg->op.op = NULL;
/* return error type if errored */
break;
case EVENT_ERROR ... EVENT_NEWLINE:
default:
do_warning_event(event, "unexpected type %d", type);
return EVENT_ERROR;
}
*tok = token;
return type;
}
static int event_read_print_args(struct event_format *event, struct print_arg **list)
{
enum event_type type = EVENT_ERROR;
struct print_arg *arg;
char *token;
int args = 0;
do {
if (type == EVENT_NEWLINE) {
type = read_token_item(&token);
continue;
}
arg = alloc_arg();
if (!arg) {
do_warning_event(event, "%s: not enough memory!",
__func__);
return -1;
}
type = process_arg(event, arg, &token);
if (type == EVENT_ERROR) {
free_token(token);
free_arg(arg);
return -1;
}
*list = arg;
args++;
if (type == EVENT_OP) {
type = process_op(event, arg, &token);
free_token(token);
if (type == EVENT_ERROR) {
*list = NULL;
free_arg(arg);
return -1;
}
list = &arg->next;
continue;
}
if (type == EVENT_DELIM && strcmp(token, ",") == 0) {
free_token(token);
*list = arg;
list = &arg->next;
continue;
}
break;
} while (type != EVENT_NONE);
if (type != EVENT_NONE && type != EVENT_ERROR)
free_token(token);
return args;
}
static int event_read_print(struct event_format *event)
{
enum event_type type;
char *token;
int ret;
if (read_expected_item(EVENT_ITEM, "print") < 0)
return -1;
if (read_expected(EVENT_ITEM, "fmt") < 0)
return -1;
if (read_expected(EVENT_OP, ":") < 0)
return -1;
if (read_expect_type(EVENT_DQUOTE, &token) < 0)
goto fail;
concat:
event->print_fmt.format = token;
event->print_fmt.args = NULL;
/* ok to have no arg */
type = read_token_item(&token);
if (type == EVENT_NONE)
return 0;
/* Handle concatenation of print lines */
if (type == EVENT_DQUOTE) {
char *cat;
if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
goto fail;
free_token(token);
free_token(event->print_fmt.format);
event->print_fmt.format = NULL;
token = cat;
goto concat;
}
if (test_type_token(type, token, EVENT_DELIM, ","))
goto fail;
free_token(token);
ret = event_read_print_args(event, &event->print_fmt.args);
if (ret < 0)
return -1;
return ret;
fail:
free_token(token);
return -1;
}
/**
* pevent_find_common_field - return a common field by event
* @event: handle for the event
* @name: the name of the common field to return
*
* Returns a common field from the event by the given @name.
* This only searchs the common fields and not all field.
*/
struct format_field *
pevent_find_common_field(struct event_format *event, const char *name)
{
struct format_field *format;
for (format = event->format.common_fields;
format; format = format->next) {
if (strcmp(format->name, name) == 0)
break;
}
return format;
}
/**
* pevent_find_field - find a non-common field
* @event: handle for the event
* @name: the name of the non-common field
*
* Returns a non-common field by the given @name.
* This does not search common fields.
*/
struct format_field *
pevent_find_field(struct event_format *event, const char *name)
{
struct format_field *format;
for (format = event->format.fields;
format; format = format->next) {
if (strcmp(format->name, name) == 0)
break;
}
return format;
}
/**
* pevent_find_any_field - find any field by name
* @event: handle for the event
* @name: the name of the field
*
* Returns a field by the given @name.
* This searchs the common field names first, then
* the non-common ones if a common one was not found.
*/
struct format_field *
pevent_find_any_field(struct event_format *event, const char *name)
{
struct format_field *format;
format = pevent_find_common_field(event, name);
if (format)
return format;
return pevent_find_field(event, name);
}
/**
* pevent_read_number - read a number from data
* @pevent: handle for the pevent
* @ptr: the raw data
* @size: the size of the data that holds the number
*
* Returns the number (converted to host) from the
* raw data.
*/
unsigned long long pevent_read_number(struct pevent *pevent,
const void *ptr, int size)
{
switch (size) {
case 1:
return *(unsigned char *)ptr;
case 2:
return data2host2(pevent, ptr);
case 4:
return data2host4(pevent, ptr);
case 8:
return data2host8(pevent, ptr);
default:
/* BUG! */
return 0;
}
}
/**
* pevent_read_number_field - read a number from data
* @field: a handle to the field
* @data: the raw data to read
* @value: the value to place the number in
*
* Reads raw data according to a field offset and size,
* and translates it into @value.
*
* Returns 0 on success, -1 otherwise.
*/
int pevent_read_number_field(struct format_field *field, const void *data,
unsigned long long *value)
{
if (!field)
return -1;
switch (field->size) {
case 1:
case 2:
case 4:
case 8:
*value = pevent_read_number(field->event->pevent,
data + field->offset, field->size);
return 0;
default:
return -1;
}
}
static int get_common_info(struct pevent *pevent,
const char *type, int *offset, int *size)
{
struct event_format *event;
struct format_field *field;
/*
* All events should have the same common elements.
* Pick any event to find where the type is;
*/
if (!pevent->events) {
do_warning("no event_list!");
return -1;
}
event = pevent->events[0];
field = pevent_find_common_field(event, type);
if (!field)
return -1;
*offset = field->offset;
*size = field->size;
return 0;
}
static int __parse_common(struct pevent *pevent, void *data,
int *size, int *offset, const char *name)
{
int ret;
if (!*size) {
ret = get_common_info(pevent, name, offset, size);
if (ret < 0)
return ret;
}
return pevent_read_number(pevent, data + *offset, *size);
}
static int trace_parse_common_type(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->type_size, &pevent->type_offset,
"common_type");
}
static int parse_common_pid(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->pid_size, &pevent->pid_offset,
"common_pid");
}
static int parse_common_pc(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->pc_size, &pevent->pc_offset,
"common_preempt_count");
}
static int parse_common_flags(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->flags_size, &pevent->flags_offset,
"common_flags");
}
static int parse_common_lock_depth(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->ld_size, &pevent->ld_offset,
"common_lock_depth");
}
static int parse_common_migrate_disable(struct pevent *pevent, void *data)
{
return __parse_common(pevent, data,
&pevent->ld_size, &pevent->ld_offset,
"common_migrate_disable");
}
static int events_id_cmp(const void *a, const void *b);
/**
* pevent_find_event - find an event by given id
* @pevent: a handle to the pevent
* @id: the id of the event
*
* Returns an event that has a given @id.
*/
struct event_format *pevent_find_event(struct pevent *pevent, int id)
{
struct event_format **eventptr;
struct event_format key;
struct event_format *pkey = &key;
/* Check cache first */
if (pevent->last_event && pevent->last_event->id == id)
return pevent->last_event;
key.id = id;
eventptr = bsearch(&pkey, pevent->events, pevent->nr_events,
sizeof(*pevent->events), events_id_cmp);
if (eventptr) {
pevent->last_event = *eventptr;
return *eventptr;
}
return NULL;
}
/**
* pevent_find_event_by_name - find an event by given name
* @pevent: a handle to the pevent
* @sys: the system name to search for
* @name: the name of the event to search for
*
* This returns an event with a given @name and under the system
* @sys. If @sys is NULL the first event with @name is returned.
*/
struct event_format *
pevent_find_event_by_name(struct pevent *pevent,
const char *sys, const char *name)
{
struct event_format *event;
int i;
if (pevent->last_event &&
strcmp(pevent->last_event->name, name) == 0 &&
(!sys || strcmp(pevent->last_event->system, sys) == 0))
return pevent->last_event;
for (i = 0; i < pevent->nr_events; i++) {
event = pevent->events[i];
if (strcmp(event->name, name) == 0) {
if (!sys)
break;
if (strcmp(event->system, sys) == 0)
break;
}
}
if (i == pevent->nr_events)
event = NULL;
pevent->last_event = event;
return event;
}
static unsigned long long
eval_num_arg(void *data, int size, struct event_format *event, struct print_arg *arg)
{
struct pevent *pevent = event->pevent;
unsigned long long val = 0;
unsigned long long left, right;
struct print_arg *typearg = NULL;
struct print_arg *larg;
unsigned long offset;
unsigned int field_size;
switch (arg->type) {
case PRINT_NULL:
/* ?? */
return 0;
case PRINT_ATOM:
return strtoull(arg->atom.atom, NULL, 0);
case PRINT_FIELD:
if (!arg->field.field) {
arg->field.field = pevent_find_any_field(event, arg->field.name);
if (!arg->field.field)
goto out_warning_field;
}
/* must be a number */
val = pevent_read_number(pevent, data + arg->field.field->offset,
arg->field.field->size);
break;
case PRINT_FLAGS:
case PRINT_SYMBOL:
case PRINT_INT_ARRAY:
case PRINT_HEX:
break;
case PRINT_TYPE:
val = eval_num_arg(data, size, event, arg->typecast.item);
return eval_type(val, arg, 0);
case PRINT_STRING:
case PRINT_BSTRING:
case PRINT_BITMASK:
return 0;
case PRINT_FUNC: {
struct trace_seq s;
trace_seq_init(&s);
val = process_defined_func(&s, data, size, event, arg);
trace_seq_destroy(&s);
return val;
}
case PRINT_OP:
if (strcmp(arg->op.op, "[") == 0) {
/*
* Arrays are special, since we don't want
* to read the arg as is.
*/
right = eval_num_arg(data, size, event, arg->op.right);
/* handle typecasts */
larg = arg->op.left;
while (larg->type == PRINT_TYPE) {
if (!typearg)
typearg = larg;
larg = larg->typecast.item;
}
/* Default to long size */
field_size = pevent->long_size;
switch (larg->type) {
case PRINT_DYNAMIC_ARRAY:
offset = pevent_read_number(pevent,
data + larg->dynarray.field->offset,
larg->dynarray.field->size);
if (larg->dynarray.field->elementsize)
field_size = larg->dynarray.field->elementsize;
/*
* The actual length of the dynamic array is stored
* in the top half of the field, and the offset
* is in the bottom half of the 32 bit field.
