linux_old1/drivers/gpio/gpio-omap.c

1499 lines
39 KiB
C

/*
* Support functions for OMAP GPIO
*
* Copyright (C) 2003-2005 Nokia Corporation
* Written by Juha Yrjölä <juha.yrjola@nokia.com>
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/syscore_ops.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/pm.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/irqdomain.h>
#include <linux/gpio.h>
#include <linux/platform_data/gpio-omap.h>
#include <asm/mach/irq.h>
#define OFF_MODE 1
static LIST_HEAD(omap_gpio_list);
struct gpio_regs {
u32 irqenable1;
u32 irqenable2;
u32 wake_en;
u32 ctrl;
u32 oe;
u32 leveldetect0;
u32 leveldetect1;
u32 risingdetect;
u32 fallingdetect;
u32 dataout;
u32 debounce;
u32 debounce_en;
};
struct gpio_bank {
struct list_head node;
void __iomem *base;
u16 irq;
int irq_base;
struct irq_domain *domain;
u32 non_wakeup_gpios;
u32 enabled_non_wakeup_gpios;
struct gpio_regs context;
u32 saved_datain;
u32 level_mask;
u32 toggle_mask;
spinlock_t lock;
struct gpio_chip chip;
struct clk *dbck;
u32 mod_usage;
u32 dbck_enable_mask;
bool dbck_enabled;
struct device *dev;
bool is_mpuio;
bool dbck_flag;
bool loses_context;
int stride;
u32 width;
int context_loss_count;
int power_mode;
bool workaround_enabled;
void (*set_dataout)(struct gpio_bank *bank, int gpio, int enable);
int (*get_context_loss_count)(struct device *dev);
struct omap_gpio_reg_offs *regs;
};
#define GPIO_INDEX(bank, gpio) (gpio % bank->width)
#define GPIO_BIT(bank, gpio) (1 << GPIO_INDEX(bank, gpio))
#define GPIO_MOD_CTRL_BIT BIT(0)
static int irq_to_gpio(struct gpio_bank *bank, unsigned int gpio_irq)
{
return gpio_irq - bank->irq_base + bank->chip.base;
}
static void _set_gpio_direction(struct gpio_bank *bank, int gpio, int is_input)
{
void __iomem *reg = bank->base;
u32 l;
reg += bank->regs->direction;
l = __raw_readl(reg);
if (is_input)
l |= 1 << gpio;
else
l &= ~(1 << gpio);
__raw_writel(l, reg);
bank->context.oe = l;
}
/* set data out value using dedicate set/clear register */
static void _set_gpio_dataout_reg(struct gpio_bank *bank, int gpio, int enable)
{
void __iomem *reg = bank->base;
u32 l = GPIO_BIT(bank, gpio);
if (enable) {
reg += bank->regs->set_dataout;
bank->context.dataout |= l;
} else {
reg += bank->regs->clr_dataout;
bank->context.dataout &= ~l;
}
__raw_writel(l, reg);
}
/* set data out value using mask register */
static void _set_gpio_dataout_mask(struct gpio_bank *bank, int gpio, int enable)
{
void __iomem *reg = bank->base + bank->regs->dataout;
u32 gpio_bit = GPIO_BIT(bank, gpio);
u32 l;
l = __raw_readl(reg);
if (enable)
l |= gpio_bit;
else
l &= ~gpio_bit;
__raw_writel(l, reg);
bank->context.dataout = l;
}
static int _get_gpio_datain(struct gpio_bank *bank, int offset)
{
void __iomem *reg = bank->base + bank->regs->datain;
return (__raw_readl(reg) & (1 << offset)) != 0;
}
static int _get_gpio_dataout(struct gpio_bank *bank, int offset)
{
void __iomem *reg = bank->base + bank->regs->dataout;
return (__raw_readl(reg) & (1 << offset)) != 0;
}
static inline void _gpio_rmw(void __iomem *base, u32 reg, u32 mask, bool set)
{
int l = __raw_readl(base + reg);
if (set)
l |= mask;
else
l &= ~mask;
__raw_writel(l, base + reg);
}
static inline void _gpio_dbck_enable(struct gpio_bank *bank)
{
if (bank->dbck_enable_mask && !bank->dbck_enabled) {
clk_enable(bank->dbck);
bank->dbck_enabled = true;
__raw_writel(bank->dbck_enable_mask,
bank->base + bank->regs->debounce_en);
}
}
static inline void _gpio_dbck_disable(struct gpio_bank *bank)
{
if (bank->dbck_enable_mask && bank->dbck_enabled) {
/*
* Disable debounce before cutting it's clock. If debounce is
* enabled but the clock is not, GPIO module seems to be unable
* to detect events and generate interrupts at least on OMAP3.
*/
__raw_writel(0, bank->base + bank->regs->debounce_en);
clk_disable(bank->dbck);
bank->dbck_enabled = false;
}
}
/**
* _set_gpio_debounce - low level gpio debounce time
* @bank: the gpio bank we're acting upon
* @gpio: the gpio number on this @gpio
* @debounce: debounce time to use
*
* OMAP's debounce time is in 31us steps so we need
* to convert and round up to the closest unit.
