linux_old1/drivers/media/dvb-frontends/ts2020.c

744 lines
18 KiB
C

/*
Montage Technology TS2020 - Silicon Tuner driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "dvb_frontend.h"
#include "ts2020.h"
#include <linux/regmap.h>
#include <linux/math64.h>
#define TS2020_XTAL_FREQ 27000 /* in kHz */
#define FREQ_OFFSET_LOW_SYM_RATE 3000
struct ts2020_priv {
struct i2c_client *client;
struct mutex regmap_mutex;
struct regmap_config regmap_config;
struct regmap *regmap;
struct dvb_frontend *fe;
struct delayed_work stat_work;
int (*get_agc_pwm)(struct dvb_frontend *fe, u8 *_agc_pwm);
/* i2c details */
struct i2c_adapter *i2c;
int i2c_address;
bool loop_through:1;
u8 clk_out:2;
u8 clk_out_div:5;
bool dont_poll:1;
u32 frequency_div; /* LO output divider switch frequency */
u32 frequency_khz; /* actual used LO frequency */
#define TS2020_M88TS2020 0
#define TS2020_M88TS2022 1
u8 tuner;
};
struct ts2020_reg_val {
u8 reg;
u8 val;
};
static void ts2020_stat_work(struct work_struct *work);
static void ts2020_release(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
struct i2c_client *client = priv->client;
dev_dbg(&client->dev, "\n");
i2c_unregister_device(client);
}
static int ts2020_sleep(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020)
u8tmp = 0x0a; /* XXX: probably wrong */
else
u8tmp = 0x00;
ret = regmap_write(priv->regmap, u8tmp, 0x00);
if (ret < 0)
return ret;
/* stop statistics polling */
if (!priv->dont_poll)
cancel_delayed_work_sync(&priv->stat_work);
return 0;
}
static int ts2020_init(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
int i;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020) {
regmap_write(priv->regmap, 0x42, 0x73);
regmap_write(priv->regmap, 0x05, priv->clk_out_div);
regmap_write(priv->regmap, 0x20, 0x27);
regmap_write(priv->regmap, 0x07, 0x02);
regmap_write(priv->regmap, 0x11, 0xff);
regmap_write(priv->regmap, 0x60, 0xf9);
regmap_write(priv->regmap, 0x08, 0x01);
regmap_write(priv->regmap, 0x00, 0x41);
} else {
static const struct ts2020_reg_val reg_vals[] = {
{0x7d, 0x9d},
{0x7c, 0x9a},
{0x7a, 0x76},
{0x3b, 0x01},
{0x63, 0x88},
{0x61, 0x85},
{0x22, 0x30},
{0x30, 0x40},
{0x20, 0x23},
{0x24, 0x02},
{0x12, 0xa0},
};
regmap_write(priv->regmap, 0x00, 0x01);
regmap_write(priv->regmap, 0x00, 0x03);
switch (priv->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
regmap_write(priv->regmap, 0x05, priv->clk_out_div);
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
u8tmp = 0x60;
break;
}
regmap_write(priv->regmap, 0x42, u8tmp);
if (priv->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
regmap_write(priv->regmap, 0x62, u8tmp);
for (i = 0; i < ARRAY_SIZE(reg_vals); i++)
regmap_write(priv->regmap, reg_vals[i].reg,
reg_vals[i].val);
}
/* Initialise v5 stats here */
c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = 0;
/* Start statistics polling by invoking the work function */
ts2020_stat_work(&priv->stat_work.work);
return 0;
}
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
ret = regmap_write(priv->regmap, 0x51, 0x1f - offset);
ret |= regmap_write(priv->regmap, 0x51, 0x1f);
ret |= regmap_write(priv->regmap, 0x50, offset);
ret |= regmap_write(priv->regmap, 0x50, 0x00);
msleep(20);
return ret;
}
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
{
struct ts2020_priv *dev = fe->tuner_priv;
int ret;
unsigned int utmp;
ret = regmap_read(dev->regmap, 0x3d, &utmp);
utmp &= 0x7f;
if (utmp < 0x16)
utmp = 0xa1;
else if (utmp == 0x16)
utmp = 0x99;
else
utmp = 0xf9;
regmap_write(dev->regmap, 0x60, utmp);
ret = ts2020_tuner_gate_ctrl(fe, 0x08);
return ret;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
unsigned int utmp;
u32 f3db, gdiv28;
u16 u16tmp, value, lpf_coeff;
u8 buf[3], reg10, lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n;
unsigned int frequency_khz = c->frequency;
/*
* Integer-N PLL synthesizer
* kHz is used for all calculations to keep calculations within 32-bit
*/
f_ref_khz = TS2020_XTAL_FREQ;