*/
offset &= 0xffff;
offset += right;
break;
case PRINT_FIELD:
if (!larg->field.field) {
larg->field.field =
pevent_find_any_field(event, larg->field.name);
if (!larg->field.field) {
arg = larg;
goto out_warning_field;
}
}
field_size = larg->field.field->elementsize;
offset = larg->field.field->offset +
right * larg->field.field->elementsize;
break;
default:
goto default_op; /* oops, all bets off */
}
val = pevent_read_number(pevent,
data + offset, field_size);
if (typearg)
val = eval_type(val, typearg, 1);
break;
} else if (strcmp(arg->op.op, "?") == 0) {
left = eval_num_arg(data, size, event, arg->op.left);
arg = arg->op.right;
if (left)
val = eval_num_arg(data, size, event, arg->op.left);
else
val = eval_num_arg(data, size, event, arg->op.right);
break;
}
default_op:
left = eval_num_arg(data, size, event, arg->op.left);
right = eval_num_arg(data, size, event, arg->op.right);
switch (arg->op.op[0]) {
case '!':
switch (arg->op.op[1]) {
case 0:
val = !right;
break;
case '=':
val = left != right;
break;
default:
goto out_warning_op;
}
break;
case '~':
val = ~right;
break;
case '|':
if (arg->op.op[1])
val = left || right;
else
val = left | right;
break;
case '&':
if (arg->op.op[1])
val = left && right;
else
val = left & right;
break;
case '<':
switch (arg->op.op[1]) {
case 0:
val = left < right;
break;
case '<':
val = left << right;
break;
case '=':
val = left <= right;
break;
default:
goto out_warning_op;
}
break;
case '>':
switch (arg->op.op[1]) {
case 0:
val = left > right;
break;
case '>':
val = left >> right;
break;
case '=':
val = left >= right;
break;
default:
goto out_warning_op;
}
break;
case '=':
if (arg->op.op[1] != '=')
goto out_warning_op;
val = left == right;
break;
case '-':
val = left - right;
break;
case '+':
val = left + right;
break;
case '/':
val = left / right;
break;
case '%':
val = left % right;
break;
case '*':
val = left * right;
break;
default:
goto out_warning_op;
}
break;
case PRINT_DYNAMIC_ARRAY_LEN:
offset = pevent_read_number(pevent,
data + arg->dynarray.field->offset,
arg->dynarray.field->size);
/*
* The total allocated length of the dynamic array is
* stored in the top half of the field, and the offset
* is in the bottom half of the 32 bit field.
*/
val = (unsigned long long)(offset >> 16);
break;
case PRINT_DYNAMIC_ARRAY:
/* Without [], we pass the address to the dynamic data */
offset = pevent_read_number(pevent,
data + arg->dynarray.field->offset,
arg->dynarray.field->size);
/*
* The total allocated length of the dynamic array is
* stored in the top half of the field, and the offset
* is in the bottom half of the 32 bit field.
*/
offset &= 0xffff;
val = (unsigned long long)((unsigned long)data + offset);
break;
default: /* not sure what to do there */
return 0;
}
return val;
out_warning_op:
do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
return 0;
out_warning_field:
do_warning_event(event, "%s: field %s not found",
__func__, arg->field.name);
return 0;
}
struct flag {
const char *name;
unsigned long long value;
};
static const struct flag flags[] = {
{ "HI_SOFTIRQ", 0 },
{ "TIMER_SOFTIRQ", 1 },
{ "NET_TX_SOFTIRQ", 2 },
{ "NET_RX_SOFTIRQ", 3 },
{ "BLOCK_SOFTIRQ", 4 },
{ "IRQ_POLL_SOFTIRQ", 5 },
{ "TASKLET_SOFTIRQ", 6 },
{ "SCHED_SOFTIRQ", 7 },
{ "HRTIMER_SOFTIRQ", 8 },
{ "RCU_SOFTIRQ", 9 },
{ "HRTIMER_NORESTART", 0 },
{ "HRTIMER_RESTART", 1 },
};
static long long eval_flag(const char *flag)
{
int i;
/*
* Some flags in the format files do not get converted.
* If the flag is not numeric, see if it is something that
* we already know about.
*/
if (isdigit(flag[0]))
return strtoull(flag, NULL, 0);
for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
if (strcmp(flags[i].name, flag) == 0)
return flags[i].value;
return -1LL;
}
static void print_str_to_seq(struct trace_seq *s, const char *format,
int len_arg, const char *str)
{
if (len_arg >= 0)
trace_seq_printf(s, format, len_arg, str);
else
trace_seq_printf(s, format, str);
}
static void print_bitmask_to_seq(struct pevent *pevent,
struct trace_seq *s, const char *format,
int len_arg, const void *data, int size)
{
int nr_bits = size * 8;
int str_size = (nr_bits + 3) / 4;
int len = 0;
char buf[3];
char *str;
int index;
int i;
/*
* The kernel likes to put in commas every 32 bits, we
* can do the same.
*/
str_size += (nr_bits - 1) / 32;
str = malloc(str_size + 1);
if (!str) {
do_warning("%s: not enough memory!", __func__);
return;
}
str[str_size] = 0;
/* Start out with -2 for the two chars per byte */
for (i = str_size - 2; i >= 0; i -= 2) {
/*
* data points to a bit mask of size bytes.
* In the kernel, this is an array of long words, thus
* endianess is very important.
*/
if (pevent->file_bigendian)
index = size - (len + 1);
else
index = len;
snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
memcpy(str + i, buf, 2);
len++;
if (!(len & 3) && i > 0) {
i--;
str[i] = ',';
}
}
if (len_arg >= 0)
trace_seq_printf(s, format, len_arg, str);
else
trace_seq_printf(s, format, str);
free(str);
}
static void print_str_arg(struct trace_seq *s, void *data, int size,
struct event_format *event, const char *format,
int len_arg, struct print_arg *arg)
{
struct pevent *pevent = event->pevent;
struct print_flag_sym *flag;
struct format_field *field;
struct printk_map *printk;
long long val, fval;
unsigned long long addr;
char *str;
unsigned char *hex;
int print;
int i, len;
switch (arg->type) {
case PRINT_NULL:
/* ?? */
return;
case PRINT_ATOM:
print_str_to_seq(s, format, len_arg, arg->atom.atom);
return;
case PRINT_FIELD:
field = arg->field.field;
if (!field) {
field = pevent_find_any_field(event, arg->field.name);
if (!field) {
str = arg->field.name;
goto out_warning_field;
}
arg->field.field = field;
}
/* Zero sized fields, mean the rest of the data */
len = field->size ? : size - field->offset;
/*
* Some events pass in pointers. If this is not an array
* and the size is the same as long_size, assume that it
* is a pointer.
*/
if (!(field->flags & FIELD_IS_ARRAY) &&
field->size == pevent->long_size) {
/* Handle heterogeneous recording and processing
* architectures
*
* CASE I:
* Traces recorded on 32-bit devices (32-bit
* addressing) and processed on 64-bit devices:
* In this case, only 32 bits should be read.
*
* CASE II:
* Traces recorded on 64 bit devices and processed
* on 32-bit devices:
* In this case, 64 bits must be read.
*/
addr = (pevent->long_size == 8) ?
*(unsigned long long *)(data + field->offset) :
(unsigned long long)*(unsigned int *)(data + field->offset);
/* Check if it matches a print format */
printk = find_printk(pevent, addr);
if (printk)
trace_seq_puts(s, printk->printk);
else
trace_seq_printf(s, "%llx", addr);
break;
}
str = malloc(len + 1);
if (!str) {
do_warning_event(event, "%s: not enough memory!",
__func__);
return;
}
memcpy(str, data + field->offset, len);
str[len] = 0;
print_str_to_seq(s, format, len_arg, str);
free(str);
break;
case PRINT_FLAGS:
val = eval_num_arg(data, size, event, arg->flags.field);
print = 0;
for (flag = arg->flags.flags; flag; flag = flag->next) {
fval = eval_flag(flag->value);
if (!val && fval < 0) {
print_str_to_seq(s, format, len_arg, flag->str);
break;
}
if (fval > 0 && (val & fval) == fval) {
if (print && arg->flags.delim)
trace_seq_puts(s, arg->flags.delim);
print_str_to_seq(s, format, len_arg, flag->str);
print = 1;
val &= ~fval;
}
}
break;
case PRINT_SYMBOL:
val = eval_num_arg(data, size, event, arg->symbol.field);
for (flag = arg->symbol.symbols; flag; flag = flag->next) {
fval = eval_flag(flag->value);
if (val == fval) {
print_str_to_seq(s, format, len_arg, flag->str);
break;
}
}
break;
case PRINT_HEX:
if (arg->hex.field->type == PRINT_DYNAMIC_ARRAY) {
unsigned long offset;
offset = pevent_read_number(pevent,
data + arg->hex.field->dynarray.field->offset,
arg->hex.field->dynarray.field->size);
hex = data + (offset & 0xffff);
} else {
field = arg->hex.field->field.field;
if (!field) {
str = arg->hex.field->field.name;
field = pevent_find_any_field(event, str);
if (!field)
goto out_warning_field;
arg->hex.field->field.field = field;
}
hex = data + field->offset;
}
len = eval_num_arg(data, size, event, arg->hex.size);
for (i = 0; i < len; i++) {
if (i)
trace_seq_putc(s, ' ');
trace_seq_printf(s, "%02x", hex[i]);
}
break;
case PRINT_INT_ARRAY: {
void *num;
int el_size;
if (arg->int_array.field->type == PRINT_DYNAMIC_ARRAY) {
unsigned long offset;
struct format_field *field =
arg->int_array.field->dynarray.field;
offset = pevent_read_number(pevent,
data + field->offset,
field->size);
num = data + (offset & 0xffff);
} else {
field = arg->int_array.field->field.field;
if (!field) {
str = arg->int_array.field->field.name;
field = pevent_find_any_field(event, str);
if (!field)
goto out_warning_field;
arg->int_array.field->field.field = field;
}
num = data + field->offset;
}
len = eval_num_arg(data, size, event, arg->int_array.count);
el_size = eval_num_arg(data, size, event,
arg->int_array.el_size);
for (i = 0; i < len; i++) {
if (i)
trace_seq_putc(s, ' ');
if (el_size == 1) {
trace_seq_printf(s, "%u", *(uint8_t *)num);
} else if (el_size == 2) {
trace_seq_printf(s, "%u", *(uint16_t *)num);
} else if (el_size == 4) {
trace_seq_printf(s, "%u", *(uint32_t *)num);
} else if (el_size == 8) {
trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
} else {
trace_seq_printf(s, "BAD SIZE:%d 0x%x",
el_size, *(uint8_t *)num);
el_size = 1;
}
num += el_size;
}
break;
}
case PRINT_TYPE:
break;
case PRINT_STRING: {
int str_offset;
if (arg->string.offset == -1) {
struct format_field *f;
f = pevent_find_any_field(event, arg->string.string);
arg->string.offset = f->offset;
}
str_offset = data2host4(pevent, data + arg->string.offset);
str_offset &= 0xffff;
print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
break;
}
case PRINT_BSTRING:
print_str_to_seq(s, format, len_arg, arg->string.string);
break;
case PRINT_BITMASK: {
int bitmask_offset;
int bitmask_size;
if (arg->bitmask.offset == -1) {
struct format_field *f;
f = pevent_find_any_field(event, arg->bitmask.bitmask);
arg->bitmask.offset = f->offset;
}
bitmask_offset = data2host4(pevent, data + arg->bitmask.offset);
bitmask_size = bitmask_offset >> 16;
bitmask_offset &= 0xffff;
print_bitmask_to_seq(pevent, s, format, len_arg,
data + bitmask_offset, bitmask_size);
break;
}
case PRINT_OP:
/*
* The only op for string should be ? :
*/
if (arg->op.op[0] != '?')