*/
static void _set_gpio_debounce(struct gpio_bank *bank, unsigned gpio,
unsigned debounce)
{
void __iomem *reg;
u32 val;
u32 l;
if (!bank->dbck_flag)
return;
if (debounce < 32)
debounce = 0x01;
else if (debounce > 7936)
debounce = 0xff;
else
debounce = (debounce / 0x1f) - 1;
l = GPIO_BIT(bank, gpio);
clk_enable(bank->dbck);
reg = bank->base + bank->regs->debounce;
__raw_writel(debounce, reg);
reg = bank->base + bank->regs->debounce_en;
val = __raw_readl(reg);
if (debounce)
val |= l;
else
val &= ~l;
bank->dbck_enable_mask = val;
__raw_writel(val, reg);
clk_disable(bank->dbck);
/*
* Enable debounce clock per module.
* This call is mandatory because in omap_gpio_request() when
* *_runtime_get_sync() is called, _gpio_dbck_enable() within
* runtime callbck fails to turn on dbck because dbck_enable_mask
* used within _gpio_dbck_enable() is still not initialized at
* that point. Therefore we have to enable dbck here.
*/
_gpio_dbck_enable(bank);
if (bank->dbck_enable_mask) {
bank->context.debounce = debounce;
bank->context.debounce_en = val;
}
}
static inline void set_gpio_trigger(struct gpio_bank *bank, int gpio,
unsigned trigger)
{
void __iomem *base = bank->base;
u32 gpio_bit = 1 << gpio;
_gpio_rmw(base, bank->regs->leveldetect0, gpio_bit,
trigger & IRQ_TYPE_LEVEL_LOW);
_gpio_rmw(base, bank->regs->leveldetect1, gpio_bit,
trigger & IRQ_TYPE_LEVEL_HIGH);
_gpio_rmw(base, bank->regs->risingdetect, gpio_bit,
trigger & IRQ_TYPE_EDGE_RISING);
_gpio_rmw(base, bank->regs->fallingdetect, gpio_bit,
trigger & IRQ_TYPE_EDGE_FALLING);
bank->context.leveldetect0 =
__raw_readl(bank->base + bank->regs->leveldetect0);
bank->context.leveldetect1 =
__raw_readl(bank->base + bank->regs->leveldetect1);
bank->context.risingdetect =
__raw_readl(bank->base + bank->regs->risingdetect);
bank->context.fallingdetect =
__raw_readl(bank->base + bank->regs->fallingdetect);
if (likely(!(bank->non_wakeup_gpios & gpio_bit))) {
_gpio_rmw(base, bank->regs->wkup_en, gpio_bit, trigger != 0);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
}
/* This part needs to be executed always for OMAP{34xx, 44xx} */
if (!bank->regs->irqctrl) {
/* On omap24xx proceed only when valid GPIO bit is set */
if (bank->non_wakeup_gpios) {
if (!(bank->non_wakeup_gpios & gpio_bit))
goto exit;
}
/*
* Log the edge gpio and manually trigger the IRQ
* after resume if the input level changes
* to avoid irq lost during PER RET/OFF mode
* Applies for omap2 non-wakeup gpio and all omap3 gpios
*/
if (trigger & IRQ_TYPE_EDGE_BOTH)
bank->enabled_non_wakeup_gpios |= gpio_bit;
else
bank->enabled_non_wakeup_gpios &= ~gpio_bit;
}
exit:
bank->level_mask =
__raw_readl(bank->base + bank->regs->leveldetect0) |
__raw_readl(bank->base + bank->regs->leveldetect1);
}
#ifdef CONFIG_ARCH_OMAP1
/*
* This only applies to chips that can't do both rising and falling edge
* detection at once. For all other chips, this function is a noop.
*/
static void _toggle_gpio_edge_triggering(struct gpio_bank *bank, int gpio)
{
void __iomem *reg = bank->base;
u32 l = 0;
if (!bank->regs->irqctrl)
return;
reg += bank->regs->irqctrl;
l = __raw_readl(reg);
if ((l >> gpio) & 1)
l &= ~(1 << gpio);
else
l |= 1 << gpio;
__raw_writel(l, reg);
}
#else
static void _toggle_gpio_edge_triggering(struct gpio_bank *bank, int gpio) {}
#endif
static int _set_gpio_triggering(struct gpio_bank *bank, int gpio,
unsigned trigger)
{
void __iomem *reg = bank->base;
void __iomem *base = bank->base;
u32 l = 0;
if (bank->regs->leveldetect0 && bank->regs->wkup_en) {
set_gpio_trigger(bank, gpio, trigger);
} else if (bank->regs->irqctrl) {
reg += bank->regs->irqctrl;
l = __raw_readl(reg);
if ((trigger & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH)
bank->toggle_mask |= 1 << gpio;
if (trigger & IRQ_TYPE_EDGE_RISING)
l |= 1 << gpio;
else if (trigger & IRQ_TYPE_EDGE_FALLING)
l &= ~(1 << gpio);
else
return -EINVAL;
__raw_writel(l, reg);
} else if (bank->regs->edgectrl1) {
if (gpio & 0x08)
reg += bank->regs->edgectrl2;
else
reg += bank->regs->edgectrl1;
gpio &= 0x07;
l = __raw_readl(reg);
l &= ~(3 << (gpio << 1));
if (trigger & IRQ_TYPE_EDGE_RISING)
l |= 2 << (gpio << 1);
if (trigger & IRQ_TYPE_EDGE_FALLING)
l |= 1 << (gpio << 1);
/* Enable wake-up during idle for dynamic tick */
_gpio_rmw(base, bank->regs->wkup_en, 1 << gpio, trigger);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
__raw_writel(l, reg);
}
