linux_old1/drivers/scsi/advansys.c

12827 lines
374 KiB
C

#define DRV_NAME "advansys"
#define ASC_VERSION "3.4" /* AdvanSys Driver Version */
/*
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-2000 Advanced System Products, Inc.
* Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
* Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/*
* As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
* changed its name to ConnectCom Solutions, Inc.
* On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/isa.h>
#include <linux/eisa.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/dma.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
/* FIXME:
*
* 1. Although all of the necessary command mapping places have the
* appropriate dma_map.. APIs, the driver still processes its internal
* queue using bus_to_virt() and virt_to_bus() which are illegal under
* the API. The entire queue processing structure will need to be
* altered to fix this.
* 2. Need to add memory mapping workaround. Test the memory mapping.
* If it doesn't work revert to I/O port access. Can a test be done
* safely?
* 3. Handle an interrupt not working. Keep an interrupt counter in
* the interrupt handler. In the timeout function if the interrupt
* has not occurred then print a message and run in polled mode.
* 4. Need to add support for target mode commands, cf. CAM XPT.
* 5. check DMA mapping functions for failure
* 6. Use scsi_transport_spi
* 7. advansys_info is not safe against multiple simultaneous callers
* 8. Add module_param to override ISA/VLB ioport array
*/
#warning this driver is still not properly converted to the DMA API
/* Enable driver /proc statistics. */
#define ADVANSYS_STATS
/* Enable driver tracing. */
#undef ADVANSYS_DEBUG
/*
* Portable Data Types
*
* Any instance where a 32-bit long or pointer type is assumed
* for precision or HW defined structures, the following define
* types must be used. In Linux the char, short, and int types
* are all consistent at 8, 16, and 32 bits respectively. Pointers
* and long types are 64 bits on Alpha and UltraSPARC.
*/
#define ASC_PADDR __u32 /* Physical/Bus address data type. */
#define ASC_VADDR __u32 /* Virtual address data type. */
#define ASC_DCNT __u32 /* Unsigned Data count type. */
#define ASC_SDCNT __s32 /* Signed Data count type. */
typedef unsigned char uchar;
#ifndef TRUE
#define TRUE (1)
#endif
#ifndef FALSE
#define FALSE (0)
#endif
#define ERR (-1)
#define UW_ERR (uint)(0xFFFF)
#define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
#define PCI_VENDOR_ID_ASP 0x10cd
#define PCI_DEVICE_ID_ASP_1200A 0x1100
#define PCI_DEVICE_ID_ASP_ABP940 0x1200
#define PCI_DEVICE_ID_ASP_ABP940U 0x1300
#define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
#define PCI_DEVICE_ID_38C0800_REV1 0x2500
#define PCI_DEVICE_ID_38C1600_REV1 0x2700
/*
* Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
* The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
* macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
* SRB structure.
*/
#define CC_VERY_LONG_SG_LIST 0
#define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
#define PortAddr unsigned int /* port address size */
#define inp(port) inb(port)
#define outp(port, byte) outb((byte), (port))
#define inpw(port) inw(port)
#define outpw(port, word) outw((word), (port))