return;
val = eval_num_arg(data, size, event, arg->op.left);
if (val)
print_str_arg(s, data, size, event,
format, len_arg, arg->op.right->op.left);
else
print_str_arg(s, data, size, event,
format, len_arg, arg->op.right->op.right);
break;
case PRINT_FUNC:
process_defined_func(s, data, size, event, arg);
break;
default:
/* well... */
break;
}
return;
out_warning_field:
do_warning_event(event, "%s: field %s not found",
__func__, arg->field.name);
}
static unsigned long long
process_defined_func(struct trace_seq *s, void *data, int size,
struct event_format *event, struct print_arg *arg)
{
struct pevent_function_handler *func_handle = arg->func.func;
struct pevent_func_params *param;
unsigned long long *args;
unsigned long long ret;
struct print_arg *farg;
struct trace_seq str;
struct save_str {
struct save_str *next;
char *str;
} *strings = NULL, *string;
int i;
if (!func_handle->nr_args) {
ret = (*func_handle->func)(s, NULL);
goto out;
}
farg = arg->func.args;
param = func_handle->params;
ret = ULLONG_MAX;
args = malloc(sizeof(*args) * func_handle->nr_args);
if (!args)
goto out;
for (i = 0; i < func_handle->nr_args; i++) {
switch (param->type) {
case PEVENT_FUNC_ARG_INT:
case PEVENT_FUNC_ARG_LONG:
case PEVENT_FUNC_ARG_PTR:
args[i] = eval_num_arg(data, size, event, farg);
break;
case PEVENT_FUNC_ARG_STRING:
trace_seq_init(&str);
print_str_arg(&str, data, size, event, "%s", -1, farg);
trace_seq_terminate(&str);
string = malloc(sizeof(*string));
if (!string) {
do_warning_event(event, "%s(%d): malloc str",
__func__, __LINE__);
goto out_free;
}
string->next = strings;
string->str = strdup(str.buffer);
if (!string->str) {
free(string);
do_warning_event(event, "%s(%d): malloc str",
__func__, __LINE__);
goto out_free;
}
args[i] = (uintptr_t)string->str;
strings = string;
trace_seq_destroy(&str);
break;
default:
/*
* Something went totally wrong, this is not
* an input error, something in this code broke.
*/
do_warning_event(event, "Unexpected end of arguments\n");
goto out_free;
}
farg = farg->next;
param = param->next;
}
ret = (*func_handle->func)(s, args);
out_free:
free(args);
while (strings) {
string = strings;
strings = string->next;
free(string->str);
free(string);
}
out:
/* TBD : handle return type here */
return ret;
}
static void free_args(struct print_arg *args)
{
struct print_arg *next;
while (args) {
next = args->next;
free_arg(args);
args = next;
}
}
static struct print_arg *make_bprint_args(char *fmt, void *data, int size, struct event_format *event)
{
struct pevent *pevent = event->pevent;
struct format_field *field, *ip_field;
struct print_arg *args, *arg, **next;
unsigned long long ip, val;
char *ptr;
void *bptr;
int vsize;
field = pevent->bprint_buf_field;
ip_field = pevent->bprint_ip_field;
if (!field) {
field = pevent_find_field(event, "buf");
if (!field) {
do_warning_event(event, "can't find buffer field for binary printk");
return NULL;
}
ip_field = pevent_find_field(event, "ip");
if (!ip_field) {
do_warning_event(event, "can't find ip field for binary printk");
return NULL;
}
pevent->bprint_buf_field = field;
pevent->bprint_ip_field = ip_field;
}
ip = pevent_read_number(pevent, data + ip_field->offset, ip_field->size);
/*
* The first arg is the IP pointer.
*/
args = alloc_arg();
if (!args) {
do_warning_event(event, "%s(%d): not enough memory!",
__func__, __LINE__);
return NULL;
}
arg = args;
arg->next = NULL;
next = &arg->next;
arg->type = PRINT_ATOM;
if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
goto out_free;
/* skip the first "%ps: " */
for (ptr = fmt + 5, bptr = data + field->offset;
bptr < data + size && *ptr; ptr++) {
int ls = 0;
if (*ptr == '%') {
process_again:
ptr++;
switch (*ptr) {
case '%':
break;
case 'l':
ls++;
goto process_again;
case 'L':
ls = 2;
goto process_again;
case '0' ... '9':
goto process_again;
case '.':
goto process_again;
case 'z':
case 'Z':
ls = 1;
goto process_again;
case 'p':
ls = 1;
/* fall through */
case 'd':
case 'u':
case 'x':
case 'i':
switch (ls) {
case 0:
vsize = 4;
break;
case 1:
vsize = pevent->long_size;
break;
case 2:
vsize = 8;
break;
default:
vsize = ls; /* ? */
break;
}
/* fall through */
case '*':
if (*ptr == '*')
vsize = 4;
/* the pointers are always 4 bytes aligned */
bptr = (void *)(((unsigned long)bptr + 3) &
~3);
val = pevent_read_number(pevent, bptr, vsize);
bptr += vsize;
arg = alloc_arg();
if (!arg) {
do_warning_event(event, "%s(%d): not enough memory!",
__func__, __LINE__);
goto out_free;
}
arg->next = NULL;
arg->type = PRINT_ATOM;
if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
free(arg);
goto out_free;
}
*next = arg;
next = &arg->next;
/*
* The '*' case means that an arg is used as the length.
* We need to continue to figure out for what.
*/
if (*ptr == '*')
goto process_again;
break;
case 's':
arg = alloc_arg();
if (!arg) {
do_warning_event(event, "%s(%d): not enough memory!",
__func__, __LINE__);
goto out_free;
}
arg->next = NULL;
arg->type = PRINT_BSTRING;
arg->string.string = strdup(bptr);
if (!arg->string.string)
goto out_free;
bptr += strlen(bptr) + 1;
*next = arg;
next = &arg->next;
default:
break;
}
}
}
return args;
out_free:
free_args(args);
return NULL;
}
static char *
get_bprint_format(void *data, int size __maybe_unused,
struct event_format *event)
{
struct pevent *pevent = event->pevent;
unsigned long long addr;
struct format_field *field;
struct printk_map *printk;
char *format;
field = pevent->bprint_fmt_field;
if (!field) {
field = pevent_find_field(event, "fmt");
if (!field) {
do_warning_event(event, "can't find format field for binary printk");
return NULL;
}
pevent->bprint_fmt_field = field;
}
addr = pevent_read_number(pevent, data + field->offset, field->size);
printk = find_printk(pevent, addr);
if (!printk) {
if (asprintf(&format, "%%pf: (NO FORMAT FOUND at %llx)\n", addr) < 0)
return NULL;
return format;
}
if (asprintf(&format, "%s: %s", "%pf", printk->printk) < 0)
return NULL;
return format;
}
static void print_mac_arg(struct trace_seq *s, int mac, void *data, int size,
struct event_format *event, struct print_arg *arg)
{
unsigned char *buf;
const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
if (arg->type == PRINT_FUNC) {
process_defined_func(s, data, size, event, arg);
return;
}
if (arg->type != PRINT_FIELD) {
trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
arg->type);
return;
}
if (mac == 'm')
fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
if (!arg->field.field) {
arg->field.field =
pevent_find_any_field(event, arg->field.name);
if (!arg->field.field) {
do_warning_event(event, "%s: field %s not found",
__func__, arg->field.name);
return;
}
}
if (arg->field.field->size != 6) {
trace_seq_printf(s, "INVALIDMAC");
return;
}
buf = data + arg->field.field->offset;
trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
}
static void print_ip4_addr(struct trace_seq *s, char i, unsigned char *buf)
{
const char *fmt;
if (i == 'i')
fmt = "%03d.%03d.%03d.%03d";
else
fmt = "%d.%d.%d.%d";
trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
}
static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
{
return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
(unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
}
static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
{
return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
}
static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
{
int i, j, range;
unsigned char zerolength[8];
int longest = 1;
int colonpos = -1;
uint16_t word;
uint8_t hi, lo;
bool needcolon = false;
bool useIPv4;
struct in6_addr in6;
memcpy(&in6, addr, sizeof(struct in6_addr));
useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
memset(zerolength, 0, sizeof(zerolength));
if (useIPv4)
range = 6;
else
range = 8;
/* find position of longest 0 run */
for (i = 0; i < range; i++) {
for (j = i; j < range; j++) {
if (in6.s6_addr16[j] != 0)
break;
zerolength[i]++;
}
}
for (i = 0; i < range; i++) {
if (zerolength[i] > longest) {
longest = zerolength[i];
colonpos = i;
}
}
if (longest == 1) /* don't compress a single 0 */
colonpos = -1;
/* emit address */
for (i = 0; i < range; i++) {
if (i == colonpos) {
if (needcolon || i == 0)
trace_seq_printf(s, ":");
trace_seq_printf(s, ":");
needcolon = false;
i += longest - 1;
continue;
}
if (needcolon) {
trace_seq_printf(s, ":");
needcolon = false;
}
/* hex u16 without leading 0s */
word = ntohs(in6.s6_addr16[i]);
hi = word >> 8;
lo = word & 0xff;
if (hi)
trace_seq_printf(s, "%x%02x", hi, lo);
else
trace_seq_printf(s, "%x", lo);
needcolon = true;
}
if (useIPv4) {
if (needcolon)
trace_seq_printf(s, ":");
print_ip4_addr(s, 'I', &in6.s6_addr[12]);
}
return;
}
static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
{
int j;
for (j = 0; j < 16; j += 2) {
trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
if (i == 'I' && j < 14)
trace_seq_printf(s, ":");
}
}
/*
* %pi4 print an IPv4 address with leading zeros
* %pI4 print an IPv4 address without leading zeros
* %pi6 print an IPv6 address without colons
* %pI6 print an IPv6 address with colons
* %pI6c print an IPv6 address in compressed form with colons
* %pISpc print an IP address based on sockaddr; p adds port.