return 0;
}
static int gpio_irq_type(struct irq_data *d, unsigned type)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned gpio = 0;
int retval;
unsigned long flags;
#ifdef CONFIG_ARCH_OMAP1
if (d->irq > IH_MPUIO_BASE)
gpio = OMAP_MPUIO(d->irq - IH_MPUIO_BASE);
#endif
if (!gpio)
gpio = irq_to_gpio(bank, d->irq);
if (type & ~IRQ_TYPE_SENSE_MASK)
return -EINVAL;
if (!bank->regs->leveldetect0 &&
(type & (IRQ_TYPE_LEVEL_LOW|IRQ_TYPE_LEVEL_HIGH)))
return -EINVAL;
spin_lock_irqsave(&bank->lock, flags);
retval = _set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), type);
spin_unlock_irqrestore(&bank->lock, flags);
if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
__irq_set_handler_locked(d->irq, handle_level_irq);
else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
__irq_set_handler_locked(d->irq, handle_edge_irq);
return retval;
}
static void _clear_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
reg += bank->regs->irqstatus;
__raw_writel(gpio_mask, reg);
/* Workaround for clearing DSP GPIO interrupts to allow retention */
if (bank->regs->irqstatus2) {
reg = bank->base + bank->regs->irqstatus2;
__raw_writel(gpio_mask, reg);
}
/* Flush posted write for the irq status to avoid spurious interrupts */
__raw_readl(reg);
}
static inline void _clear_gpio_irqstatus(struct gpio_bank *bank, int gpio)
{
_clear_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
}
static u32 _get_gpio_irqbank_mask(struct gpio_bank *bank)
{
void __iomem *reg = bank->base;
u32 l;
u32 mask = (1 << bank->width) - 1;
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l = ~l;
l &= mask;
return l;
}
static void _enable_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
u32 l;
if (bank->regs->set_irqenable) {
reg += bank->regs->set_irqenable;
l = gpio_mask;
bank->context.irqenable1 |= gpio_mask;
} else {
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l &= ~gpio_mask;
else
l |= gpio_mask;
bank->context.irqenable1 = l;
}
__raw_writel(l, reg);
}
static void _disable_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
u32 l;
if (bank->regs->clr_irqenable) {
reg += bank->regs->clr_irqenable;
l = gpio_mask;
bank->context.irqenable1 &= ~gpio_mask;
} else {
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l |= gpio_mask;
else
l &= ~gpio_mask;
bank->context.irqenable1 = l;
}
__raw_writel(l, reg);
}
static inline void _set_gpio_irqenable(struct gpio_bank *bank, int gpio, int enable)
{
if (enable)
_enable_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
else
_disable_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
}
/*
* Note that ENAWAKEUP needs to be enabled in GPIO_SYSCONFIG register.
* 1510 does not seem to have a wake-up register. If JTAG is connected
* to the target, system will wake up always on GPIO events. While
* system is running all registered GPIO interrupts need to have wake-up
* enabled. When system is suspended, only selected GPIO interrupts need
* to have wake-up enabled.
*/
static int _set_gpio_wakeup(struct gpio_bank *bank, int gpio, int enable)
{
u32 gpio_bit = GPIO_BIT(bank, gpio);
unsigned long flags;
if (bank->non_wakeup_gpios & gpio_bit) {
dev_err(bank->dev,
"Unable to modify wakeup on non-wakeup GPIO%d\n", gpio);
return -EINVAL;
}
spin_lock_irqsave(&bank->lock, flags);
if (enable)
bank->context.wake_en |= gpio_bit;
else
bank->context.wake_en &= ~gpio_bit;
__raw_writel(bank->context.wake_en, bank->base + bank->regs->wkup_en);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void _reset_gpio(struct gpio_bank *bank, int gpio)
{
_set_gpio_direction(bank, GPIO_INDEX(bank, gpio), 1);
_set_gpio_irqenable(bank, gpio, 0);
_clear_gpio_irqstatus(bank, gpio);
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), IRQ_TYPE_NONE);
}
/* Use disable_irq_wake() and enable_irq_wake() functions from drivers */
static int gpio_wake_enable(struct irq_data *d, unsigned int enable)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->irq);
return _set_gpio_wakeup(bank, gpio, enable);
}
static int omap_gpio_request(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip);
unsigned long flags;
/*
* If this is the first gpio_request for the bank,
* enable the bank module.
*/
if (!bank->mod_usage)
pm_runtime_get_sync(bank->dev);
spin_lock_irqsave(&bank->lock, flags);
/* Set trigger to none. You need to enable the desired trigger with
* request_irq() or set_irq_type().
