linux_old1/drivers/dma/mic_x100_dma.c

811 lines
22 KiB
C

/*
* Intel MIC Platform Software Stack (MPSS)
*
* Copyright(c) 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Intel MIC X100 DMA Driver.
*
* Adapted from IOAT dma driver.
*/
#include <linux/module.h>
#include <linux/io.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include "mic_x100_dma.h"
#define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\
MIC_DMA_ALIGN_BYTES)
#define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1)
#define MIC_DMA_DESC_TYPE_SHIFT 60
#define MIC_DMA_MEMCPY_LEN_SHIFT 46
#define MIC_DMA_STAT_INTR_SHIFT 59
/* high-water mark for pushing dma descriptors */
static int mic_dma_pending_level = 4;
/* Status descriptor is used to write a 64 bit value to a memory location */
enum mic_dma_desc_format_type {
MIC_DMA_MEMCPY = 1,
MIC_DMA_STATUS,
};
static inline u32 mic_dma_hw_ring_inc(u32 val)
{
return (val + 1) % MIC_DMA_DESC_RX_SIZE;
}
static inline u32 mic_dma_hw_ring_dec(u32 val)
{
return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
}
static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
{
ch->head = mic_dma_hw_ring_inc(ch->head);
}
/* Prepare a memcpy desc */
static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
{
u64 qw0, qw1;
qw0 = src_phys;
qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
qw1 = MIC_DMA_MEMCPY;
qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
qw1 |= dst_phys;
desc->qw0 = qw0;
desc->qw1 = qw1;
}
/* Prepare a status desc. with @data to be written at @dst_phys */
static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
dma_addr_t dst_phys, bool generate_intr)
{
u64 qw0, qw1;
qw0 = data;
qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
if (generate_intr)
qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
desc->qw0 = qw0;
desc->qw1 = qw1;
}
static void mic_dma_cleanup(struct mic_dma_chan *ch)
{
struct dma_async_tx_descriptor *tx;
u32 tail;
u32 last_tail;
spin_lock(&ch->cleanup_lock);
tail = mic_dma_read_cmp_cnt(ch);
/*
* This is the barrier pair for smp_wmb() in fn.
* mic_dma_tx_submit_unlock. It's required so that we read the
* updated cookie value from tx->cookie.
*/
smp_rmb();
for (last_tail = ch->last_tail; tail != last_tail;) {
tx = &ch->tx_array[last_tail];
if (tx->cookie) {
dma_cookie_complete(tx);
dmaengine_desc_get_callback_invoke(tx, NULL);
tx->callback = NULL;
}
last_tail = mic_dma_hw_ring_inc(last_tail);
}
/* finish all completion callbacks before incrementing tail */
smp_mb();
ch->last_tail = last_tail;
spin_unlock(&ch->cleanup_lock);
}
static u32 mic_dma_ring_count(u32 head, u32 tail)
{
u32 count;
if (head >= tail)
count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
else
count = tail - head;
return count - 1;
}
/* Returns the num. of free descriptors on success, -ENOMEM on failure */
static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
{
struct device *dev = mic_dma_ch_to_device(ch);
u32 count;
count = mic_dma_ring_count(ch->head, ch->last_tail);
if (count < required) {
mic_dma_cleanup(ch);
count = mic_dma_ring_count(ch->head, ch->last_tail);
}
if (count < required) {
dev_dbg(dev, "Not enough desc space");
dev_dbg(dev, "%s %d required=%u, avail=%u\n",
__func__, __LINE__, required, count);
return -ENOMEM;
} else {
return count;
}
}
/* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
dma_addr_t dst, size_t len)
{
size_t current_transfer_len;
size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
/* 3 is added to make sure we have enough space for status desc */
int num_desc = len / max_xfer_size + 3;
int ret;
if (len % max_xfer_size)
num_desc++;
ret = mic_dma_avail_desc_ring_space(ch, num_desc);
if (ret < 0)
return ret;
do {
current_transfer_len = min(len, max_xfer_size);
mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
src, dst, current_transfer_len);
mic_dma_hw_ring_inc_head(ch);
len -= current_transfer_len;
dst = dst + current_transfer_len;
src = src + current_transfer_len;
} while (len > 0);
return 0;
}
/* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
static void mic_dma_prog_intr(struct mic_dma_chan *ch)
{
mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
ch->status_dest_micpa, false);
mic_dma_hw_ring_inc_head(ch);
mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
ch->status_dest_micpa, true);
mic_dma_hw_ring_inc_head(ch);
}
/* Wrapper function to program memcpy descriptors/status descriptors */
static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
dma_addr_t dst, size_t len)
{
if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
return -ENOMEM;
} else {
/* 3 is the maximum number of status descriptors */
int ret = mic_dma_avail_desc_ring_space(ch, 3);
if (ret < 0)
return ret;
}
/* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
if (flags & DMA_PREP_FENCE) {
mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
ch->status_dest_micpa, false);
mic_dma_hw_ring_inc_head(ch);
}
if (flags & DMA_PREP_INTERRUPT)
mic_dma_prog_intr(ch);
return 0;
}
static inline void mic_dma_issue_pending(struct dma_chan *ch)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
spin_lock(&mic_ch->issue_lock);
/*
* Write to head triggers h/w to act on the descriptors.