*/
static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
void *data, int size, struct event_format *event,
struct print_arg *arg)
{
unsigned char *buf;
if (arg->type == PRINT_FUNC) {
process_defined_func(s, data, size, event, arg);
return 0;
}
if (arg->type != PRINT_FIELD) {
trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
return 0;
}
if (!arg->field.field) {
arg->field.field =
pevent_find_any_field(event, arg->field.name);
if (!arg->field.field) {
do_warning("%s: field %s not found",
__func__, arg->field.name);
return 0;
}
}
buf = data + arg->field.field->offset;
if (arg->field.field->size != 4) {
trace_seq_printf(s, "INVALIDIPv4");
return 0;
}
print_ip4_addr(s, i, buf);
return 0;
}
static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
void *data, int size, struct event_format *event,
struct print_arg *arg)
{
char have_c = 0;
unsigned char *buf;
int rc = 0;
/* pI6c */
if (i == 'I' && *ptr == 'c') {
have_c = 1;
ptr++;
rc++;
}
if (arg->type == PRINT_FUNC) {
process_defined_func(s, data, size, event, arg);
return rc;
}
if (arg->type != PRINT_FIELD) {
trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
return rc;
}
if (!arg->field.field) {
arg->field.field =
pevent_find_any_field(event, arg->field.name);
if (!arg->field.field) {
do_warning("%s: field %s not found",
__func__, arg->field.name);
return rc;
}
}
buf = data + arg->field.field->offset;
if (arg->field.field->size != 16) {
trace_seq_printf(s, "INVALIDIPv6");
return rc;
}
if (have_c)
print_ip6c_addr(s, buf);
else
print_ip6_addr(s, i, buf);
return rc;
}
static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
void *data, int size, struct event_format *event,
struct print_arg *arg)
{
char have_c = 0, have_p = 0;
unsigned char *buf;
struct sockaddr_storage *sa;
int rc = 0;
/* pISpc */
if (i == 'I') {
if (*ptr == 'p') {
have_p = 1;
ptr++;
rc++;
}
if (*ptr == 'c') {
have_c = 1;
ptr++;
rc++;
}
}
if (arg->type == PRINT_FUNC) {
process_defined_func(s, data, size, event, arg);
return rc;
}
if (arg->type != PRINT_FIELD) {
trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
return rc;
}
if (!arg->field.field) {
arg->field.field =
pevent_find_any_field(event, arg->field.name);
if (!arg->field.field) {
do_warning("%s: field %s not found",
__func__, arg->field.name);
return rc;
}
}
sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
if (sa->ss_family == AF_INET) {
struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
if (arg->field.field->size < sizeof(struct sockaddr_in)) {
trace_seq_printf(s, "INVALIDIPv4");
return rc;
}
print_ip4_addr(s, i, (unsigned char *) &sa4->sin_addr);
if (have_p)
trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
} else if (sa->ss_family == AF_INET6) {
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
trace_seq_printf(s, "INVALIDIPv6");
return rc;
}
if (have_p)
trace_seq_printf(s, "[");
buf = (unsigned char *) &sa6->sin6_addr;
if (have_c)
print_ip6c_addr(s, buf);
else
print_ip6_addr(s, i, buf);
if (have_p)
trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
}
return rc;
}
static int print_ip_arg(struct trace_seq *s, const char *ptr,
void *data, int size, struct event_format *event,
struct print_arg *arg)
{
char i = *ptr; /* 'i' or 'I' */
char ver;
int rc = 0;
ptr++;
rc++;
ver = *ptr;
ptr++;
rc++;
switch (ver) {
case '4':
rc += print_ipv4_arg(s, ptr, i, data, size, event, arg);
break;
case '6':
rc += print_ipv6_arg(s, ptr, i, data, size, event, arg);
break;
case 'S':
rc += print_ipsa_arg(s, ptr, i, data, size, event, arg);
break;
default:
return 0;
}
return rc;
}
static int is_printable_array(char *p, unsigned int len)
{
unsigned int i;
for (i = 0; i < len && p[i]; i++)
if (!isprint(p[i]) && !isspace(p[i]))
return 0;
return 1;
}
void pevent_print_field(struct trace_seq *s, void *data,
struct format_field *field)
{
unsigned long long val;
unsigned int offset, len, i;
struct pevent *pevent = field->event->pevent;
if (field->flags & FIELD_IS_ARRAY) {
offset = field->offset;
len = field->size;
if (field->flags & FIELD_IS_DYNAMIC) {
val = pevent_read_number(pevent, data + offset, len);
offset = val;
len = offset >> 16;
offset &= 0xffff;
}
if (field->flags & FIELD_IS_STRING &&
is_printable_array(data + offset, len)) {
trace_seq_printf(s, "%s", (char *)data + offset);
} else {
trace_seq_puts(s, "ARRAY[");
for (i = 0; i < len; i++) {
if (i)
trace_seq_puts(s, ", ");
trace_seq_printf(s, "%02x",
*((unsigned char *)data + offset + i));
}
trace_seq_putc(s, ']');
field->flags &= ~FIELD_IS_STRING;
}
} else {
val = pevent_read_number(pevent, data + field->offset,
field->size);
if (field->flags & FIELD_IS_POINTER) {
trace_seq_printf(s, "0x%llx", val);
} else if (field->flags & FIELD_IS_SIGNED) {
switch (field->size) {
case 4:
/*
* If field is long then print it in hex.
* A long usually stores pointers.
*/
if (field->flags & FIELD_IS_LONG)
trace_seq_printf(s, "0x%x", (int)val);
else
trace_seq_printf(s, "%d", (int)val);
break;
case 2:
trace_seq_printf(s, "%2d", (short)val);
break;
case 1:
trace_seq_printf(s, "%1d", (char)val);
break;
default:
trace_seq_printf(s, "%lld", val);
}
} else {
if (field->flags & FIELD_IS_LONG)
trace_seq_printf(s, "0x%llx", val);
else
trace_seq_printf(s, "%llu", val);
}
}
}
void pevent_print_fields(struct trace_seq *s, void *data,
int size __maybe_unused, struct event_format *event)
{
struct format_field *field;
field = event->format.fields;
while (field) {
trace_seq_printf(s, " %s=", field->name);
pevent_print_field(s, data, field);
field = field->next;
}
}
static void pretty_print(struct trace_seq *s, void *data, int size, struct event_format *event)
{
struct pevent *pevent = event->pevent;
struct print_fmt *print_fmt = &event->print_fmt;
struct print_arg *arg = print_fmt->args;
struct print_arg *args = NULL;
const char *ptr = print_fmt->format;
unsigned long long val;
struct func_map *func;
const char *saveptr;
struct trace_seq p;
char *bprint_fmt = NULL;
char format[32];
int show_func;
int len_as_arg;
int len_arg;
int len;
int ls;
if (event->flags & EVENT_FL_FAILED) {
trace_seq_printf(s, "[FAILED TO PARSE]");
pevent_print_fields(s, data, size, event);
return;
}
if (event->flags & EVENT_FL_ISBPRINT) {
bprint_fmt = get_bprint_format(data, size, event);
args = make_bprint_args(bprint_fmt, data, size, event);
arg = args;
ptr = bprint_fmt;
}
for (; *ptr; ptr++) {
ls = 0;
if (*ptr == '\\') {
ptr++;
switch (*ptr) {
case 'n':
trace_seq_putc(s, '\n');
break;
case 't':
trace_seq_putc(s, '\t');
break;
case 'r':
trace_seq_putc(s, '\r');
break;
case '\\':
trace_seq_putc(s, '\\');
break;
default:
trace_seq_putc(s, *ptr);
break;
}
} else if (*ptr == '%') {
saveptr = ptr;
show_func = 0;
len_as_arg = 0;
cont_process:
ptr++;
switch (*ptr) {
case '%':
trace_seq_putc(s, '%');
break;
case '#':
/* FIXME: need to handle properly */
goto cont_process;
case 'h':
ls--;
goto cont_process;
case 'l':
ls++;
goto cont_process;
case 'L':
ls = 2;
goto cont_process;
case '*':
/* The argument is the length. */
if (!arg) {
do_warning_event(event, "no argument match");
event->flags |= EVENT_FL_FAILED;
goto out_failed;
}
len_arg = eval_num_arg(data, size, event, arg);
len_as_arg = 1;
arg = arg->next;
goto cont_process;
case '.':
case 'z':
case 'Z':
case '0' ... '9':
case '-':
goto cont_process;
case 'p':
if (pevent->long_size == 4)
ls = 1;
else
ls = 2;
if (*(ptr+1) == 'F' || *(ptr+1) == 'f' ||
*(ptr+1) == 'S' || *(ptr+1) == 's') {
ptr++;
show_func = *ptr;
} else if (*(ptr+1) == 'M' || *(ptr+1) == 'm') {
print_mac_arg(s, *(ptr+1), data, size, event, arg);
ptr++;
arg = arg->next;
break;
} else if (*(ptr+1) == 'I' || *(ptr+1) == 'i') {
int n;
n = print_ip_arg(s, ptr+1, data, size, event, arg);
if (n > 0) {
ptr += n;
arg = arg->next;
break;
}
}
/* fall through */
case 'd':
case 'i':
case 'x':
case 'X':
case 'u':
if (!arg) {
do_warning_event(event, "no argument match");
event->flags |= EVENT_FL_FAILED;
goto out_failed;
}
len = ((unsigned long)ptr + 1) -
(unsigned long)saveptr;
/* should never happen */
if (len > 31) {
do_warning_event(event, "bad format!");
event->flags |= EVENT_FL_FAILED;
len = 31;
}
memcpy(format, saveptr, len);
format[len] = 0;
val = eval_num_arg(data, size, event, arg);
arg = arg->next;
if (show_func) {
func = find_func(pevent, val);
if (func) {
trace_seq_puts(s, func->func);
if (show_func == 'F')
trace_seq_printf(s,
"+0x%llx",
val - func->addr);
break;
}
}
if (pevent->long_size == 8 && ls == 1 &&
sizeof(long) != 8) {
char *p;
/* make %l into %ll */
if (ls == 1 && (p = strchr(format, 'l')))
memmove(p+1, p, strlen(p)+1);
else if (strcmp(format, "%p") == 0)
strcpy(format, "0x%llx");
ls = 2;
}
switch (ls) {
case -2:
if (len_as_arg)
trace_seq_printf(s, format, len_arg, (char)val);
else
trace_seq_printf(s, format, (char)val);
break;
case -1:
if (len_as_arg)
trace_seq_printf(s, format, len_arg, (short)val);
else
trace_seq_printf(s, format, (short)val);
break;
case 0:
if (len_as_arg)
trace_seq_printf(s, format, len_arg, (int)val);
else
trace_seq_printf(s, format, (int)val);
break;
case 1:
if (len_as_arg)
trace_seq_printf(s, format, len_arg, (long)val);
else
trace_seq_printf(s, format, (long)val);
break;
case 2:
if (len_as_arg)
trace_seq_printf(s, format, len_arg,
(long long)val);
else
trace_seq_printf(s, format, (long long)val);
break;
default:
do_warning_event(event, "bad count (%d)", ls);
event->flags |= EVENT_FL_FAILED;
}
break;
case 's':
if (!arg) {
do_warning_event(event, "no matching argument");
event->flags |= EVENT_FL_FAILED;
goto out_failed;
}
len = ((unsigned long)ptr + 1) -
(unsigned long)saveptr;
/* should never happen */
if (len > 31) {
do_warning_event(event, "bad format!");
event->flags |= EVENT_FL_FAILED;
len = 31;
}
memcpy(format, saveptr, len);
format[len] = 0;
if (!len_as_arg)
len_arg = -1;
/* Use helper trace_seq */
trace_seq_init(&p);
print_str_arg(&p, data, size, event,
format, len_arg, arg);
trace_seq_terminate(&p);
trace_seq_puts(s, p.buffer);
trace_seq_destroy(&p);
arg = arg->next;
break;
default:
trace_seq_printf(s, ">%c<", *ptr);
}
} else
trace_seq_putc(s, *ptr);
}
if (event->flags & EVENT_FL_FAILED) {
out_failed:
trace_seq_printf(s, "[FAILED TO PARSE]");
}
if (args) {
free_args(args);
free(bprint_fmt);
}
}
/**
* pevent_data_lat_fmt - parse the data for the latency format
* @pevent: a handle to the pevent
* @s: the trace_seq to write to
* @record: the record to read from
*
* This parses out the Latency format (interrupts disabled,
* need rescheduling, in hard/soft interrupt, preempt count
* and lock depth) and places it into the trace_seq.