*/
_set_gpio_triggering(bank, offset, IRQ_TYPE_NONE);
if (bank->regs->pinctrl) {
void __iomem *reg = bank->base + bank->regs->pinctrl;
/* Claim the pin for MPU */
__raw_writel(__raw_readl(reg) | (1 << offset), reg);
}
if (bank->regs->ctrl && !bank->mod_usage) {
void __iomem *reg = bank->base + bank->regs->ctrl;
u32 ctrl;
ctrl = __raw_readl(reg);
/* Module is enabled, clocks are not gated */
ctrl &= ~GPIO_MOD_CTRL_BIT;
__raw_writel(ctrl, reg);
bank->context.ctrl = ctrl;
}
bank->mod_usage |= 1 << offset;
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void omap_gpio_free(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip);
void __iomem *base = bank->base;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
if (bank->regs->wkup_en) {
/* Disable wake-up during idle for dynamic tick */
_gpio_rmw(base, bank->regs->wkup_en, 1 << offset, 0);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
}
bank->mod_usage &= ~(1 << offset);
if (bank->regs->ctrl && !bank->mod_usage) {
void __iomem *reg = bank->base + bank->regs->ctrl;
u32 ctrl;
ctrl = __raw_readl(reg);
/* Module is disabled, clocks are gated */
ctrl |= GPIO_MOD_CTRL_BIT;
__raw_writel(ctrl, reg);
bank->context.ctrl = ctrl;
}
_reset_gpio(bank, bank->chip.base + offset);
spin_unlock_irqrestore(&bank->lock, flags);
/*
* If this is the last gpio to be freed in the bank,
* disable the bank module.
*/
if (!bank->mod_usage)
pm_runtime_put(bank->dev);
}
/*
* We need to unmask the GPIO bank interrupt as soon as possible to
* avoid missing GPIO interrupts for other lines in the bank.
* Then we need to mask-read-clear-unmask the triggered GPIO lines
* in the bank to avoid missing nested interrupts for a GPIO line.
* If we wait to unmask individual GPIO lines in the bank after the
* line's interrupt handler has been run, we may miss some nested
* interrupts.
*/
static void gpio_irq_handler(unsigned int irq, struct irq_desc *desc)
{
void __iomem *isr_reg = NULL;
u32 isr;
unsigned int gpio_irq, gpio_index;
struct gpio_bank *bank;
int unmasked = 0;
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
bank = irq_get_handler_data(irq);
isr_reg = bank->base + bank->regs->irqstatus;
pm_runtime_get_sync(bank->dev);
if (WARN_ON(!isr_reg))
goto exit;
while(1) {
u32 isr_saved, level_mask = 0;
u32 enabled;
enabled = _get_gpio_irqbank_mask(bank);
isr_saved = isr = __raw_readl(isr_reg) & enabled;
if (bank->level_mask)
level_mask = bank->level_mask & enabled;
/* clear edge sensitive interrupts before handler(s) are
called so that we don't miss any interrupt occurred while
executing them */
_disable_gpio_irqbank(bank, isr_saved & ~level_mask);
_clear_gpio_irqbank(bank, isr_saved & ~level_mask);
_enable_gpio_irqbank(bank, isr_saved & ~level_mask);
/* if there is only edge sensitive GPIO pin interrupts
configured, we could unmask GPIO bank interrupt immediately */
if (!level_mask && !unmasked) {
unmasked = 1;
chained_irq_exit(chip, desc);
}
if (!isr)
break;
gpio_irq = bank->irq_base;
for (; isr != 0; isr >>= 1, gpio_irq++) {
int gpio = irq_to_gpio(bank, gpio_irq);
if (!(isr & 1))
continue;
gpio_index = GPIO_INDEX(bank, gpio);
/*
* Some chips can't respond to both rising and falling
* at the same time. If this irq was requested with
* both flags, we need to flip the ICR data for the IRQ
* to respond to the IRQ for the opposite direction.
* This will be indicated in the bank toggle_mask.
*/
if (bank->toggle_mask & (1 << gpio_index))
_toggle_gpio_edge_triggering(bank, gpio_index);
generic_handle_irq(gpio_irq);
}
}
/* if bank has any level sensitive GPIO pin interrupt
configured, we must unmask the bank interrupt only after
handler(s) are executed in order to avoid spurious bank
interrupt */
exit:
if (!unmasked)
chained_irq_exit(chip, desc);
pm_runtime_put(bank->dev);
}
static void gpio_irq_shutdown(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->irq);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
_reset_gpio(bank, gpio);
spin_unlock_irqrestore(&bank->lock, flags);
}
static void gpio_ack_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->irq);
_clear_gpio_irqstatus(bank, gpio);
}
static void gpio_mask_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->irq);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_irqenable(bank, gpio, 0);
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), IRQ_TYPE_NONE);
spin_unlock_irqrestore(&bank->lock, flags);
}
static void gpio_unmask_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->irq);
unsigned int irq_mask = GPIO_BIT(bank, gpio);
u32 trigger = irqd_get_trigger_type(d);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
if (trigger)
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), trigger);
/* For level-triggered GPIOs, the clearing must be done after