#define ASC_MAX_SG_QUEUE 7
#define ASC_MAX_SG_LIST 255
#define ASC_CS_TYPE unsigned short
#define ASC_IS_ISA (0x0001)
#define ASC_IS_ISAPNP (0x0081)
#define ASC_IS_EISA (0x0002)
#define ASC_IS_PCI (0x0004)
#define ASC_IS_PCI_ULTRA (0x0104)
#define ASC_IS_PCMCIA (0x0008)
#define ASC_IS_MCA (0x0020)
#define ASC_IS_VL (0x0040)
#define ASC_IS_WIDESCSI_16 (0x0100)
#define ASC_IS_WIDESCSI_32 (0x0200)
#define ASC_IS_BIG_ENDIAN (0x8000)
#define ASC_CHIP_MIN_VER_VL (0x01)
#define ASC_CHIP_MAX_VER_VL (0x07)
#define ASC_CHIP_MIN_VER_PCI (0x09)
#define ASC_CHIP_MAX_VER_PCI (0x0F)
#define ASC_CHIP_VER_PCI_BIT (0x08)
#define ASC_CHIP_MIN_VER_ISA (0x11)
#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
#define ASC_CHIP_MAX_VER_ISA (0x27)
#define ASC_CHIP_VER_ISA_BIT (0x30)
#define ASC_CHIP_VER_ISAPNP_BIT (0x20)
#define ASC_CHIP_VER_ASYN_BUG (0x21)
#define ASC_CHIP_VER_PCI 0x08
#define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
#define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
#define ASC_CHIP_MIN_VER_EISA (0x41)
#define ASC_CHIP_MAX_VER_EISA (0x47)
#define ASC_CHIP_VER_EISA_BIT (0x40)
#define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
#define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
#define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
#define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
#define ASC_SCSI_ID_BITS 3
#define ASC_SCSI_TIX_TYPE uchar
#define ASC_ALL_DEVICE_BIT_SET 0xFF
#define ASC_SCSI_BIT_ID_TYPE uchar
#define ASC_MAX_TID 7
#define ASC_MAX_LUN 7
#define ASC_SCSI_WIDTH_BIT_SET 0xFF
#define ASC_MAX_SENSE_LEN 32
#define ASC_MIN_SENSE_LEN 14
#define ASC_SCSI_RESET_HOLD_TIME_US 60
/*
* Narrow boards only support 12-byte commands, while wide boards
* extend to 16-byte commands.
*/
#define ASC_MAX_CDB_LEN 12
#define ADV_MAX_CDB_LEN 16
#define MS_SDTR_LEN 0x03
#define MS_WDTR_LEN 0x02
#define ASC_SG_LIST_PER_Q 7
#define QS_FREE 0x00
#define QS_READY 0x01
#define QS_DISC1 0x02
#define QS_DISC2 0x04
#define QS_BUSY 0x08
#define QS_ABORTED 0x40
#define QS_DONE 0x80
#define QC_NO_CALLBACK 0x01
#define QC_SG_SWAP_QUEUE 0x02
#define QC_SG_HEAD 0x04
#define QC_DATA_IN 0x08
#define QC_DATA_OUT 0x10
#define QC_URGENT 0x20
#define QC_MSG_OUT 0x40
#define QC_REQ_SENSE 0x80
#define QCSG_SG_XFER_LIST 0x02
#define QCSG_SG_XFER_MORE 0x04
#define QCSG_SG_XFER_END 0x08
#define QD_IN_PROGRESS 0x00
#define QD_NO_ERROR 0x01
#define QD_ABORTED_BY_HOST 0x02
#define QD_WITH_ERROR 0x04
#define QD_INVALID_REQUEST 0x80
#define QD_INVALID_HOST_NUM 0x81
#define QD_INVALID_DEVICE 0x82
#define QD_ERR_INTERNAL 0xFF
#define QHSTA_NO_ERROR 0x00
#define QHSTA_M_SEL_TIMEOUT 0x11
#define QHSTA_M_DATA_OVER_RUN 0x12
#define QHSTA_M_DATA_UNDER_RUN 0x12
#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
#define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
#define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
#define QHSTA_D_HOST_ABORT_FAILED 0x23
#define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
#define QHSTA_D_ASPI_NO_BUF_POOL 0x26
#define QHSTA_M_WTM_TIMEOUT 0x41
#define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
#define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
#define QHSTA_M_TARGET_STATUS_BUSY 0x45
#define QHSTA_M_BAD_TAG_CODE 0x46
#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