*/
void pevent_data_lat_fmt(struct pevent *pevent,
struct trace_seq *s, struct pevent_record *record)
{
static int check_lock_depth = 1;
static int check_migrate_disable = 1;
static int lock_depth_exists;
static int migrate_disable_exists;
unsigned int lat_flags;
unsigned int pc;
int lock_depth;
int migrate_disable;
int hardirq;
int softirq;
void *data = record->data;
lat_flags = parse_common_flags(pevent, data);
pc = parse_common_pc(pevent, data);
/* lock_depth may not always exist */
if (lock_depth_exists)
lock_depth = parse_common_lock_depth(pevent, data);
else if (check_lock_depth) {
lock_depth = parse_common_lock_depth(pevent, data);
if (lock_depth < 0)
check_lock_depth = 0;
else
lock_depth_exists = 1;
}
/* migrate_disable may not always exist */
if (migrate_disable_exists)
migrate_disable = parse_common_migrate_disable(pevent, data);
else if (check_migrate_disable) {
migrate_disable = parse_common_migrate_disable(pevent, data);
if (migrate_disable < 0)
check_migrate_disable = 0;
else
migrate_disable_exists = 1;
}
hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
trace_seq_printf(s, "%c%c%c",
(lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
(lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
'X' : '.',
(lat_flags & TRACE_FLAG_NEED_RESCHED) ?
'N' : '.',
(hardirq && softirq) ? 'H' :
hardirq ? 'h' : softirq ? 's' : '.');
if (pc)
trace_seq_printf(s, "%x", pc);
else
trace_seq_putc(s, '.');
if (migrate_disable_exists) {
if (migrate_disable < 0)
trace_seq_putc(s, '.');
else
trace_seq_printf(s, "%d", migrate_disable);
}
if (lock_depth_exists) {
if (lock_depth < 0)
trace_seq_putc(s, '.');
else
trace_seq_printf(s, "%d", lock_depth);
}
trace_seq_terminate(s);
}
/**
* pevent_data_type - parse out the given event type
* @pevent: a handle to the pevent
* @rec: the record to read from
*
* This returns the event id from the @rec.
*/
int pevent_data_type(struct pevent *pevent, struct pevent_record *rec)
{
return trace_parse_common_type(pevent, rec->data);
}
/**
* pevent_data_event_from_type - find the event by a given type
* @pevent: a handle to the pevent
* @type: the type of the event.
*
* This returns the event form a given @type;
*/
struct event_format *pevent_data_event_from_type(struct pevent *pevent, int type)
{
return pevent_find_event(pevent, type);
}
/**
* pevent_data_pid - parse the PID from raw data
* @pevent: a handle to the pevent
* @rec: the record to parse
*
* This returns the PID from a raw data.
*/
int pevent_data_pid(struct pevent *pevent, struct pevent_record *rec)
{
return parse_common_pid(pevent, rec->data);
}
/**
* pevent_data_comm_from_pid - return the command line from PID
* @pevent: a handle to the pevent
* @pid: the PID of the task to search for
*
* This returns a pointer to the command line that has the given
* @pid.
*/
const char *pevent_data_comm_from_pid(struct pevent *pevent, int pid)
{
const char *comm;
comm = find_cmdline(pevent, pid);
return comm;
}
static struct cmdline *
pid_from_cmdlist(struct pevent *pevent, const char *comm, struct cmdline *next)
{
struct cmdline_list *cmdlist = (struct cmdline_list *)next;
if (cmdlist)
cmdlist = cmdlist->next;
else
cmdlist = pevent->cmdlist;
while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
cmdlist = cmdlist->next;
return (struct cmdline *)cmdlist;
}
/**
* pevent_data_pid_from_comm - return the pid from a given comm
* @pevent: a handle to the pevent
* @comm: the cmdline to find the pid from
* @next: the cmdline structure to find the next comm
*
* This returns the cmdline structure that holds a pid for a given
* comm, or NULL if none found. As there may be more than one pid for
* a given comm, the result of this call can be passed back into
* a recurring call in the @next paramater, and then it will find the
* next pid.
* Also, it does a linear seach, so it may be slow.
*/
struct cmdline *pevent_data_pid_from_comm(struct pevent *pevent, const char *comm,
struct cmdline *next)
{
struct cmdline *cmdline;
/*
* If the cmdlines have not been converted yet, then use
* the list.
*/
if (!pevent->cmdlines)
return pid_from_cmdlist(pevent, comm, next);
if (next) {
/*
* The next pointer could have been still from
* a previous call before cmdlines were created
*/
if (next < pevent->cmdlines ||
next >= pevent->cmdlines + pevent->cmdline_count)
next = NULL;
else
cmdline = next++;
}
if (!next)
cmdline = pevent->cmdlines;
while (cmdline < pevent->cmdlines + pevent->cmdline_count) {
if (strcmp(cmdline->comm, comm) == 0)
return cmdline;
cmdline++;
}
return NULL;
}
/**
* pevent_cmdline_pid - return the pid associated to a given cmdline
* @cmdline: The cmdline structure to get the pid from
*
* Returns the pid for a give cmdline. If @cmdline is NULL, then
* -1 is returned.
*/
int pevent_cmdline_pid(struct pevent *pevent, struct cmdline *cmdline)
{
struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
if (!cmdline)
return -1;
/*
* If cmdlines have not been created yet, or cmdline is
* not part of the array, then treat it as a cmdlist instead.
*/
if (!pevent->cmdlines ||
cmdline < pevent->cmdlines ||
cmdline >= pevent->cmdlines + pevent->cmdline_count)
return cmdlist->pid;
return cmdline->pid;
}
/**
* pevent_data_comm_from_pid - parse the data into the print format
* @s: the trace_seq to write to
* @event: the handle to the event
* @record: the record to read from
*
* This parses the raw @data using the given @event information and
* writes the print format into the trace_seq.
*/
void pevent_event_info(struct trace_seq *s, struct event_format *event,
struct pevent_record *record)
{
int print_pretty = 1;
if (event->pevent->print_raw || (event->flags & EVENT_FL_PRINTRAW))
pevent_print_fields(s, record->data, record->size, event);
else {
if (event->handler && !(event->flags & EVENT_FL_NOHANDLE))
print_pretty = event->handler(s, record, event,
event->context);
if (print_pretty)
pretty_print(s, record->data, record->size, event);
}
trace_seq_terminate(s);
}
static bool is_timestamp_in_us(char *trace_clock, bool use_trace_clock)
{
if (!use_trace_clock)
return true;
if (!strcmp(trace_clock, "local") || !strcmp(trace_clock, "global")
|| !strcmp(trace_clock, "uptime") || !strcmp(trace_clock, "perf"))
return true;
/* trace_clock is setting in tsc or counter mode */
return false;
}
/**
* pevent_find_event_by_record - return the event from a given record
* @pevent: a handle to the pevent
* @record: The record to get the event from
*
* Returns the associated event for a given record, or NULL if non is
* is found.
*/
struct event_format *
pevent_find_event_by_record(struct pevent *pevent, struct pevent_record *record)
{
int type;
if (record->size < 0) {
do_warning("ug! negative record size %d", record->size);
return NULL;
}
type = trace_parse_common_type(pevent, record->data);
return pevent_find_event(pevent, type);
}
/**
* pevent_print_event_task - Write the event task comm, pid and CPU
* @pevent: a handle to the pevent
* @s: the trace_seq to write to
* @event: the handle to the record's event
* @record: The record to get the event from
*
* Writes the tasks comm, pid and CPU to @s.
*/
void pevent_print_event_task(struct pevent *pevent, struct trace_seq *s,
struct event_format *event,
struct pevent_record *record)
{
void *data = record->data;
const char *comm;
int pid;
pid = parse_common_pid(pevent, data);
comm = find_cmdline(pevent, pid);
if (pevent->latency_format) {
trace_seq_printf(s, "%8.8s-%-5d %3d",
comm, pid, record->cpu);
} else
trace_seq_printf(s, "%16s-%-5d [%03d]", comm, pid, record->cpu);
}
/**
* pevent_print_event_time - Write the event timestamp
* @pevent: a handle to the pevent
* @s: the trace_seq to write to
* @event: the handle to the record's event
* @record: The record to get the event from
* @use_trace_clock: Set to parse according to the @pevent->trace_clock
*
* Writes the timestamp of the record into @s.