* the HW source is cleared, thus after the handler has run */
if (bank->level_mask & irq_mask) {
_set_gpio_irqenable(bank, gpio, 0);
_clear_gpio_irqstatus(bank, gpio);
}
_set_gpio_irqenable(bank, gpio, 1);
spin_unlock_irqrestore(&bank->lock, flags);
}
static struct irq_chip gpio_irq_chip = {
.name = "GPIO",
.irq_shutdown = gpio_irq_shutdown,
.irq_ack = gpio_ack_irq,
.irq_mask = gpio_mask_irq,
.irq_unmask = gpio_unmask_irq,
.irq_set_type = gpio_irq_type,
.irq_set_wake = gpio_wake_enable,
};
/*---------------------------------------------------------------------*/
static int omap_mpuio_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
void __iomem *mask_reg = bank->base +
OMAP_MPUIO_GPIO_MASKIT / bank->stride;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
__raw_writel(0xffff & ~bank->context.wake_en, mask_reg);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int omap_mpuio_resume_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
void __iomem *mask_reg = bank->base +
OMAP_MPUIO_GPIO_MASKIT / bank->stride;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
__raw_writel(bank->context.wake_en, mask_reg);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static const struct dev_pm_ops omap_mpuio_dev_pm_ops = {
.suspend_noirq = omap_mpuio_suspend_noirq,
.resume_noirq = omap_mpuio_resume_noirq,
};
/* use platform_driver for this. */
static struct platform_driver omap_mpuio_driver = {
.driver = {
.name = "mpuio",
.pm = &omap_mpuio_dev_pm_ops,
},
};
static struct platform_device omap_mpuio_device = {
.name = "mpuio",
.id = -1,
.dev = {
.driver = &omap_mpuio_driver.driver,
}
/* could list the /proc/iomem resources */
};
static inline void mpuio_init(struct gpio_bank *bank)
{
platform_set_drvdata(&omap_mpuio_device, bank);
if (platform_driver_register(&omap_mpuio_driver) == 0)
(void) platform_device_register(&omap_mpuio_device);
}
/*---------------------------------------------------------------------*/
static int gpio_input(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_direction(bank, offset, 1);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int gpio_is_input(struct gpio_bank *bank, int mask)
{
void __iomem *reg = bank->base + bank->regs->direction;
return __raw_readl(reg) & mask;
}
static int gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank;
u32 mask;
bank = container_of(chip, struct gpio_bank, chip);
mask = (1 << offset);
if (gpio_is_input(bank, mask))
return _get_gpio_datain(bank, offset);
else
return _get_gpio_dataout(bank, offset);
}
static int gpio_output(struct gpio_chip *chip, unsigned offset, int value)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
bank->set_dataout(bank, offset, value);
_set_gpio_direction(bank, offset, 0);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int gpio_debounce(struct gpio_chip *chip, unsigned offset,
unsigned debounce)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_debounce(bank, offset, debounce);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
bank->set_dataout(bank, offset, value);
spin_unlock_irqrestore(&bank->lock, flags);
}
static int gpio_2irq(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank;
bank = container_of(chip, struct gpio_bank, chip);
return bank->irq_base + offset;
}
/*---------------------------------------------------------------------*/
static void __init omap_gpio_show_rev(struct gpio_bank *bank)
{
static bool called;
u32 rev;
if (called || bank->regs->revision == USHRT_MAX)
return;
rev = __raw_readw(bank->base + bank->regs->revision);
pr_info("OMAP GPIO hardware version %d.%d\n",
(rev >> 4) & 0x0f, rev & 0x0f);
called = true;
}
/* This lock class tells lockdep that GPIO irqs are in a different
* category than their parents, so it won't report false recursion.
*/
static struct lock_class_key gpio_lock_class;
static void omap_gpio_mod_init(struct gpio_bank *bank)
{
void __iomem *base = bank->base;
u32 l = 0xffffffff;
if (bank->width == 16)
l = 0xffff;
if (bank->is_mpuio) {
__raw_writel(l, bank->base + bank->regs->irqenable);
return;
}
_gpio_rmw(base, bank->regs->irqenable, l, bank->regs->irqenable_inv);
_gpio_rmw(base, bank->regs->irqstatus, l, !bank->regs->irqenable_inv);
if (bank->regs->debounce_en)
__raw_writel(0, base + bank->regs->debounce_en);
/* Save OE default value (0xffffffff) in the context */
bank->context.oe = __raw_readl(bank->base + bank->regs->direction);
/* Initialize interface clk ungated, module enabled */
if (bank->regs->ctrl)
__raw_writel(0, base + bank->regs->ctrl);
bank->dbck = clk_get(bank->dev, "dbclk");
if (IS_ERR(bank->dbck))
dev_err(bank->dev, "Could not get gpio dbck\n");
}
static __devinit void
omap_mpuio_alloc_gc(struct gpio_bank *bank, unsigned int irq_start,
unsigned int num)
{
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