#define QHSTA_D_LRAM_CMP_ERROR 0x81
#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
#define ASC_FLAG_SCSIQ_REQ 0x01
#define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
#define ASC_FLAG_BIOS_ASYNC_IO 0x04
#define ASC_FLAG_SRB_LINEAR_ADDR 0x08
#define ASC_FLAG_WIN16 0x10
#define ASC_FLAG_WIN32 0x20
#define ASC_FLAG_ISA_OVER_16MB 0x40
#define ASC_FLAG_DOS_VM_CALLBACK 0x80
#define ASC_TAG_FLAG_EXTRA_BYTES 0x10
#define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
#define ASC_SCSIQ_CPY_BEG 4
#define ASC_SCSIQ_SGHD_CPY_BEG 2
#define ASC_SCSIQ_B_FWD 0
#define ASC_SCSIQ_B_BWD 1
#define ASC_SCSIQ_B_STATUS 2
#define ASC_SCSIQ_B_QNO 3
#define ASC_SCSIQ_B_CNTL 4
#define ASC_SCSIQ_B_SG_QUEUE_CNT 5
#define ASC_SCSIQ_D_DATA_ADDR 8
#define ASC_SCSIQ_D_DATA_CNT 12
#define ASC_SCSIQ_B_SENSE_LEN 20
#define ASC_SCSIQ_DONE_INFO_BEG 22
#define ASC_SCSIQ_D_SRBPTR 22
#define ASC_SCSIQ_B_TARGET_IX 26
#define ASC_SCSIQ_B_CDB_LEN 28
#define ASC_SCSIQ_B_TAG_CODE 29
#define ASC_SCSIQ_W_VM_ID 30
#define ASC_SCSIQ_DONE_STATUS 32
#define ASC_SCSIQ_HOST_STATUS 33
#define ASC_SCSIQ_SCSI_STATUS 34
#define ASC_SCSIQ_CDB_BEG 36
#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
#define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
#define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
#define ASC_SCSIQ_B_SG_WK_QP 49
#define ASC_SCSIQ_B_SG_WK_IX 50
#define ASC_SCSIQ_W_ALT_DC1 52
#define ASC_SCSIQ_B_LIST_CNT 6
#define ASC_SCSIQ_B_CUR_LIST_CNT 7
#define ASC_SGQ_B_SG_CNTL 4
#define ASC_SGQ_B_SG_HEAD_QP 5
#define ASC_SGQ_B_SG_LIST_CNT 6
#define ASC_SGQ_B_SG_CUR_LIST_CNT 7
#define ASC_SGQ_LIST_BEG 8
#define ASC_DEF_SCSI1_QNG 4
#define ASC_MAX_SCSI1_QNG 4
#define ASC_DEF_SCSI2_QNG 16
#define ASC_MAX_SCSI2_QNG 32
#define ASC_TAG_CODE_MASK 0x23
#define ASC_STOP_REQ_RISC_STOP 0x01
#define ASC_STOP_ACK_RISC_STOP 0x03
#define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
#define ASC_STOP_CLEAN_UP_DISC_Q 0x20
#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
#define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
#define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
#define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
#define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
#define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
#define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
#define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
typedef struct asc_scsiq_1 {
uchar status;
uchar q_no;
uchar cntl;
uchar sg_queue_cnt;
uchar target_id;
uchar target_lun;
ASC_PADDR data_addr;
ASC_DCNT data_cnt;
ASC_PADDR sense_addr;
uchar sense_len;
uchar extra_bytes;
} ASC_SCSIQ_1;
typedef struct asc_scsiq_2 {
ASC_VADDR srb_ptr;
uchar target_ix;
uchar flag;
uchar cdb_len;
uchar tag_code;
ushort vm_id;
} ASC_SCSIQ_2;
typedef struct asc_scsiq_3 {
uchar done_stat;
uchar host_stat;
uchar scsi_stat;
uchar scsi_msg;
} ASC_SCSIQ_3;
typedef struct asc_scsiq_4 {
uchar cdb[ASC_MAX_CDB_LEN];
uchar y_first_sg_list_qp;
uchar y_working_sg_qp;
uchar y_working_sg_ix;
uchar y_res;
ushort x_req_count;
ushort x_reconnect_rtn;
ASC_PADDR x_saved_data_addr;
ASC_DCNT x_saved_data_cnt;
} ASC_SCSIQ_4;
typedef struct asc_q_done_info {
ASC_SCSIQ_2 d2;
ASC_SCSIQ_3 d3;
uchar q_status;
uchar q_no;
uchar cntl;
uchar sense_len;
uchar extra_bytes;