*/
void pevent_print_event_time(struct pevent *pevent, struct trace_seq *s,
struct event_format *event,
struct pevent_record *record,
bool use_trace_clock)
{
unsigned long secs;
unsigned long usecs;
unsigned long nsecs;
int p;
bool use_usec_format;
use_usec_format = is_timestamp_in_us(pevent->trace_clock,
use_trace_clock);
if (use_usec_format) {
secs = record->ts / NSECS_PER_SEC;
nsecs = record->ts - secs * NSECS_PER_SEC;
}
if (pevent->latency_format) {
pevent_data_lat_fmt(pevent, s, record);
}
if (use_usec_format) {
if (pevent->flags & PEVENT_NSEC_OUTPUT) {
usecs = nsecs;
p = 9;
} else {
usecs = (nsecs + 500) / NSECS_PER_USEC;
/* To avoid usecs larger than 1 sec */
if (usecs >= 1000000) {
usecs -= 1000000;
secs++;
}
p = 6;
}
trace_seq_printf(s, " %5lu.%0*lu:", secs, p, usecs);
} else
trace_seq_printf(s, " %12llu:", record->ts);
}
/**
* pevent_print_event_data - Write the event data section
* @pevent: a handle to the pevent
* @s: the trace_seq to write to
* @event: the handle to the record's event
* @record: The record to get the event from
*
* Writes the parsing of the record's data to @s.
*/
void pevent_print_event_data(struct pevent *pevent, struct trace_seq *s,
struct event_format *event,
struct pevent_record *record)
{
static const char *spaces = " "; /* 20 spaces */
int len;
trace_seq_printf(s, " %s: ", event->name);
/* Space out the event names evenly. */
len = strlen(event->name);
if (len < 20)
trace_seq_printf(s, "%.*s", 20 - len, spaces);
pevent_event_info(s, event, record);
}
void pevent_print_event(struct pevent *pevent, struct trace_seq *s,
struct pevent_record *record, bool use_trace_clock)
{
struct event_format *event;
event = pevent_find_event_by_record(pevent, record);
if (!event) {
do_warning("ug! no event found for type %d",
trace_parse_common_type(pevent, record->data));
return;
}
pevent_print_event_task(pevent, s, event, record);
pevent_print_event_time(pevent, s, event, record, use_trace_clock);
pevent_print_event_data(pevent, s, event, record);
}
static int events_id_cmp(const void *a, const void *b)
{
struct event_format * const * ea = a;
struct event_format * const * eb = b;
if ((*ea)->id < (*eb)->id)
return -1;
if ((*ea)->id > (*eb)->id)
return 1;
return 0;
}
static int events_name_cmp(const void *a, const void *b)
{
struct event_format * const * ea = a;
struct event_format * const * eb = b;
int res;
res = strcmp((*ea)->name, (*eb)->name);
if (res)
return res;
res = strcmp((*ea)->system, (*eb)->system);
if (res)
return res;
return events_id_cmp(a, b);
}
static int events_system_cmp(const void *a, const void *b)
{
struct event_format * const * ea = a;
struct event_format * const * eb = b;
int res;
res = strcmp((*ea)->system, (*eb)->system);
if (res)
return res;
res = strcmp((*ea)->name, (*eb)->name);
if (res)
return res;
return events_id_cmp(a, b);
}
struct event_format **pevent_list_events(struct pevent *pevent, enum event_sort_type sort_type)
{
struct event_format **events;
int (*sort)(const void *a, const void *b);
events = pevent->sort_events;
if (events && pevent->last_type == sort_type)
return events;
if (!events) {
events = malloc(sizeof(*events) * (pevent->nr_events + 1));
if (!events)
return NULL;
memcpy(events, pevent->events, sizeof(*events) * pevent->nr_events);
events[pevent->nr_events] = NULL;
pevent->sort_events = events;
/* the internal events are sorted by id */
if (sort_type == EVENT_SORT_ID) {
pevent->last_type = sort_type;
return events;
}
}
switch (sort_type) {
case EVENT_SORT_ID:
sort = events_id_cmp;
break;
case EVENT_SORT_NAME:
sort = events_name_cmp;
break;
case EVENT_SORT_SYSTEM:
sort = events_system_cmp;
break;
default:
return events;
}
qsort(events, pevent->nr_events, sizeof(*events), sort);
pevent->last_type = sort_type;
return events;
}
static struct format_field **
get_event_fields(const char *type, const char *name,
int count, struct format_field *list)
{
struct format_field **fields;
struct format_field *field;
int i = 0;
fields = malloc(sizeof(*fields) * (count + 1));
if (!fields)
return NULL;
for (field = list; field; field = field->next) {
fields[i++] = field;
if (i == count + 1) {
do_warning("event %s has more %s fields than specified",
name, type);
i--;
break;
}
}
if (i != count)
do_warning("event %s has less %s fields than specified",
name, type);
fields[i] = NULL;
return fields;
}
/**
* pevent_event_common_fields - return a list of common fields for an event
* @event: the event to return the common fields of.
*
* Returns an allocated array of fields. The last item in the array is NULL.
* The array must be freed with free().
*/
struct format_field **pevent_event_common_fields(struct event_format *event)
{
return get_event_fields("common", event->name,
event->format.nr_common,
event->format.common_fields);
}
/**
* pevent_event_fields - return a list of event specific fields for an event
* @event: the event to return the fields of.
*
* Returns an allocated array of fields. The last item in the array is NULL.
* The array must be freed with free().
*/
struct format_field **pevent_event_fields(struct event_format *event)
{
return get_event_fields("event", event->name,
event->format.nr_fields,
event->format.fields);
}
static void print_fields(struct trace_seq *s, struct print_flag_sym *field)
{
trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
if (field->next) {
trace_seq_puts(s, ", ");
print_fields(s, field->next);
}
}
/* for debugging */
static void print_args(struct print_arg *args)
{
int print_paren = 1;
struct trace_seq s;
switch (args->type) {
case PRINT_NULL:
printf("null");
break;
case PRINT_ATOM:
printf("%s", args->atom.atom);
break;
case PRINT_FIELD:
printf("REC->%s", args->field.name);
break;
case PRINT_FLAGS:
printf("__print_flags(");
print_args(args->flags.field);
printf(", %s, ", args->flags.delim);
trace_seq_init(&s);
print_fields(&s, args->flags.flags);
trace_seq_do_printf(&s);
trace_seq_destroy(&s);
printf(")");
break;
case PRINT_SYMBOL:
printf("__print_symbolic(");
print_args(args->symbol.field);
printf(", ");
trace_seq_init(&s);
print_fields(&s, args->symbol.symbols);
trace_seq_do_printf(&s);
trace_seq_destroy(&s);
printf(")");
break;
case PRINT_HEX:
printf("__print_hex(");
print_args(args->hex.field);
printf(", ");
print_args(args->hex.size);
printf(")");
break;
case PRINT_INT_ARRAY:
printf("__print_array(");
print_args(args->int_array.field);
printf(", ");
print_args(args->int_array.count);
printf(", ");
print_args(args->int_array.el_size);
printf(")");
break;
case PRINT_STRING:
case PRINT_BSTRING:
printf("__get_str(%s)", args->string.string);
break;
case PRINT_BITMASK:
printf("__get_bitmask(%s)", args->bitmask.bitmask);
break;
case PRINT_TYPE:
printf("(%s)", args->typecast.type);
print_args(args->typecast.item);
break;
case PRINT_OP:
if (strcmp(args->op.op, ":") == 0)
print_paren = 0;
if (print_paren)
printf("(");
print_args(args->op.left);
printf(" %s ", args->op.op);
print_args(args->op.right);
if (print_paren)
printf(")");
break;
default:
/* we should warn... */
return;
}
if (args->next) {
printf("\n");
print_args(args->next);
}
}
static void parse_header_field(const char *field,
int *offset, int *size, int mandatory)
{
unsigned long long save_input_buf_ptr;
unsigned long long save_input_buf_siz;
char *token;
int type;
save_input_buf_ptr = input_buf_ptr;
save_input_buf_siz = input_buf_siz;
if (read_expected(EVENT_ITEM, "field") < 0)
return;
if (read_expected(EVENT_OP, ":") < 0)
return;
/* type */
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
free_token(token);
/*
* If this is not a mandatory field, then test it first.
*/
if (mandatory) {
if (read_expected(EVENT_ITEM, field) < 0)
return;
} else {
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
if (strcmp(token, field) != 0)
goto discard;
free_token(token);
}
if (read_expected(EVENT_OP, ";") < 0)
return;
if (read_expected(EVENT_ITEM, "offset") < 0)
return;
if (read_expected(EVENT_OP, ":") < 0)
return;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
*offset = atoi(token);
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
return;
if (read_expected(EVENT_ITEM, "size") < 0)
return;
if (read_expected(EVENT_OP, ":") < 0)
return;
if (read_expect_type(EVENT_ITEM, &token) < 0)
goto fail;
*size = atoi(token);
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
return;
type = read_token(&token);
if (type != EVENT_NEWLINE) {
/* newer versions of the kernel have a "signed" type */
if (type != EVENT_ITEM)
goto fail;
if (strcmp(token, "signed") != 0)
goto fail;
free_token(token);
if (read_expected(EVENT_OP, ":") < 0)
return;
if (read_expect_type(EVENT_ITEM, &token))
goto fail;
free_token(token);
if (read_expected(EVENT_OP, ";") < 0)
return;
if (read_expect_type(EVENT_NEWLINE, &token))
goto fail;
}
fail:
free_token(token);
return;
discard:
input_buf_ptr = save_input_buf_ptr;
input_buf_siz = save_input_buf_siz;
*offset = 0;
*size = 0;
free_token(token);
}
/**
* pevent_parse_header_page - parse the data stored in the header page
* @pevent: the handle to the pevent
* @buf: the buffer storing the header page format string
* @size: the size of @buf
* @long_size: the long size to use if there is no header
*
* This parses the header page format for information on the
* ring buffer used. The @buf should be copied from
*
* /sys/kernel/debug/tracing/events/header_page
*/
int pevent_parse_header_page(struct pevent *pevent, char *buf, unsigned long size,
int long_size)
{
int ignore;
if (!size) {
/*
* Old kernels did not have header page info.
* Sorry but we just use what we find here in user space.