gc = irq_alloc_generic_chip("MPUIO", 1, irq_start, bank->base,
handle_simple_irq);
if (!gc) {
dev_err(bank->dev, "Memory alloc failed for gc\n");
return;
}
ct = gc->chip_types;
/* NOTE: No ack required, reading IRQ status clears it. */
ct->chip.irq_mask = irq_gc_mask_set_bit;
ct->chip.irq_unmask = irq_gc_mask_clr_bit;
ct->chip.irq_set_type = gpio_irq_type;
if (bank->regs->wkup_en)
ct->chip.irq_set_wake = gpio_wake_enable,
ct->regs.mask = OMAP_MPUIO_GPIO_INT / bank->stride;
irq_setup_generic_chip(gc, IRQ_MSK(num), IRQ_GC_INIT_MASK_CACHE,
IRQ_NOREQUEST | IRQ_NOPROBE, 0);
}
static void __devinit omap_gpio_chip_init(struct gpio_bank *bank)
{
int j;
static int gpio;
/*
* REVISIT eventually switch from OMAP-specific gpio structs
* over to the generic ones
*/
bank->chip.request = omap_gpio_request;
bank->chip.free = omap_gpio_free;
bank->chip.direction_input = gpio_input;
bank->chip.get = gpio_get;
bank->chip.direction_output = gpio_output;
bank->chip.set_debounce = gpio_debounce;
bank->chip.set = gpio_set;
bank->chip.to_irq = gpio_2irq;
if (bank->is_mpuio) {
bank->chip.label = "mpuio";
if (bank->regs->wkup_en)
bank->chip.dev = &omap_mpuio_device.dev;
bank->chip.base = OMAP_MPUIO(0);
} else {
bank->chip.label = "gpio";
bank->chip.base = gpio;
gpio += bank->width;
}
bank->chip.ngpio = bank->width;
gpiochip_add(&bank->chip);
for (j = bank->irq_base; j < bank->irq_base + bank->width; j++) {
irq_set_lockdep_class(j, &gpio_lock_class);
irq_set_chip_data(j, bank);
if (bank->is_mpuio) {
omap_mpuio_alloc_gc(bank, j, bank->width);
} else {
irq_set_chip(j, &gpio_irq_chip);
irq_set_handler(j, handle_simple_irq);
set_irq_flags(j, IRQF_VALID);
}
}
irq_set_chained_handler(bank->irq, gpio_irq_handler);
irq_set_handler_data(bank->irq, bank);
}
static const struct of_device_id omap_gpio_match[];
static int __devinit omap_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
const struct of_device_id *match;
const struct omap_gpio_platform_data *pdata;
struct resource *res;
struct gpio_bank *bank;
int ret = 0;
match = of_match_device(of_match_ptr(omap_gpio_match), dev);
pdata = match ? match->data : dev->platform_data;
if (!pdata)
return -EINVAL;
bank = devm_kzalloc(&pdev->dev, sizeof(struct gpio_bank), GFP_KERNEL);
if (!bank) {
dev_err(dev, "Memory alloc failed\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (unlikely(!res)) {
dev_err(dev, "Invalid IRQ resource\n");
return -ENODEV;
}
bank->irq = res->start;
bank->dev = dev;
bank->dbck_flag = pdata->dbck_flag;
bank->stride = pdata->bank_stride;
bank->width = pdata->bank_width;
bank->is_mpuio = pdata->is_mpuio;
bank->non_wakeup_gpios = pdata->non_wakeup_gpios;
bank->loses_context = pdata->loses_context;
bank->regs = pdata->regs;
#ifdef CONFIG_OF_GPIO
bank->chip.of_node = of_node_get(node);
#endif
bank->irq_base = irq_alloc_descs(-1, 0, bank->width, 0);
if (bank->irq_base < 0) {
dev_err(dev, "Couldn't allocate IRQ numbers\n");
return -ENODEV;
}
bank->domain = irq_domain_add_legacy(node, bank->width, bank->irq_base,
0, &irq_domain_simple_ops, NULL);
if (bank->regs->set_dataout && bank->regs->clr_dataout)
bank->set_dataout = _set_gpio_dataout_reg;
else
bank->set_dataout = _set_gpio_dataout_mask;
spin_lock_init(&bank->lock);
/* Static mapping, never released */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!res)) {
dev_err(dev, "Invalid mem resource\n");
return -ENODEV;
}
if (!devm_request_mem_region(dev, res->start, resource_size(res),
pdev->name)) {
dev_err(dev, "Region already claimed\n");
return -EBUSY;
}
bank->base = devm_ioremap(dev, res->start, resource_size(res));
if (!bank->base) {
dev_err(dev, "Could not ioremap\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, bank);
pm_runtime_enable(bank->dev);
pm_runtime_irq_safe(bank->dev);
pm_runtime_get_sync(bank->dev);
if (bank->is_mpuio)
mpuio_init(bank);
omap_gpio_mod_init(bank);
omap_gpio_chip_init(bank);
omap_gpio_show_rev(bank);
if (bank->loses_context)
bank->get_context_loss_count = pdata->get_context_loss_count;
pm_runtime_put(bank->dev);
list_add_tail(&bank->node, &omap_gpio_list);
return ret;
}
#ifdef CONFIG_ARCH_OMAP2PLUS
#if defined(CONFIG_PM_RUNTIME)
static void omap_gpio_restore_context(struct gpio_bank *bank);
static int omap_gpio_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
u32 l1 = 0, l2 = 0;
unsigned long flags;
u32 wake_low, wake_hi;
spin_lock_irqsave(&bank->lock, flags);
/*
* Only edges can generate a wakeup event to the PRCM.
*
* Therefore, ensure any wake-up capable GPIOs have
* edge-detection enabled before going idle to ensure a wakeup
* to the PRCM is generated on a GPIO transition. (c.f. 34xx
* NDA TRM 25.5.3.1)
*
* The normal values will be restored upon ->runtime_resume()
* by writing back the values saved in bank->context.
