linux_old1/fs/crypto/fscrypt_private.h

305 lines
8.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt_private.h
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#ifndef _FSCRYPT_PRIVATE_H
#define _FSCRYPT_PRIVATE_H
#include <linux/fscrypt.h>
#include <crypto/hash.h>
#define CONST_STRLEN(str) (sizeof(str) - 1)
#define FS_KEY_DERIVATION_NONCE_SIZE 16
#define FSCRYPT_MIN_KEY_SIZE 16
/**
* Encryption context for inode
*
* Protector format:
* 1 byte: Protector format (1 = this version)
* 1 byte: File contents encryption mode
* 1 byte: File names encryption mode
* 1 byte: Flags
* 8 bytes: Master Key descriptor
* 16 bytes: Encryption Key derivation nonce
*/
struct fscrypt_context {
u8 format;
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
} __packed;
#define FS_ENCRYPTION_CONTEXT_FORMAT_V1 1
/**
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
*/
struct fscrypt_symlink_data {
__le16 len;
char encrypted_path[1];
} __packed;
/*
* fscrypt_info - the "encryption key" for an inode
*
* When an encrypted file's key is made available, an instance of this struct is
* allocated and stored in ->i_crypt_info. Once created, it remains until the
* inode is evicted.
*/
struct fscrypt_info {
/* The actual crypto transform used for encryption and decryption */
struct crypto_skcipher *ci_ctfm;
/*
* Cipher for ESSIV IV generation. Only set for CBC contents
* encryption, otherwise is NULL.
*/
struct crypto_cipher *ci_essiv_tfm;
/*
* Encryption mode used for this inode. It corresponds to either
* ci_data_mode or ci_filename_mode, depending on the inode type.
*/
struct fscrypt_mode *ci_mode;
/* Back-pointer to the inode */
struct inode *ci_inode;
/*
* The master key with which this inode was unlocked (decrypted). This
* will be NULL if the master key was found in a process-subscribed
* keyring rather than in the filesystem-level keyring.
*/
struct key *ci_master_key;
/*
* Link in list of inodes that were unlocked with the master key.
* Only used when ->ci_master_key is set.
*/
struct list_head ci_master_key_link;
/*
* If non-NULL, then encryption is done using the master key directly
* and ci_ctfm will equal ci_direct_key->dk_ctfm.
*/
struct fscrypt_direct_key *ci_direct_key;
/* fields from the fscrypt_context */
u8 ci_data_mode;
u8 ci_filename_mode;
u8 ci_flags;
u8 ci_master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
typedef enum {
FS_DECRYPT = 0,
FS_ENCRYPT,
} fscrypt_direction_t;
#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
u32 filenames_mode)
{
if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
filenames_mode == FSCRYPT_MODE_AES_128_CTS)
return true;
if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
filenames_mode == FSCRYPT_MODE_AES_256_CTS)
return true;
if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
filenames_mode == FSCRYPT_MODE_ADIANTUM)
return true;
return false;
}
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
extern int fscrypt_initialize(unsigned int cop_flags);
extern int fscrypt_crypt_block(const struct inode *inode,
fscrypt_direction_t rw, u64 lblk_num,
struct page *src_page, struct page *dest_page,
unsigned int len, unsigned int offs,
gfp_t gfp_flags);
extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
extern const struct dentry_operations fscrypt_d_ops;
extern void __printf(3, 4) __cold
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
#define fscrypt_warn(inode, fmt, ...) \
fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
#define fscrypt_err(inode, fmt, ...) \
fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
#define FSCRYPT_MAX_IV_SIZE 32
union fscrypt_iv {
struct {
/* logical block number within the file */
__le64 lblk_num;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
u8 raw[FSCRYPT_MAX_IV_SIZE];
};
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
const struct fscrypt_info *ci);
/* fname.c */
extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen);
extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
u32 orig_len, u32 max_len,
u32 *encrypted_len_ret);
/* keyring.c */
/*
* fscrypt_master_key_secret - secret key material of an in-use master key
*/
struct fscrypt_master_key_secret {
/* Size of the raw key in bytes */
u32 size;
/* The raw key */
u8 raw[FSCRYPT_MAX_KEY_SIZE];
} __randomize_layout;
/*
* fscrypt_master_key - an in-use master key
*
* This represents a master encryption key which has been added to the
* filesystem and can be used to "unlock" the encrypted files which were
* encrypted with it.
*/
struct fscrypt_master_key {
/*
* The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
* executed, this is wiped and no new inodes can be unlocked with this
* key; however, there may still be inodes in ->mk_decrypted_inodes
* which could not be evicted. As long as some inodes still remain,
* FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
* FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
*
* Locking: protected by key->sem.
*/
struct fscrypt_master_key_secret mk_secret;
/* Arbitrary key descriptor which was assigned by userspace */
struct fscrypt_key_specifier mk_spec;
/*
* Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
* Once this goes to 0, the master key is removed from ->s_master_keys.
* The 'struct fscrypt_master_key' will continue to live as long as the
* 'struct key' whose payload it is, but we won't let this reference
* count rise again.
*/
refcount_t mk_refcount;
/*
* List of inodes that were unlocked using this key. This allows the
* inodes to be evicted efficiently if the key is removed.
*/
struct list_head mk_decrypted_inodes;
spinlock_t mk_decrypted_inodes_lock;
} __randomize_layout;
static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
{
/*
* The READ_ONCE() is only necessary for fscrypt_drop_inode() and
* fscrypt_key_describe(). These run in atomic context, so they can't
* take key->sem and thus 'secret' can change concurrently which would
* be a data race. But they only need to know whether the secret *was*
* present at the time of check, so READ_ONCE() suffices.
*/
return READ_ONCE(secret->size) != 0;
}
static inline const char *master_key_spec_type(
const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return "descriptor";
}
return "[unknown]";
}
static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return FSCRYPT_KEY_DESCRIPTOR_SIZE;
}
return 0;
}
extern struct key *
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec);
extern int __init fscrypt_init_keyring(void);
/* keysetup.c */
struct fscrypt_mode {
const char *friendly_name;
const char *cipher_str;
int keysize;
int ivsize;
bool logged_impl_name;
bool needs_essiv;
};
static inline bool
fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
{
return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
}
extern struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode);
extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
const u8 *derived_key);
/* keysetup_v1.c */
extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
const u8 *raw_master_key);
extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
struct fscrypt_info *ci);
#endif /* _FSCRYPT_PRIVATE_H */