448 lines
12 KiB
C
448 lines
12 KiB
C
/*
|
|
* This file is part of wl1271
|
|
*
|
|
* Copyright (C) 2008-2009 Nokia Corporation
|
|
*
|
|
* Contact: Luciano Coelho <luciano.coelho@nokia.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/crc7.h>
|
|
#include <linux/spi/spi.h>
|
|
|
|
#include "wl1271.h"
|
|
#include "wl12xx_80211.h"
|
|
#include "wl1271_spi.h"
|
|
|
|
static int wl1271_translate_reg_addr(struct wl1271 *wl, int addr)
|
|
{
|
|
return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
|
|
}
|
|
|
|
static int wl1271_translate_mem_addr(struct wl1271 *wl, int addr)
|
|
{
|
|
return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
|
|
}
|
|
|
|
|
|
void wl1271_spi_reset(struct wl1271 *wl)
|
|
{
|
|
u8 *cmd;
|
|
struct spi_transfer t;
|
|
struct spi_message m;
|
|
|
|
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
|
|
if (!cmd) {
|
|
wl1271_error("could not allocate cmd for spi reset");
|
|
return;
|
|
}
|
|
|
|
memset(&t, 0, sizeof(t));
|
|
spi_message_init(&m);
|
|
|
|
memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
|
|
|
|
t.tx_buf = cmd;
|
|
t.len = WSPI_INIT_CMD_LEN;
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
|
|
}
|
|
|
|
void wl1271_spi_init(struct wl1271 *wl)
|
|
{
|
|
u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
|
|
struct spi_transfer t;
|
|
struct spi_message m;
|
|
|
|
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
|
|
if (!cmd) {
|
|
wl1271_error("could not allocate cmd for spi init");
|
|
return;
|
|
}
|
|
|
|
memset(crc, 0, sizeof(crc));
|
|
memset(&t, 0, sizeof(t));
|
|
spi_message_init(&m);
|
|
|
|
/*
|
|
* Set WSPI_INIT_COMMAND
|
|
* the data is being send from the MSB to LSB
|
|
*/
|
|
cmd[2] = 0xff;
|
|
cmd[3] = 0xff;
|
|
cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
|
|
cmd[0] = 0;
|
|
cmd[7] = 0;
|
|
cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
|
|
cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
|
|
|
|
if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
|
|
cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
|
|
else
|
|
cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
|
|
|
|
cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
|
|
| WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
|
|
|
|
crc[0] = cmd[1];
|
|
crc[1] = cmd[0];
|
|
crc[2] = cmd[7];
|
|
crc[3] = cmd[6];
|
|
crc[4] = cmd[5];
|
|
|
|
cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
|
|
cmd[4] |= WSPI_INIT_CMD_END;
|
|
|
|
t.tx_buf = cmd;
|
|
t.len = WSPI_INIT_CMD_LEN;
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
|
|
}
|
|
|
|
/* Set the SPI partitions to access the chip addresses
|
|
*
|
|
* There are two VIRTUAL (SPI) partitions (the memory partition and the
|
|
* registers partition), which are mapped to two different areas of the
|
|
* PHYSICAL (hardware) memory. This function also makes other checks to
|
|
* ensure that the partitions are not overlapping. In the diagram below, the
|
|
* memory partition comes before the register partition, but the opposite is
|
|
* also supported.