*/
wake_low = bank->context.leveldetect0 & bank->context.wake_en;
if (wake_low)
__raw_writel(wake_low | bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
wake_hi = bank->context.leveldetect1 & bank->context.wake_en;
if (wake_hi)
__raw_writel(wake_hi | bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
if (!bank->enabled_non_wakeup_gpios)
goto update_gpio_context_count;
if (bank->power_mode != OFF_MODE) {
bank->power_mode = 0;
goto update_gpio_context_count;
}
/*
* If going to OFF, remove triggering for all
* non-wakeup GPIOs. Otherwise spurious IRQs will be
* generated. See OMAP2420 Errata item 1.101.
*/
bank->saved_datain = __raw_readl(bank->base +
bank->regs->datain);
l1 = bank->context.fallingdetect;
l2 = bank->context.risingdetect;
l1 &= ~bank->enabled_non_wakeup_gpios;
l2 &= ~bank->enabled_non_wakeup_gpios;
__raw_writel(l1, bank->base + bank->regs->fallingdetect);
__raw_writel(l2, bank->base + bank->regs->risingdetect);
bank->workaround_enabled = true;
update_gpio_context_count:
if (bank->get_context_loss_count)
bank->context_loss_count =
bank->get_context_loss_count(bank->dev);
_gpio_dbck_disable(bank);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int omap_gpio_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
int context_lost_cnt_after;
u32 l = 0, gen, gen0, gen1;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
_gpio_dbck_enable(bank);
/*
* In ->runtime_suspend(), level-triggered, wakeup-enabled
* GPIOs were set to edge trigger also in order to be able to
* generate a PRCM wakeup. Here we restore the
* pre-runtime_suspend() values for edge triggering.
*/
__raw_writel(bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
__raw_writel(bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
if (bank->get_context_loss_count) {
context_lost_cnt_after =
bank->get_context_loss_count(bank->dev);
if (context_lost_cnt_after != bank->context_loss_count) {
omap_gpio_restore_context(bank);
} else {
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
}
if (!bank->workaround_enabled) {
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
__raw_writel(bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
__raw_writel(bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
l = __raw_readl(bank->base + bank->regs->datain);
/*
* Check if any of the non-wakeup interrupt GPIOs have changed
* state. If so, generate an IRQ by software. This is
* horribly racy, but it's the best we can do to work around
* this silicon bug.
*/
l ^= bank->saved_datain;
l &= bank->enabled_non_wakeup_gpios;
/*
* No need to generate IRQs for the rising edge for gpio IRQs
* configured with falling edge only; and vice versa.
*/
gen0 = l & bank->context.fallingdetect;
gen0 &= bank->saved_datain;
gen1 = l & bank->context.risingdetect;
gen1 &= ~(bank->saved_datain);
/* FIXME: Consider GPIO IRQs with level detections properly! */
gen = l & (~(bank->context.fallingdetect) &
~(bank->context.risingdetect));
/* Consider all GPIO IRQs needed to be updated */
gen |= gen0 | gen1;
if (gen) {
u32 old0, old1;
old0 = __raw_readl(bank->base + bank->regs->leveldetect0);
old1 = __raw_readl(bank->base + bank->regs->leveldetect1);
if (!bank->regs->irqstatus_raw0) {
__raw_writel(old0 | gen, bank->base +
bank->regs->leveldetect0);
__raw_writel(old1 | gen, bank->base +
bank->regs->leveldetect1);
}
if (bank->regs->irqstatus_raw0) {
__raw_writel(old0 | l, bank->base +
bank->regs->leveldetect0);
__raw_writel(old1 | l, bank->base +
bank->regs->leveldetect1);
}
__raw_writel(old0, bank->base + bank->regs->leveldetect0);
__raw_writel(old1, bank->base + bank->regs->leveldetect1);
}
bank->workaround_enabled = false;
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
void omap2_gpio_prepare_for_idle(int pwr_mode)
{
struct gpio_bank *bank;
list_for_each_entry(bank, &omap_gpio_list, node) {
if (!bank->mod_usage || !bank->loses_context)
continue;
bank->power_mode = pwr_mode;
pm_runtime_put_sync_suspend(bank->dev);
}
}
void omap2_gpio_resume_after_idle(void)
{
struct gpio_bank *bank;
list_for_each_entry(bank, &omap_gpio_list, node) {
if (!bank->mod_usage || !bank->loses_context)
continue;
pm_runtime_get_sync(bank->dev);
}
}
#if defined(CONFIG_PM_RUNTIME)