div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000);
/* select LO output divider */
if (frequency_khz < priv->frequency_div) {
div_out = 4;
reg10 = 0x10;
} else {
div_out = 2;
reg10 = 0x00;
}
f_vco_khz = frequency_khz * div_out;
pll_n = f_vco_khz * div_ref / f_ref_khz;
pll_n += pll_n % 2;
priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out;
pr_debug("frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n",
priv->frequency_khz, priv->frequency_khz - c->frequency,
f_vco_khz, pll_n, div_ref, div_out);
if (priv->tuner == TS2020_M88TS2020) {
lpf_coeff = 2766;
reg10 |= 0x01;
ret = regmap_write(priv->regmap, 0x10, reg10);
} else {
lpf_coeff = 3200;
reg10 |= 0x0b;
ret = regmap_write(priv->regmap, 0x10, reg10);
ret |= regmap_write(priv->regmap, 0x11, 0x40);
}
u16tmp = pll_n - 1024;
buf[0] = (u16tmp >> 8) & 0xff;
buf[1] = (u16tmp >> 0) & 0xff;
buf[2] = div_ref - 8;
ret |= regmap_write(priv->regmap, 0x01, buf[0]);
ret |= regmap_write(priv->regmap, 0x02, buf[1]);
ret |= regmap_write(priv->regmap, 0x03, buf[2]);
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
if (ret < 0)
return -ENODEV;
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
/* Tuner RF */
if (priv->tuner == TS2020_M88TS2020)
ret |= ts2020_set_tuner_rf(fe);
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
ret |= regmap_write(priv->regmap, 0x04, gdiv28 & 0xff);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
if (ret < 0)
return -ENODEV;
if (priv->tuner == TS2020_M88TS2022) {
ret = regmap_write(priv->regmap, 0x25, 0x00);
ret |= regmap_write(priv->regmap, 0x27, 0x70);
ret |= regmap_write(priv->regmap, 0x41, 0x09);
ret |= regmap_write(priv->regmap, 0x08, 0x0b);
if (ret < 0)
return -ENODEV;
}
regmap_read(priv->regmap, 0x26, &utmp);
value = utmp;
f3db = (c->bandwidth_hz / 1000 / 2) + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE; /* FIXME: ~always too wide filter */
f3db = clamp(f3db, 7000U, 40000U);
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (lpf_mxdiv < mlpf_min) {
nlpf++;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ret = regmap_write(priv->regmap, 0x04, lpf_mxdiv);
ret |= regmap_write(priv->regmap, 0x06, nlpf);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
msleep(80);
return (ret < 0) ? -EINVAL : 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct ts2020_priv *priv = fe->tuner_priv;
*frequency = priv->frequency_khz;
return 0;
}
static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0; /* Zero-IF */
return 0;
}
/*
* Get the tuner gain.
* @fe: The front end for which we're determining the gain
* @v_agc: The voltage of the AGC from the demodulator (0-2600mV)
* @_gain: Where to store the gain (in 0.001dB units)
*
* Returns 0 or a negative error code.
*/
static int ts2020_read_tuner_gain(struct dvb_frontend *fe, unsigned v_agc,
__s64 *_gain)
{
struct ts2020_priv *priv = fe->tuner_priv;
unsigned long gain1, gain2, gain3;
unsigned utmp;
int ret;
/* Read the RF gain */
ret = regmap_read(priv->regmap, 0x3d, &utmp);
if (ret < 0)
return ret;
gain1 = utmp & 0x1f;
/* Read the baseband gain */
ret = regmap_read(priv->regmap, 0x21, &utmp);
if (ret < 0)
return ret;
gain2 = utmp & 0x1f;
switch (priv->tuner) {
case TS2020_M88TS2020:
gain1 = clamp_t(long, gain1, 0, 15);
gain2 = clamp_t(long, gain2, 0, 13);
v_agc = clamp_t(long, v_agc, 400, 1100);
*_gain = -(gain1 * 2330 +
gain2 * 3500 +
v_agc * 24 / 10 * 10 +
10000);
/* gain in range -19600 to -116850 in units of 0.001dB */
break;
case TS2020_M88TS2022:
ret = regmap_read(priv->regmap, 0x66, &utmp);
if (ret < 0)
return ret;
gain3 = (utmp >> 3) & 0x07;
gain1 = clamp_t(long, gain1, 0, 15);
gain2 = clamp_t(long, gain2, 2, 16);
gain3 = clamp_t(long, gain3, 0, 6);
v_agc = clamp_t(long, v_agc, 600, 1600);
*_gain = -(gain1 * 2650 +
gain2 * 3380 +
gain3 * 2850 +
v_agc * 176 / 100 * 10 -
30000);
/* gain in range -47320 to -158950 in units of 0.001dB */
break;
}
return 0;
}
/*
* Get the AGC information from the demodulator and use that to calculate the
* tuner gain.