* On MIC, writing the same head value twice causes
* a h/w error. On second write, h/w assumes we filled
* the entire ring & overwrote some of the descriptors.
*/
if (mic_ch->issued == mic_ch->submitted)
goto out;
mic_ch->issued = mic_ch->submitted;
/*
* make descriptor updates visible before advancing head,
* this is purposefully not smp_wmb() since we are also
* publishing the descriptor updates to a dma device
*/
wmb();
mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
out:
spin_unlock(&mic_ch->issue_lock);
}
static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
{
if (mic_dma_ring_count(ch->issued, ch->submitted)
> mic_dma_pending_level)
mic_dma_issue_pending(&ch->api_ch);
}
static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
dma_cookie_t cookie;
dma_cookie_assign(tx);
cookie = tx->cookie;
/*
* We need an smp write barrier here because another CPU might see
* an update to submitted and update h/w head even before we
* assigned a cookie to this tx.
*/
smp_wmb();
mic_ch->submitted = mic_ch->head;
spin_unlock(&mic_ch->prep_lock);
mic_dma_update_pending(mic_ch);
return cookie;
}
static inline struct dma_async_tx_descriptor *
allocate_tx(struct mic_dma_chan *ch)
{
u32 idx = mic_dma_hw_ring_dec(ch->head);
struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
dma_async_tx_descriptor_init(tx, &ch->api_ch);
tx->tx_submit = mic_dma_tx_submit_unlock;
return tx;
}
/* Program a status descriptor with dst as address and value to be written */
static struct dma_async_tx_descriptor *
mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
unsigned long flags)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
int result;
spin_lock(&mic_ch->prep_lock);
result = mic_dma_avail_desc_ring_space(mic_ch, 4);
if (result < 0)
goto error;
mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
false);
mic_dma_hw_ring_inc_head(mic_ch);
result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
if (result < 0)
goto error;
return allocate_tx(mic_ch);
error:
dev_err(mic_dma_ch_to_device(mic_ch),
"Error enqueueing dma status descriptor, error=%d\n", result);
spin_unlock(&mic_ch->prep_lock);
return NULL;
}
/*
* Prepare a memcpy descriptor to be added to the ring.
* Note that the temporary descriptor adds an extra overhead of copying the
* descriptor to ring. So, we copy directly to the descriptor ring
*/
static struct dma_async_tx_descriptor *
mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
struct device *dev = mic_dma_ch_to_device(mic_ch);
int result;
if (!len && !flags)
return NULL;
spin_lock(&mic_ch->prep_lock);
result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
if (result >= 0)
return allocate_tx(mic_ch);
dev_err(dev, "Error enqueueing dma, error=%d\n", result);
spin_unlock(&mic_ch->prep_lock);
return NULL;
}
static struct dma_async_tx_descriptor *
mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
int ret;
spin_lock(&mic_ch->prep_lock);
ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
if (!ret)
return allocate_tx(mic_ch);
spin_unlock(&mic_ch->prep_lock);
return NULL;
}
/* Return the status of the transaction */
static enum dma_status
mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
mic_dma_cleanup(mic_ch);
return dma_cookie_status(ch, cookie, txstate);
}
static irqreturn_t mic_dma_thread_fn(int irq, void *data)
{
mic_dma_cleanup((struct mic_dma_chan *)data);
return IRQ_HANDLED;
}
static irqreturn_t mic_dma_intr_handler(int irq, void *data)
{
struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
mic_dma_ack_interrupt(ch);
return IRQ_WAKE_THREAD;
}
static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
{
u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
struct device *dev = &to_mbus_device(ch)->dev;
desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
if (!ch->desc_ring)
return -ENOMEM;
ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
desc_ring_size, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ch->desc_ring_micpa))
goto map_error;
ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array));
if (!ch->tx_array)
goto tx_error;
return 0;
tx_error:
dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
DMA_BIDIRECTIONAL);
map_error:
kfree(ch->desc_ring);
return -ENOMEM;
}
static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
{
u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
vfree(ch->tx_array);
desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
desc_ring_size, DMA_BIDIRECTIONAL);
kfree(ch->desc_ring);
ch->desc_ring = NULL;
}
static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
{
dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
kfree(ch->status_dest);
}
static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
{
struct device *dev = &to_mbus_device(ch)->dev;
ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
if (!ch->status_dest)
return -ENOMEM;
ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ch->status_dest_micpa)) {
kfree(ch->status_dest);
ch->status_dest = NULL;
return -ENOMEM;
}
return 0;
}
static int mic_dma_check_chan(struct mic_dma_chan *ch)
{
if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
mic_dma_disable_chan(ch);
mic_dma_chan_mask_intr(ch);
dev_err(mic_dma_ch_to_device(ch),
"%s %d error setting up mic dma chan %d\n",
__func__, __LINE__, ch->ch_num);
return -EBUSY;
}
return 0;
}
static int mic_dma_chan_setup(struct mic_dma_chan *ch)
{
if (MIC_DMA_CHAN_MIC == ch->owner)
mic_dma_chan_set_owner(ch);
mic_dma_disable_chan(ch);
mic_dma_chan_mask_intr(ch);
mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
mic_dma_chan_set_desc_ring(ch);
ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
ch->head = ch->last_tail;
ch->issued = 0;
mic_dma_chan_unmask_intr(ch);
mic_dma_enable_chan(ch);
return mic_dma_check_chan(ch);
}
static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
{
mic_dma_disable_chan(ch);
mic_dma_chan_mask_intr(ch);
}
static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
{
dma_async_device_unregister(&mic_dma_dev->dma_dev);
}
static int mic_dma_setup_irq(struct mic_dma_chan *ch)
{
ch->cookie =
to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
mic_dma_intr_handler, mic_dma_thread_fn,
"mic dma_channel", ch, ch->ch_num);
if (IS_ERR(ch->cookie))
return PTR_ERR(ch->cookie);
return 0;
}
static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
{
to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
}
static int mic_dma_chan_init(struct mic_dma_chan *ch)
{
int ret = mic_dma_alloc_desc_ring(ch);
if (ret)
goto ring_error;
ret = mic_dma_alloc_status_dest(ch);
if (ret)
goto status_error;
ret = mic_dma_chan_setup(ch);
if (ret)
goto chan_error;
return ret;
chan_error:
mic_dma_free_status_dest(ch);
status_error:
mic_dma_free_desc_ring(ch);
ring_error:
return ret;
}
static int mic_dma_drain_chan(struct mic_dma_chan *ch)
{
struct dma_async_tx_descriptor *tx;
int err = 0;
dma_cookie_t cookie;
tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
if (!tx) {
err = -ENOMEM;
goto error;
}
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie))
err = -ENOMEM;
else
err = dma_sync_wait(&ch->api_ch, cookie);
if (err) {
dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
__func__, __LINE__, ch->ch_num);
err = -EIO;
}
error:
mic_dma_cleanup(ch);
return err;
}
static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
{
mic_dma_chan_destroy(ch);
mic_dma_cleanup(ch);
mic_dma_free_status_dest(ch);
mic_dma_free_desc_ring(ch);
}
static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
enum mic_dma_chan_owner owner)
{
int i, first_chan = mic_dma_dev->start_ch;
struct mic_dma_chan *ch;
int ret;
for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
unsigned long data;
ch = &mic_dma_dev->mic_ch[i];
data = (unsigned long)ch;
ch->ch_num = i;
ch->owner = owner;
spin_lock_init(&ch->cleanup_lock);
spin_lock_init(&ch->prep_lock);
spin_lock_init(&ch->issue_lock);
ret = mic_dma_setup_irq(ch);
if (ret)
goto error;
}
return 0;
error:
for (i = i - 1; i >= first_chan; i--)
mic_dma_free_irq(ch);
return ret;
}
static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
{
int i, first_chan = mic_dma_dev->start_ch;
struct mic_dma_chan *ch;
for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
ch = &mic_dma_dev->mic_ch[i];
mic_dma_free_irq(ch);
}
}
static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
{
int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
if (ret)
return ret;
return MIC_DMA_DESC_RX_SIZE;
}
static void mic_dma_free_chan_resources(struct dma_chan *ch)
{
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
mic_dma_drain_chan(mic_ch);
mic_dma_chan_uninit(mic_ch);
}
/* Set the fn. handlers and register the dma device with dma api */
static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
enum mic_dma_chan_owner owner)
{
int i, first_chan = mic_dma_dev->start_ch;
dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
/*
* This dma engine is not capable of host memory to host memory
* transfers
*/
dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
if (MIC_DMA_CHAN_HOST == owner)
dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
mic_dma_dev->dma_dev.device_alloc_chan_resources =
mic_dma_alloc_chan_resources;
mic_dma_dev->dma_dev.device_free_chan_resources =
mic_dma_free_chan_resources;
mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
mic_dma_dev->dma_dev.device_prep_dma_imm_data =
mic_dma_prep_status_lock;
mic_dma_dev->dma_dev.device_prep_dma_interrupt =
mic_dma_prep_interrupt_lock;
mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
&mic_dma_dev->dma_dev.channels);
}
return dma_async_device_register(&mic_dma_dev->dma_dev);
}
/*
* Initializes dma channels and registers the dma device with the
* dma engine api.