uchar res;
ASC_DCNT remain_bytes;
} ASC_QDONE_INFO;
typedef struct asc_sg_list {
ASC_PADDR addr;
ASC_DCNT bytes;
} ASC_SG_LIST;
typedef struct asc_sg_head {
ushort entry_cnt;
ushort queue_cnt;
ushort entry_to_copy;
ushort res;
ASC_SG_LIST sg_list[0];
} ASC_SG_HEAD;
typedef struct asc_scsi_q {
ASC_SCSIQ_1 q1;
ASC_SCSIQ_2 q2;
uchar *cdbptr;
ASC_SG_HEAD *sg_head;
ushort remain_sg_entry_cnt;
ushort next_sg_index;
} ASC_SCSI_Q;
typedef struct asc_scsi_req_q {
ASC_SCSIQ_1 r1;
ASC_SCSIQ_2 r2;
uchar *cdbptr;
ASC_SG_HEAD *sg_head;
uchar *sense_ptr;
ASC_SCSIQ_3 r3;
uchar cdb[ASC_MAX_CDB_LEN];
uchar sense[ASC_MIN_SENSE_LEN];
} ASC_SCSI_REQ_Q;
typedef struct asc_scsi_bios_req_q {
ASC_SCSIQ_1 r1;
ASC_SCSIQ_2 r2;
uchar *cdbptr;
ASC_SG_HEAD *sg_head;
uchar *sense_ptr;
ASC_SCSIQ_3 r3;
uchar cdb[ASC_MAX_CDB_LEN];
uchar sense[ASC_MIN_SENSE_LEN];
} ASC_SCSI_BIOS_REQ_Q;
typedef struct asc_risc_q {
uchar fwd;
uchar bwd;
ASC_SCSIQ_1 i1;
ASC_SCSIQ_2 i2;
ASC_SCSIQ_3 i3;
ASC_SCSIQ_4 i4;
} ASC_RISC_Q;
typedef struct asc_sg_list_q {
uchar seq_no;
uchar q_no;
uchar cntl;
uchar sg_head_qp;
uchar sg_list_cnt;
uchar sg_cur_list_cnt;
} ASC_SG_LIST_Q;
typedef struct asc_risc_sg_list_q {
uchar fwd;
uchar bwd;
ASC_SG_LIST_Q sg;
ASC_SG_LIST sg_list[7];
} ASC_RISC_SG_LIST_Q;
#define ASCQ_ERR_Q_STATUS 0x0D
#define ASCQ_ERR_CUR_QNG 0x17
#define ASCQ_ERR_SG_Q_LINKS 0x18
#define ASCQ_ERR_ISR_RE_ENTRY 0x1A
#define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
#define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
/*
* Warning code values are set in ASC_DVC_VAR 'warn_code'.
*/
#define ASC_WARN_NO_ERROR 0x0000
#define ASC_WARN_IO_PORT_ROTATE 0x0001
#define ASC_WARN_EEPROM_CHKSUM 0x0002
#define ASC_WARN_IRQ_MODIFIED 0x0004
#define ASC_WARN_AUTO_CONFIG 0x0008
#define ASC_WARN_CMD_QNG_CONFLICT 0x0010
#define ASC_WARN_EEPROM_RECOVER 0x0020
#define ASC_WARN_CFG_MSW_RECOVER 0x0040
/*
* Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
*/
#define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
#define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
#define ASC_IERR_SET_PC_ADDR 0x0004
#define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
#define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
#define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
#define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
#define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
#define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
#define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
#define ASC_IERR_NO_BUS_TYPE 0x0400
#define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
#define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
#define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
#define ASC_DEF_MAX_TOTAL_QNG (0xF0)
#define ASC_MIN_TAG_Q_PER_DVC (0x04)
#define ASC_MIN_FREE_Q (0x02)
#define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
#define ASC_MAX_TOTAL_QNG 240
#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
#define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
#define ASC_MAX_INRAM_TAG_QNG 16
#define ASC_IOADR_GAP 0x10
#define ASC_SYN_MAX_OFFSET 0x0F
#define ASC_DEF_SDTR_OFFSET 0x0F
#define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
/* The narrow chip only supports a limited selection of transfer rates.