static void omap_gpio_restore_context(struct gpio_bank *bank)
{
__raw_writel(bank->context.wake_en,
bank->base + bank->regs->wkup_en);
__raw_writel(bank->context.ctrl, bank->base + bank->regs->ctrl);
__raw_writel(bank->context.leveldetect0,
bank->base + bank->regs->leveldetect0);
__raw_writel(bank->context.leveldetect1,
bank->base + bank->regs->leveldetect1);
__raw_writel(bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
__raw_writel(bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
if (bank->regs->set_dataout && bank->regs->clr_dataout)
__raw_writel(bank->context.dataout,
bank->base + bank->regs->set_dataout);
else
__raw_writel(bank->context.dataout,
bank->base + bank->regs->dataout);
__raw_writel(bank->context.oe, bank->base + bank->regs->direction);
if (bank->dbck_enable_mask) {
__raw_writel(bank->context.debounce, bank->base +
bank->regs->debounce);
__raw_writel(bank->context.debounce_en,
bank->base + bank->regs->debounce_en);
}
__raw_writel(bank->context.irqenable1,
bank->base + bank->regs->irqenable);
__raw_writel(bank->context.irqenable2,
bank->base + bank->regs->irqenable2);
}
#endif /* CONFIG_PM_RUNTIME */
#else
#define omap_gpio_runtime_suspend NULL
#define omap_gpio_runtime_resume NULL
#endif
static const struct dev_pm_ops gpio_pm_ops = {
SET_RUNTIME_PM_OPS(omap_gpio_runtime_suspend, omap_gpio_runtime_resume,
NULL)
};
#if defined(CONFIG_OF)
static struct omap_gpio_reg_offs omap2_gpio_regs = {
.revision = OMAP24XX_GPIO_REVISION,
.direction = OMAP24XX_GPIO_OE,
.datain = OMAP24XX_GPIO_DATAIN,
.dataout = OMAP24XX_GPIO_DATAOUT,
.set_dataout = OMAP24XX_GPIO_SETDATAOUT,
.clr_dataout = OMAP24XX_GPIO_CLEARDATAOUT,
.irqstatus = OMAP24XX_GPIO_IRQSTATUS1,
.irqstatus2 = OMAP24XX_GPIO_IRQSTATUS2,
.irqenable = OMAP24XX_GPIO_IRQENABLE1,
.irqenable2 = OMAP24XX_GPIO_IRQENABLE2,
.set_irqenable = OMAP24XX_GPIO_SETIRQENABLE1,
.clr_irqenable = OMAP24XX_GPIO_CLEARIRQENABLE1,
.debounce = OMAP24XX_GPIO_DEBOUNCE_VAL,
.debounce_en = OMAP24XX_GPIO_DEBOUNCE_EN,
.ctrl = OMAP24XX_GPIO_CTRL,
.wkup_en = OMAP24XX_GPIO_WAKE_EN,
.leveldetect0 = OMAP24XX_GPIO_LEVELDETECT0,
.leveldetect1 = OMAP24XX_GPIO_LEVELDETECT1,
.risingdetect = OMAP24XX_GPIO_RISINGDETECT,
.fallingdetect = OMAP24XX_GPIO_FALLINGDETECT,
};
static struct omap_gpio_reg_offs omap4_gpio_regs = {
.revision = OMAP4_GPIO_REVISION,
.direction = OMAP4_GPIO_OE,
.datain = OMAP4_GPIO_DATAIN,
.dataout = OMAP4_GPIO_DATAOUT,
.set_dataout = OMAP4_GPIO_SETDATAOUT,
.clr_dataout = OMAP4_GPIO_CLEARDATAOUT,
.irqstatus = OMAP4_GPIO_IRQSTATUS0,
.irqstatus2 = OMAP4_GPIO_IRQSTATUS1,
.irqenable = OMAP4_GPIO_IRQSTATUSSET0,
.irqenable2 = OMAP4_GPIO_IRQSTATUSSET1,
.set_irqenable = OMAP4_GPIO_IRQSTATUSSET0,
.clr_irqenable = OMAP4_GPIO_IRQSTATUSCLR0,
.debounce = OMAP4_GPIO_DEBOUNCINGTIME,
.debounce_en = OMAP4_GPIO_DEBOUNCENABLE,
.ctrl = OMAP4_GPIO_CTRL,
.wkup_en = OMAP4_GPIO_IRQWAKEN0,
.leveldetect0 = OMAP4_GPIO_LEVELDETECT0,
.leveldetect1 = OMAP4_GPIO_LEVELDETECT1,
.risingdetect = OMAP4_GPIO_RISINGDETECT,
.fallingdetect = OMAP4_GPIO_FALLINGDETECT,
};
const static struct omap_gpio_platform_data omap2_pdata = {
.regs = &omap2_gpio_regs,
.bank_width = 32,
.dbck_flag = false,
};
const static struct omap_gpio_platform_data omap3_pdata = {
.regs = &omap2_gpio_regs,
.bank_width = 32,
.dbck_flag = true,
};
const static struct omap_gpio_platform_data omap4_pdata = {
.regs = &omap4_gpio_regs,
.bank_width = 32,
.dbck_flag = true,
};
static const struct of_device_id omap_gpio_match[] = {
{
.compatible = "ti,omap4-gpio",
.data = &omap4_pdata,
},
{
.compatible = "ti,omap3-gpio",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap2-gpio",
.data = &omap2_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_gpio_match);
#endif
static struct platform_driver omap_gpio_driver = {
.probe = omap_gpio_probe,
.driver = {
.name = "omap_gpio",
.pm = &gpio_pm_ops,
.of_match_table = of_match_ptr(omap_gpio_match),
},
};
/*
* gpio driver register needs to be done before
* machine_init functions access gpio APIs.
* Hence omap_gpio_drv_reg() is a postcore_initcall.
*/
static int __init omap_gpio_drv_reg(void)
{
return platform_driver_register(&omap_gpio_driver);
}
postcore_initcall(omap_gpio_drv_reg);