*/
static int ts2020_get_tuner_gain(struct dvb_frontend *fe, __s64 *_gain)
{
struct ts2020_priv *priv = fe->tuner_priv;
int v_agc = 0, ret;
u8 agc_pwm;
/* Read the AGC PWM rate from the demodulator */
if (priv->get_agc_pwm) {
ret = priv->get_agc_pwm(fe, &agc_pwm);
if (ret < 0)
return ret;
switch (priv->tuner) {
case TS2020_M88TS2020:
v_agc = (int)agc_pwm * 20 - 1166;
break;
case TS2020_M88TS2022:
v_agc = (int)agc_pwm * 16 - 670;
break;
}
if (v_agc < 0)
v_agc = 0;
}
return ts2020_read_tuner_gain(fe, v_agc, _gain);
}
/*
* Gather statistics on a regular basis
*/
static void ts2020_stat_work(struct work_struct *work)
{
struct ts2020_priv *priv = container_of(work, struct ts2020_priv,
stat_work.work);
struct i2c_client *client = priv->client;
struct dtv_frontend_properties *c = &priv->fe->dtv_property_cache;
int ret;
dev_dbg(&client->dev, "\n");
ret = ts2020_get_tuner_gain(priv->fe, &c->strength.stat[0].svalue);
if (ret < 0)
goto err;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
if (!priv->dont_poll)
schedule_delayed_work(&priv->stat_work, msecs_to_jiffies(2000));
return;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
}
/*
* Read TS2020 signal strength in v3 format.
*/
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
u16 *_signal_strength)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
unsigned strength;
__s64 gain;
if (priv->dont_poll)
ts2020_stat_work(&priv->stat_work.work);
if (c->strength.stat[0].scale == FE_SCALE_NOT_AVAILABLE) {
*_signal_strength = 0;
return 0;
}
gain = c->strength.stat[0].svalue;
/* Calculate the signal strength based on the total gain of the tuner */
if (gain < -85000)
/* 0%: no signal or weak signal */
strength = 0;
else if (gain < -65000)
/* 0% - 60%: weak signal */
strength = 0 + div64_s64((85000 + gain) * 3, 1000);
else if (gain < -45000)
/* 60% - 90%: normal signal */
strength = 60 + div64_s64((65000 + gain) * 3, 2000);
else
/* 90% - 99%: strong signal */
strength = 90 + div64_s64((45000 + gain), 5000);
*_signal_strength = strength * 65535 / 100;
return 0;
}
static const struct dvb_tuner_ops ts2020_tuner_ops = {
.info = {
.name = "TS2020",
.frequency_min = 950000,
.frequency_max = 2150000
},
.init = ts2020_init,
.release = ts2020_release,
.sleep = ts2020_sleep,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_if_frequency = ts2020_get_if_frequency,
.get_rf_strength = ts2020_read_signal_strength,
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config,
struct i2c_adapter *i2c)
{
struct i2c_client *client;
struct i2c_board_info board_info;
/* This is only used by ts2020_probe() so can be on the stack */
struct ts2020_config pdata;
memcpy(&pdata, config, sizeof(pdata));
pdata.fe = fe;
pdata.attach_in_use = true;
memset(&board_info, 0, sizeof(board_info));
strlcpy(board_info.type, "ts2020", I2C_NAME_SIZE);
board_info.addr = config->tuner_address;
board_info.platform_data = &pdata;
client = i2c_new_device(i2c, &board_info);
if (!client || !client->dev.driver)
return NULL;
return fe;
}
EXPORT_SYMBOL(ts2020_attach);
/*
* We implement own regmap locking due to legacy DVB attach which uses frontend
* gate control callback to control I2C bus access. We can open / close gate and
* serialize whole open / I2C-operation / close sequence at the same.