*/
static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
enum mic_dma_chan_owner owner)
{
struct mic_dma_device *mic_dma_dev;
int ret;
struct device *dev = &mbdev->dev;
mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL);
if (!mic_dma_dev) {
ret = -ENOMEM;
goto alloc_error;
}
mic_dma_dev->mbdev = mbdev;
mic_dma_dev->dma_dev.dev = dev;
mic_dma_dev->mmio = mbdev->mmio_va;
if (MIC_DMA_CHAN_HOST == owner) {
mic_dma_dev->start_ch = 0;
mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
} else {
mic_dma_dev->start_ch = 4;
mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
}
ret = mic_dma_init(mic_dma_dev, owner);
if (ret)
goto init_error;
ret = mic_dma_register_dma_device(mic_dma_dev, owner);
if (ret)
goto reg_error;
return mic_dma_dev;
reg_error:
mic_dma_uninit(mic_dma_dev);
init_error:
kfree(mic_dma_dev);
mic_dma_dev = NULL;
alloc_error:
dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
return mic_dma_dev;
}
static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
{
mic_dma_unregister_dma_device(mic_dma_dev);
mic_dma_uninit(mic_dma_dev);
kfree(mic_dma_dev);
}
/* DEBUGFS CODE */
static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
{
struct mic_dma_device *mic_dma_dev = s->private;
int i, chan_num, first_chan = mic_dma_dev->start_ch;
struct mic_dma_chan *ch;
seq_printf(s, "SBOX_DCR: %#x\n",
mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
seq_puts(s, "DMA Channel Registers\n");
seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
"Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
ch = &mic_dma_dev->mic_ch[i];
chan_num = ch->ch_num;
seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
chan_num,
mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
}
return 0;
}
static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, mic_dma_reg_seq_show, inode->i_private);
}
static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
{
return single_release(inode, file);
}
static const struct file_operations mic_dma_reg_ops = {
.owner = THIS_MODULE,
.open = mic_dma_reg_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = mic_dma_reg_debug_release
};
/* Debugfs parent dir */
static struct dentry *mic_dma_dbg;
static int mic_dma_driver_probe(struct mbus_device *mbdev)
{
struct mic_dma_device *mic_dma_dev;
enum mic_dma_chan_owner owner;
if (MBUS_DEV_DMA_MIC == mbdev->id.device)
owner = MIC_DMA_CHAN_MIC;
else
owner = MIC_DMA_CHAN_HOST;
mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
dev_set_drvdata(&mbdev->dev, mic_dma_dev);
if (mic_dma_dbg) {
mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
mic_dma_dbg);
if (mic_dma_dev->dbg_dir)
debugfs_create_file("mic_dma_reg", 0444,
mic_dma_dev->dbg_dir, mic_dma_dev,
&mic_dma_reg_ops);
}
return 0;
}
static void mic_dma_driver_remove(struct mbus_device *mbdev)
{
struct mic_dma_device *mic_dma_dev;
mic_dma_dev = dev_get_drvdata(&mbdev->dev);
debugfs_remove_recursive(mic_dma_dev->dbg_dir);
mic_dma_dev_unreg(mic_dma_dev);
}
static struct mbus_device_id id_table[] = {
{MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
{MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
{0},
};
static struct mbus_driver mic_dma_driver = {
.driver.name = KBUILD_MODNAME,
.driver.owner = THIS_MODULE,
.id_table = id_table,
.probe = mic_dma_driver_probe,
.remove = mic_dma_driver_remove,
};
static int __init mic_x100_dma_init(void)
{
int rc = mbus_register_driver(&mic_dma_driver);
if (rc)
return rc;
mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
return 0;
}
static void __exit mic_x100_dma_exit(void)
{
debugfs_remove_recursive(mic_dma_dbg);
mbus_unregister_driver(&mic_dma_driver);
}
module_init(mic_x100_dma_init);
module_exit(mic_x100_dma_exit);
MODULE_DEVICE_TABLE(mbus, id_table);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
MODULE_LICENSE("GPL v2");