*/
pevent->header_page_ts_size = sizeof(long long);
pevent->header_page_size_size = long_size;
pevent->header_page_data_offset = sizeof(long long) + long_size;
pevent->old_format = 1;
return -1;
}
init_input_buf(buf, size);
parse_header_field("timestamp", &pevent->header_page_ts_offset,
&pevent->header_page_ts_size, 1);
parse_header_field("commit", &pevent->header_page_size_offset,
&pevent->header_page_size_size, 1);
parse_header_field("overwrite", &pevent->header_page_overwrite,
&ignore, 0);
parse_header_field("data", &pevent->header_page_data_offset,
&pevent->header_page_data_size, 1);
return 0;
}
static int event_matches(struct event_format *event,
int id, const char *sys_name,
const char *event_name)
{
if (id >= 0 && id != event->id)
return 0;
if (event_name && (strcmp(event_name, event->name) != 0))
return 0;
if (sys_name && (strcmp(sys_name, event->system) != 0))
return 0;
return 1;
}
static void free_handler(struct event_handler *handle)
{
free((void *)handle->sys_name);
free((void *)handle->event_name);
free(handle);
}
static int find_event_handle(struct pevent *pevent, struct event_format *event)
{
struct event_handler *handle, **next;
for (next = &pevent->handlers; *next;
next = &(*next)->next) {
handle = *next;
if (event_matches(event, handle->id,
handle->sys_name,
handle->event_name))
break;
}
if (!(*next))
return 0;
pr_stat("overriding event (%d) %s:%s with new print handler",
event->id, event->system, event->name);
event->handler = handle->func;
event->context = handle->context;
*next = handle->next;
free_handler(handle);
return 1;
}
/**
* __pevent_parse_format - parse the event format
* @buf: the buffer storing the event format string
* @size: the size of @buf
* @sys: the system the event belongs to
*
* This parses the event format and creates an event structure
* to quickly parse raw data for a given event.
*
* These files currently come from:
*
* /sys/kernel/debug/tracing/events/.../.../format
*/
enum pevent_errno __pevent_parse_format(struct event_format **eventp,
struct pevent *pevent, const char *buf,
unsigned long size, const char *sys)
{
struct event_format *event;
int ret;
init_input_buf(buf, size);
*eventp = event = alloc_event();
if (!event)
return PEVENT_ERRNO__MEM_ALLOC_FAILED;
event->name = event_read_name();
if (!event->name) {
/* Bad event? */
ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
goto event_alloc_failed;
}
if (strcmp(sys, "ftrace") == 0) {
event->flags |= EVENT_FL_ISFTRACE;
if (strcmp(event->name, "bprint") == 0)
event->flags |= EVENT_FL_ISBPRINT;
}
event->id = event_read_id();
if (event->id < 0) {
ret = PEVENT_ERRNO__READ_ID_FAILED;
/*
* This isn't an allocation error actually.
* But as the ID is critical, just bail out.
*/
goto event_alloc_failed;
}
event->system = strdup(sys);
if (!event->system) {
ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
goto event_alloc_failed;
}
/* Add pevent to event so that it can be referenced */
event->pevent = pevent;
ret = event_read_format(event);
if (ret < 0) {
ret = PEVENT_ERRNO__READ_FORMAT_FAILED;
goto event_parse_failed;
}
/*
* If the event has an override, don't print warnings if the event
* print format fails to parse.
*/
if (pevent && find_event_handle(pevent, event))
show_warning = 0;
ret = event_read_print(event);
show_warning = 1;
if (ret < 0) {
ret = PEVENT_ERRNO__READ_PRINT_FAILED;
goto event_parse_failed;
}
if (!ret && (event->flags & EVENT_FL_ISFTRACE)) {
struct format_field *field;
struct print_arg *arg, **list;
/* old ftrace had no args */
list = &event->print_fmt.args;
for (field = event->format.fields; field; field = field->next) {
arg = alloc_arg();
if (!arg) {
event->flags |= EVENT_FL_FAILED;
return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
}
arg->type = PRINT_FIELD;
arg->field.name = strdup(field->name);
if (!arg->field.name) {
event->flags |= EVENT_FL_FAILED;
free_arg(arg);
return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
}
arg->field.field = field;
*list = arg;
list = &arg->next;
}
return 0;
}
return 0;
event_parse_failed:
event->flags |= EVENT_FL_FAILED;
return ret;
event_alloc_failed:
free(event->system);
free(event->name);
free(event);
*eventp = NULL;
return ret;
}
static enum pevent_errno
__pevent_parse_event(struct pevent *pevent,
struct event_format **eventp,
const char *buf, unsigned long size,
const char *sys)
{
int ret = __pevent_parse_format(eventp, pevent, buf, size, sys);
struct event_format *event = *eventp;
if (event == NULL)
return ret;
if (pevent && add_event(pevent, event)) {
ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
goto event_add_failed;
}
#define PRINT_ARGS 0
if (PRINT_ARGS && event->print_fmt.args)
print_args(event->print_fmt.args);
return 0;
event_add_failed:
pevent_free_format(event);
return ret;
}
/**
* pevent_parse_format - parse the event format
* @pevent: the handle to the pevent
* @eventp: returned format
* @buf: the buffer storing the event format string
* @size: the size of @buf
* @sys: the system the event belongs to
*
* This parses the event format and creates an event structure
* to quickly parse raw data for a given event.
*
* These files currently come from:
*
* /sys/kernel/debug/tracing/events/.../.../format
*/
enum pevent_errno pevent_parse_format(struct pevent *pevent,
struct event_format **eventp,
const char *buf,
unsigned long size, const char *sys)
{
return __pevent_parse_event(pevent, eventp, buf, size, sys);
}
/**
* pevent_parse_event - parse the event format
* @pevent: the handle to the pevent
* @buf: the buffer storing the event format string
* @size: the size of @buf
* @sys: the system the event belongs to
*
* This parses the event format and creates an event structure
* to quickly parse raw data for a given event.
*
* These files currently come from:
*
* /sys/kernel/debug/tracing/events/.../.../format
*/
enum pevent_errno pevent_parse_event(struct pevent *pevent, const char *buf,
unsigned long size, const char *sys)
{
struct event_format *event = NULL;
return __pevent_parse_event(pevent, &event, buf, size, sys);
}
#undef _PE
#define _PE(code, str) str
static const char * const pevent_error_str[] = {
PEVENT_ERRORS
};
#undef _PE
int pevent_strerror(struct pevent *pevent __maybe_unused,
enum pevent_errno errnum, char *buf, size_t buflen)
{
int idx;
const char *msg;
if (errnum >= 0) {
str_error_r(errnum, buf, buflen);
return 0;
}
if (errnum <= __PEVENT_ERRNO__START ||
errnum >= __PEVENT_ERRNO__END)
return -1;
idx = errnum - __PEVENT_ERRNO__START - 1;
msg = pevent_error_str[idx];
snprintf(buf, buflen, "%s", msg);
return 0;
}
int get_field_val(struct trace_seq *s, struct format_field *field,
const char *name, struct pevent_record *record,
unsigned long long *val, int err)
{
if (!field) {
if (err)
trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
return -1;
}
if (pevent_read_number_field(field, record->data, val)) {
if (err)
trace_seq_printf(s, " %s=INVALID", name);
return -1;
}
return 0;
}
/**
* pevent_get_field_raw - return the raw pointer into the data field
* @s: The seq to print to on error
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @len: place to store the field length.
* @err: print default error if failed.
*
* Returns a pointer into record->data of the field and places
* the length of the field in @len.
*
* On failure, it returns NULL.
*/
void *pevent_get_field_raw(struct trace_seq *s, struct event_format *event,
const char *name, struct pevent_record *record,
int *len, int err)
{
struct format_field *field;
void *data = record->data;
unsigned offset;
int dummy;
if (!event)
return NULL;
field = pevent_find_field(event, name);
if (!field) {
if (err)
trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
return NULL;
}
/* Allow @len to be NULL */
if (!len)
len = &dummy;
offset = field->offset;
if (field->flags & FIELD_IS_DYNAMIC) {
offset = pevent_read_number(event->pevent,
data + offset, field->size);
*len = offset >> 16;
offset &= 0xffff;
} else
*len = field->size;
return data + offset;
}
/**
* pevent_get_field_val - find a field and return its value
* @s: The seq to print to on error
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @val: place to store the value of the field.
* @err: print default error if failed.
*
* Returns 0 on success -1 on field not found.
*/
int pevent_get_field_val(struct trace_seq *s, struct event_format *event,
const char *name, struct pevent_record *record,
unsigned long long *val, int err)
{
struct format_field *field;
if (!event)
return -1;
field = pevent_find_field(event, name);
return get_field_val(s, field, name, record, val, err);
}
/**
* pevent_get_common_field_val - find a common field and return its value
* @s: The seq to print to on error
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @val: place to store the value of the field.
* @err: print default error if failed.
*
* Returns 0 on success -1 on field not found.
*/
int pevent_get_common_field_val(struct trace_seq *s, struct event_format *event,
const char *name, struct pevent_record *record,
unsigned long long *val, int err)
{
struct format_field *field;
if (!event)
return -1;
field = pevent_find_common_field(event, name);
return get_field_val(s, field, name, record, val, err);
}
/**
* pevent_get_any_field_val - find a any field and return its value
* @s: The seq to print to on error
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @val: place to store the value of the field.
* @err: print default error if failed.
*
* Returns 0 on success -1 on field not found.
*/
int pevent_get_any_field_val(struct trace_seq *s, struct event_format *event,
const char *name, struct pevent_record *record,
unsigned long long *val, int err)
{
struct format_field *field;
if (!event)
return -1;
field = pevent_find_any_field(event, name);
return get_field_val(s, field, name, record, val, err);
}
/**
* pevent_print_num_field - print a field and a format
* @s: The seq to print to
* @fmt: The printf format to print the field with.
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @err: print default error if failed.
*
* Returns: 0 on success, -1 field not found, or 1 if buffer is full.
*/
int pevent_print_num_field(struct trace_seq *s, const char *fmt,
struct event_format *event, const char *name,
struct pevent_record *record, int err)
{
struct format_field *field = pevent_find_field(event, name);
unsigned long long val;
if (!field)
goto failed;
if (pevent_read_number_field(field, record->data, &val))
goto failed;
return trace_seq_printf(s, fmt, val);
failed:
if (err)
trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
return -1;
}
/**
* pevent_print_func_field - print a field and a format for function pointers
* @s: The seq to print to
* @fmt: The printf format to print the field with.
* @event: the event that the field is for
* @name: The name of the field
* @record: The record with the field name.
* @err: print default error if failed.
*
* Returns: 0 on success, -1 field not found, or 1 if buffer is full.