|
|
*
|
|
* PHYSICAL address
|
|
* space
|
|
*
|
|
* | |
|
|
* ...+----+--> mem_start
|
|
* VIRTUAL address ... | |
|
|
* space ... | | [PART_0]
|
|
* ... | |
|
|
* 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
|
|
* | | ... | |
|
|
* |MEM | ... | |
|
|
* | | ... | |
|
|
* part_size <--+----+... | | {unused area)
|
|
* | | ... | |
|
|
* |REG | ... | |
|
|
* part_size | | ... | |
|
|
* + <--+----+... ...+----+--> reg_start
|
|
* reg_size ... | |
|
|
* ... | | [PART_1]
|
|
* ... | |
|
|
* ...+----+--> reg_start + reg_size
|
|
* | |
|
|
*
|
|
*/
|
|
int wl1271_set_partition(struct wl1271 *wl,
|
|
u32 mem_start, u32 mem_size,
|
|
u32 reg_start, u32 reg_size)
|
|
{
|
|
struct wl1271_partition *partition;
|
|
struct spi_transfer t;
|
|
struct spi_message m;
|
|
size_t len, cmd_len;
|
|
u32 *cmd;
|
|
int addr;
|
|
|
|
cmd_len = sizeof(u32) + 2 * sizeof(struct wl1271_partition);
|
|
cmd = kzalloc(cmd_len, GFP_KERNEL);
|
|
if (!cmd)
|
|
return -ENOMEM;
|
|
|
|
spi_message_init(&m);
|
|
memset(&t, 0, sizeof(t));
|
|
|
|
partition = (struct wl1271_partition *) (cmd + 1);
|
|
addr = HW_ACCESS_PART0_SIZE_ADDR;
|
|
len = 2 * sizeof(struct wl1271_partition);
|
|
|
|
*cmd |= WSPI_CMD_WRITE;
|
|
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
|
|
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
|
|
|
|
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
|
|
mem_start, mem_size);
|
|
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
|
|
reg_start, reg_size);
|
|
|
|
/* Make sure that the two partitions together don't exceed the
|
|
* address range */
|
|
if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
|
|
wl1271_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
|
|
" address range. Truncating partition[0].");
|
|
mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
|
|
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
|
|
mem_start, mem_size);
|
|
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
|
|
reg_start, reg_size);
|
|
}
|
|
|
|
if ((mem_start < reg_start) &&
|
|
((mem_start + mem_size) > reg_start)) {
|
|
/* Guarantee that the memory partition doesn't overlap the
|
|
* registers partition */
|
|
wl1271_debug(DEBUG_SPI, "End of partition[0] is "
|
|
"overlapping partition[1]. Adjusted.");
|
|
mem_size = reg_start - mem_start;
|
|
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
|
|
mem_start, mem_size);
|
|
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
|
|
reg_start, reg_size);
|
|
} else if ((reg_start < mem_start) &&
|
|
((reg_start + reg_size) > mem_start)) {
|
|
/* Guarantee that the register partition doesn't overlap the
|
|
* memory partition */
|
|
wl1271_debug(DEBUG_SPI, "End of partition[1] is"
|
|
" overlapping partition[0]. Adjusted.");
|
|
reg_size = mem_start - reg_start;
|
|
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
|
|
mem_start, mem_size);
|
|
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
|
|
reg_start, reg_size);
|
|
}
|
|
|
|
partition[0].start = mem_start;
|
|
partition[0].size = mem_size;
|
|
partition[1].start = reg_start;
|
|
partition[1].size = reg_size;
|
|
|
|
wl->physical_mem_addr = mem_start;
|
|
wl->physical_reg_addr = reg_start;
|
|
|
|
wl->virtual_mem_addr = 0;
|
|
wl->virtual_reg_addr = mem_size;
|
|
|
|
t.tx_buf = cmd;
|
|
t.len = cmd_len;
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
kfree(cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define WL1271_BUSY_WORD_TIMEOUT 1000
|
|
|
|
void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
|
|
{
|
|
struct spi_transfer t[1];
|
|
struct spi_message m;
|
|
u32 *busy_buf;
|
|
int num_busy_bytes = 0;
|
|
|
|
wl1271_info("spi read BUSY!");
|
|
|
|
/*
|
|
* Look for the non-busy word in the read buffer, and if found,
|
|
* read in the remaining data into the buffer.
|
|
*/
|
|
busy_buf = (u32 *)buf;
|
|
for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
|
|
num_busy_bytes += sizeof(u32);
|
|
if (*busy_buf & 0x1) {
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
memmove(buf, busy_buf, len - num_busy_bytes);
|
|
t[0].rx_buf = buf + (len - num_busy_bytes);
|
|
t[0].len = num_busy_bytes;
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read further busy words from SPI until a non-busy word is
|
|
* encountered, then read the data itself into the buffer.