*/
static void ts2020_regmap_lock(void *__dev)
{
struct ts2020_priv *dev = __dev;
mutex_lock(&dev->regmap_mutex);
if (dev->fe->ops.i2c_gate_ctrl)
dev->fe->ops.i2c_gate_ctrl(dev->fe, 1);
}
static void ts2020_regmap_unlock(void *__dev)
{
struct ts2020_priv *dev = __dev;
if (dev->fe->ops.i2c_gate_ctrl)
dev->fe->ops.i2c_gate_ctrl(dev->fe, 0);
mutex_unlock(&dev->regmap_mutex);
}
static int ts2020_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ts2020_config *pdata = client->dev.platform_data;
struct dvb_frontend *fe = pdata->fe;
struct ts2020_priv *dev;
int ret;
u8 u8tmp;
unsigned int utmp;
char *chip_str;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
/* create regmap */
mutex_init(&dev->regmap_mutex);
dev->regmap_config.reg_bits = 8,
dev->regmap_config.val_bits = 8,
dev->regmap_config.lock = ts2020_regmap_lock,
dev->regmap_config.unlock = ts2020_regmap_unlock,
dev->regmap_config.lock_arg = dev,
dev->regmap = regmap_init_i2c(client, &dev->regmap_config);
if (IS_ERR(dev->regmap)) {
ret = PTR_ERR(dev->regmap);
goto err_kfree;
}
dev->i2c = client->adapter;
dev->i2c_address = client->addr;
dev->loop_through = pdata->loop_through;
dev->clk_out = pdata->clk_out;
dev->clk_out_div = pdata->clk_out_div;
dev->dont_poll = pdata->dont_poll;
dev->frequency_div = pdata->frequency_div;
dev->fe = fe;
dev->get_agc_pwm = pdata->get_agc_pwm;
fe->tuner_priv = dev;
dev->client = client;
INIT_DELAYED_WORK(&dev->stat_work, ts2020_stat_work);
/* check if the tuner is there */
ret = regmap_read(dev->regmap, 0x00, &utmp);
if (ret)
goto err_regmap_exit;
if ((utmp & 0x03) == 0x00) {
ret = regmap_write(dev->regmap, 0x00, 0x01);
if (ret)
goto err_regmap_exit;
usleep_range(2000, 50000);
}
ret = regmap_write(dev->regmap, 0x00, 0x03);
if (ret)
goto err_regmap_exit;
usleep_range(2000, 50000);
ret = regmap_read(dev->regmap, 0x00, &utmp);
if (ret)
goto err_regmap_exit;
dev_dbg(&client->dev, "chip_id=%02x\n", utmp);
switch (utmp) {
case 0x01:
case 0x41:
case 0x81:
dev->tuner = TS2020_M88TS2020;
chip_str = "TS2020";
if (!dev->frequency_div)
dev->frequency_div = 1060000;
break;
case 0xc3:
case 0x83:
dev->tuner = TS2020_M88TS2022;
chip_str = "TS2022";
if (!dev->frequency_div)
dev->frequency_div = 1103000;
break;
default:
ret = -ENODEV;
goto err_regmap_exit;
}
if (dev->tuner == TS2020_M88TS2022) {
switch (dev->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
ret = regmap_write(dev->regmap, 0x05, dev->clk_out_div);
if (ret)
goto err_regmap_exit;
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
ret = -EINVAL;
goto err_regmap_exit;
}
ret = regmap_write(dev->regmap, 0x42, u8tmp);
if (ret)
goto err_regmap_exit;
if (dev->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ret = regmap_write(dev->regmap, 0x62, u8tmp);
if (ret)
goto err_regmap_exit;
}
/* sleep */
ret = regmap_write(dev->regmap, 0x00, 0x00);
if (ret)
goto err_regmap_exit;
dev_info(&client->dev,
"Montage Technology %s successfully identified\n", chip_str);
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (!pdata->attach_in_use)
fe->ops.tuner_ops.release = NULL;
i2c_set_clientdata(client, dev);
return 0;
err_regmap_exit:
regmap_exit(dev->regmap);
err_kfree:
kfree(dev);
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int ts2020_remove(struct i2c_client *client)
{
struct ts2020_priv *dev = i2c_get_clientdata(client);
dev_dbg(&client->dev, "\n");
/* stop statistics polling */
if (!dev->dont_poll)
cancel_delayed_work_sync(&dev->stat_work);
regmap_exit(dev->regmap);
kfree(dev);
return 0;
}
static const struct i2c_device_id ts2020_id_table[] = {
{"ts2020", 0},
{"ts2022", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ts2020_id_table);
static struct i2c_driver ts2020_driver = {
.driver = {
.name = "ts2020",
},
.probe = ts2020_probe,
.remove = ts2020_remove,
.id_table = ts2020_id_table,
};
module_i2c_driver(ts2020_driver);
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
MODULE_LICENSE("GPL");