*/
int pevent_print_func_field(struct trace_seq *s, const char *fmt,
struct event_format *event, const char *name,
struct pevent_record *record, int err)
{
struct format_field *field = pevent_find_field(event, name);
struct pevent *pevent = event->pevent;
unsigned long long val;
struct func_map *func;
char tmp[128];
if (!field)
goto failed;
if (pevent_read_number_field(field, record->data, &val))
goto failed;
func = find_func(pevent, val);
if (func)
snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
else
sprintf(tmp, "0x%08llx", val);
return trace_seq_printf(s, fmt, tmp);
failed:
if (err)
trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
return -1;
}
static void free_func_handle(struct pevent_function_handler *func)
{
struct pevent_func_params *params;
free(func->name);
while (func->params) {
params = func->params;
func->params = params->next;
free(params);
}
free(func);
}
/**
* pevent_register_print_function - register a helper function
* @pevent: the handle to the pevent
* @func: the function to process the helper function
* @ret_type: the return type of the helper function
* @name: the name of the helper function
* @parameters: A list of enum pevent_func_arg_type
*
* Some events may have helper functions in the print format arguments.
* This allows a plugin to dynamically create a way to process one
* of these functions.
*
* The @parameters is a variable list of pevent_func_arg_type enums that
* must end with PEVENT_FUNC_ARG_VOID.
*/
int pevent_register_print_function(struct pevent *pevent,
pevent_func_handler func,
enum pevent_func_arg_type ret_type,
char *name, ...)
{
struct pevent_function_handler *func_handle;
struct pevent_func_params **next_param;
struct pevent_func_params *param;
enum pevent_func_arg_type type;
va_list ap;
int ret;
func_handle = find_func_handler(pevent, name);
if (func_handle) {
/*
* This is most like caused by the users own
* plugins updating the function. This overrides the
* system defaults.
*/
pr_stat("override of function helper '%s'", name);
remove_func_handler(pevent, name);
}
func_handle = calloc(1, sizeof(*func_handle));
if (!func_handle) {
do_warning("Failed to allocate function handler");
return PEVENT_ERRNO__MEM_ALLOC_FAILED;
}
func_handle->ret_type = ret_type;
func_handle->name = strdup(name);
func_handle->func = func;
if (!func_handle->name) {
do_warning("Failed to allocate function name");
free(func_handle);
return PEVENT_ERRNO__MEM_ALLOC_FAILED;
}
next_param = &(func_handle->params);
va_start(ap, name);
for (;;) {
type = va_arg(ap, enum pevent_func_arg_type);
if (type == PEVENT_FUNC_ARG_VOID)
break;
if (type >= PEVENT_FUNC_ARG_MAX_TYPES) {
do_warning("Invalid argument type %d", type);
ret = PEVENT_ERRNO__INVALID_ARG_TYPE;
goto out_free;
}
param = malloc(sizeof(*param));
if (!param) {
do_warning("Failed to allocate function param");
ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
goto out_free;
}
param->type = type;
param->next = NULL;
*next_param = param;
next_param = &(param->next);
func_handle->nr_args++;
}
va_end(ap);
func_handle->next = pevent->func_handlers;
pevent->func_handlers = func_handle;
return 0;
out_free:
va_end(ap);
free_func_handle(func_handle);
return ret;
}
/**
* pevent_unregister_print_function - unregister a helper function
* @pevent: the handle to the pevent
* @func: the function to process the helper function
* @name: the name of the helper function
*
* This function removes existing print handler for function @name.
*
* Returns 0 if the handler was removed successully, -1 otherwise.
*/
int pevent_unregister_print_function(struct pevent *pevent,
pevent_func_handler func, char *name)
{
struct pevent_function_handler *func_handle;
func_handle = find_func_handler(pevent, name);
if (func_handle && func_handle->func == func) {
remove_func_handler(pevent, name);
return 0;
}
return -1;
}
static struct event_format *pevent_search_event(struct pevent *pevent, int id,
const char *sys_name,
const char *event_name)
{
struct event_format *event;
if (id >= 0) {
/* search by id */
event = pevent_find_event(pevent, id);
if (!event)
return NULL;
if (event_name && (strcmp(event_name, event->name) != 0))
return NULL;
if (sys_name && (strcmp(sys_name, event->system) != 0))
return NULL;
} else {
event = pevent_find_event_by_name(pevent, sys_name, event_name);
if (!event)
return NULL;
}
return event;
}
/**
* pevent_register_event_handler - register a way to parse an event
* @pevent: the handle to the pevent
* @id: the id of the event to register
* @sys_name: the system name the event belongs to
* @event_name: the name of the event
* @func: the function to call to parse the event information
* @context: the data to be passed to @func
*
* This function allows a developer to override the parsing of
* a given event. If for some reason the default print format
* is not sufficient, this function will register a function
* for an event to be used to parse the data instead.
*
* If @id is >= 0, then it is used to find the event.
* else @sys_name and @event_name are used.
*/
int pevent_register_event_handler(struct pevent *pevent, int id,
const char *sys_name, const char *event_name,
pevent_event_handler_func func, void *context)
{
struct event_format *event;
struct event_handler *handle;
event = pevent_search_event(pevent, id, sys_name, event_name);
if (event == NULL)
goto not_found;
pr_stat("overriding event (%d) %s:%s with new print handler",
event->id, event->system, event->name);
event->handler = func;
event->context = context;
return 0;
not_found:
/* Save for later use. */
handle = calloc(1, sizeof(*handle));
if (!handle) {
do_warning("Failed to allocate event handler");
return PEVENT_ERRNO__MEM_ALLOC_FAILED;
}
handle->id = id;
if (event_name)
handle->event_name = strdup(event_name);
if (sys_name)
handle->sys_name = strdup(sys_name);
if ((event_name && !handle->event_name) ||
(sys_name && !handle->sys_name)) {
do_warning("Failed to allocate event/sys name");
free((void *)handle->event_name);
free((void *)handle->sys_name);
free(handle);
return PEVENT_ERRNO__MEM_ALLOC_FAILED;
}
handle->func = func;
handle->next = pevent->handlers;
pevent->handlers = handle;
handle->context = context;
return -1;
}
static int handle_matches(struct event_handler *handler, int id,
const char *sys_name, const char *event_name,
pevent_event_handler_func func, void *context)
{
if (id >= 0 && id != handler->id)
return 0;
if (event_name && (strcmp(event_name, handler->event_name) != 0))
return 0;
if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
return 0;
if (func != handler->func || context != handler->context)
return 0;
return 1;
}
/**
* pevent_unregister_event_handler - unregister an existing event handler
* @pevent: the handle to the pevent
* @id: the id of the event to unregister
* @sys_name: the system name the handler belongs to
* @event_name: the name of the event handler
* @func: the function to call to parse the event information
* @context: the data to be passed to @func
*
* This function removes existing event handler (parser).
*
* If @id is >= 0, then it is used to find the event.
* else @sys_name and @event_name are used.
*
* Returns 0 if handler was removed successfully, -1 if event was not found.
*/
int pevent_unregister_event_handler(struct pevent *pevent, int id,
const char *sys_name, const char *event_name,
pevent_event_handler_func func, void *context)
{
struct event_format *event;
struct event_handler *handle;
struct event_handler **next;
event = pevent_search_event(pevent, id, sys_name, event_name);
if (event == NULL)
goto not_found;
if (event->handler == func && event->context == context) {
pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
event->id, event->system, event->name);
event->handler = NULL;
event->context = NULL;
return 0;
}
not_found:
for (next = &pevent->handlers; *next; next = &(*next)->next) {
handle = *next;
if (handle_matches(handle, id, sys_name, event_name,
func, context))
break;
}
if (!(*next))
return -1;
*next = handle->next;
free_handler(handle);
return 0;
}
/**
* pevent_alloc - create a pevent handle
*/
struct pevent *pevent_alloc(void)
{
struct pevent *pevent = calloc(1, sizeof(*pevent));
if (pevent)
pevent->ref_count = 1;
return pevent;
}
void pevent_ref(struct pevent *pevent)
{
pevent->ref_count++;
}
void pevent_free_format_field(struct format_field *field)
{
free(field->type);
if (field->alias != field->name)
free(field->alias);
free(field->name);
free(field);
}
static void free_format_fields(struct format_field *field)
{
struct format_field *next;
while (field) {
next = field->next;
pevent_free_format_field(field);
field = next;
}
}
static void free_formats(struct format *format)
{
free_format_fields(format->common_fields);
free_format_fields(format->fields);
}
void pevent_free_format(struct event_format *event)
{
free(event->name);
free(event->system);
free_formats(&event->format);
free(event->print_fmt.format);
free_args(event->print_fmt.args);
free(event);
}
/**
* pevent_free - free a pevent handle
* @pevent: the pevent handle to free
*/
void pevent_free(struct pevent *pevent)
{
struct cmdline_list *cmdlist, *cmdnext;
struct func_list *funclist, *funcnext;
struct printk_list *printklist, *printknext;
struct pevent_function_handler *func_handler;
struct event_handler *handle;
int i;
if (!pevent)
return;
cmdlist = pevent->cmdlist;
funclist = pevent->funclist;
printklist = pevent->printklist;
pevent->ref_count--;
if (pevent->ref_count)
return;
if (pevent->cmdlines) {
for (i = 0; i < pevent->cmdline_count; i++)
free(pevent->cmdlines[i].comm);
free(pevent->cmdlines);
}
while (cmdlist) {
cmdnext = cmdlist->next;
free(cmdlist->comm);
free(cmdlist);
cmdlist = cmdnext;
}
if (pevent->func_map) {
for (i = 0; i < (int)pevent->func_count; i++) {
free(pevent->func_map[i].func);
free(pevent->func_map[i].mod);
}
free(pevent->func_map);
}
while (funclist) {
funcnext = funclist->next;
free(funclist->func);
free(funclist->mod);
free(funclist);
funclist = funcnext;
}
while (pevent->func_handlers) {
func_handler = pevent->func_handlers;
pevent->func_handlers = func_handler->next;
free_func_handle(func_handler);
}
if (pevent->printk_map) {
for (i = 0; i < (int)pevent->printk_count; i++)
free(pevent->printk_map[i].printk);
free(pevent->printk_map);
}
while (printklist) {
printknext = printklist->next;
free(printklist->printk);
free(printklist);
printklist = printknext;
}
for (i = 0; i < pevent->nr_events; i++)
pevent_free_format(pevent->events[i]);
while (pevent->handlers) {
handle = pevent->handlers;
pevent->handlers = handle->next;
free_handler(handle);
}
free(pevent->trace_clock);
free(pevent->events);
free(pevent->sort_events);
free(pevent->func_resolver);
free(pevent);
}
void pevent_unref(struct pevent *pevent)
{
pevent_free(pevent);
}