|
|
*/
|
|
wl1271_info("spi read BUSY-polling needed!");
|
|
|
|
num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
|
|
busy_buf = wl->buffer_busyword;
|
|
while (num_busy_bytes) {
|
|
num_busy_bytes--;
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
t[0].rx_buf = busy_buf;
|
|
t[0].len = sizeof(u32);
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
|
|
if (*busy_buf & 0x1) {
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
t[0].rx_buf = buf;
|
|
t[0].len = len;
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* The SPI bus is unresponsive, the read failed. */
|
|
memset(buf, 0, len);
|
|
wl1271_error("SPI read busy-word timeout!\n");
|
|
}
|
|
|
|
void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
struct spi_transfer t[3];
|
|
struct spi_message m;
|
|
u32 *busy_buf;
|
|
u32 *cmd;
|
|
|
|
cmd = &wl->buffer_cmd;
|
|
busy_buf = wl->buffer_busyword;
|
|
|
|
*cmd = 0;
|
|
*cmd |= WSPI_CMD_READ;
|
|
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
|
|
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
|
|
|
|
if (fixed)
|
|
*cmd |= WSPI_CMD_FIXED;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
|
|
t[0].tx_buf = cmd;
|
|
t[0].len = 4;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
/* Busy and non busy words read */
|
|
t[1].rx_buf = busy_buf;
|
|
t[1].len = WL1271_BUSY_WORD_LEN;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
t[2].rx_buf = buf;
|
|
t[2].len = len;
|
|
spi_message_add_tail(&t[2], &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
/* Check busy words */
|
|
if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
|
|
wl1271_spi_read_busy(wl, buf, len);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
|
|
wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
|
|
}
|
|
|
|
void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
u32 *cmd;
|
|
|
|
cmd = &wl->buffer_cmd;
|
|
|
|
*cmd = 0;
|
|
*cmd |= WSPI_CMD_WRITE;
|
|
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
|
|
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
|
|
|
|
if (fixed)
|
|
*cmd |= WSPI_CMD_FIXED;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
|
|
t[0].tx_buf = cmd;
|
|
t[0].len = sizeof(*cmd);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
t[1].len = len;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
|
|
wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
|
|
}
|
|
|
|
void wl1271_spi_mem_read(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_mem_addr(wl, addr);
|
|
|
|
wl1271_spi_read(wl, physical, buf, len, false);
|
|
}
|
|
|
|
void wl1271_spi_mem_write(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_mem_addr(wl, addr);
|
|
|
|
wl1271_spi_write(wl, physical, buf, len, false);
|
|
}
|
|
|
|
void wl1271_spi_reg_read(struct wl1271 *wl, int addr, void *buf, size_t len,
|
|
bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_reg_addr(wl, addr);
|
|
|
|
wl1271_spi_read(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
void wl1271_spi_reg_write(struct wl1271 *wl, int addr, void *buf, size_t len,
|
|
bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_reg_addr(wl, addr);
|
|
|
|
wl1271_spi_write(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
u32 wl1271_mem_read32(struct wl1271 *wl, int addr)
|
|
{
|
|
return wl1271_read32(wl, wl1271_translate_mem_addr(wl, addr));
|
|
}
|
|
|
|
void wl1271_mem_write32(struct wl1271 *wl, int addr, u32 val)
|
|
{
|
|
wl1271_write32(wl, wl1271_translate_mem_addr(wl, addr), val);
|
|
}
|
|
|
|
u32 wl1271_reg_read32(struct wl1271 *wl, int addr)
|
|
{
|
|
return wl1271_read32(wl, wl1271_translate_reg_addr(wl, addr));
|
|
}
|
|
|
|
void wl1271_reg_write32(struct wl1271 *wl, int addr, u32 val)
|
|
{
|
|
wl1271_write32(wl, wl1271_translate_reg_addr(wl, addr), val);
|
|
}
|