* These are encoded in the range 0..7 or 0..15 depending whether the chip
* is Ultra-capable or not. These tables let us convert from one to the other.
*/
static const unsigned char asc_syn_xfer_period[8] = {
25, 30, 35, 40, 50, 60, 70, 85
};
static const unsigned char asc_syn_ultra_xfer_period[16] = {
12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
};
typedef struct ext_msg {
uchar msg_type;
uchar msg_len;
uchar msg_req;
union {
struct {
uchar sdtr_xfer_period;
uchar sdtr_req_ack_offset;
} sdtr;
struct {
uchar wdtr_width;
} wdtr;
struct {
uchar mdp_b3;
uchar mdp_b2;
uchar mdp_b1;
uchar mdp_b0;
} mdp;
} u_ext_msg;
uchar res;
} EXT_MSG;
#define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
#define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
#define wdtr_width u_ext_msg.wdtr.wdtr_width
#define mdp_b3 u_ext_msg.mdp_b3
#define mdp_b2 u_ext_msg.mdp_b2
#define mdp_b1 u_ext_msg.mdp_b1
#define mdp_b0 u_ext_msg.mdp_b0
typedef struct asc_dvc_cfg {
ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
ASC_SCSI_BIT_ID_TYPE disc_enable;
ASC_SCSI_BIT_ID_TYPE sdtr_enable;
uchar chip_scsi_id;
uchar isa_dma_speed;
uchar isa_dma_channel;
uchar chip_version;
ushort mcode_date;
ushort mcode_version;
uchar max_tag_qng[ASC_MAX_TID + 1];
uchar sdtr_period_offset[ASC_MAX_TID + 1];
uchar adapter_info[6];
} ASC_DVC_CFG;
#define ASC_DEF_DVC_CNTL 0xFFFF
#define ASC_DEF_CHIP_SCSI_ID 7
#define ASC_DEF_ISA_DMA_SPEED 4
#define ASC_INIT_STATE_BEG_GET_CFG 0x0001
#define ASC_INIT_STATE_END_GET_CFG 0x0002
#define ASC_INIT_STATE_BEG_SET_CFG 0x0004
#define ASC_INIT_STATE_END_SET_CFG 0x0008
#define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
#define ASC_INIT_STATE_END_LOAD_MC 0x0020
#define ASC_INIT_STATE_BEG_INQUIRY 0x0040
#define ASC_INIT_STATE_END_INQUIRY 0x0080
#define ASC_INIT_RESET_SCSI_DONE 0x0100
#define ASC_INIT_STATE_WITHOUT_EEP 0x8000
#define ASC_BUG_FIX_IF_NOT_DWB 0x0001
#define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
#define ASC_MIN_TAGGED_CMD 7
#define ASC_MAX_SCSI_RESET_WAIT 30
#define ASC_OVERRUN_BSIZE 64
struct asc_dvc_var; /* Forward Declaration. */
typedef struct asc_dvc_var {
PortAddr iop_base;
ushort err_code;
ushort dvc_cntl;
ushort bug_fix_cntl;
ushort bus_type;
ASC_SCSI_BIT_ID_TYPE init_sdtr;
ASC_SCSI_BIT_ID_TYPE sdtr_done;
ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
ASC_SCSI_BIT_ID_TYPE unit_not_ready;
ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
ASC_SCSI_BIT_ID_TYPE start_motor;
uchar *overrun_buf;
dma_addr_t overrun_dma;
uchar scsi_reset_wait;
uchar chip_no;
char is_in_int;
uchar max_total_qng;
uchar cur_total_qng;
uchar in_critical_cnt;
uchar last_q_shortage;
ushort init_state;
uchar cur_dvc_qng[ASC_MAX_TID + 1];
uchar max_dvc_qng[ASC_MAX_TID + 1];
ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
const uchar *sdtr_period_tbl;
ASC_DVC_CFG *cfg;
ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
char redo_scam;
ushort res2;
uchar dos_int13_table[ASC_MAX_TID + 1];
ASC_DCNT max_dma_count;
ASC_SCSI_BIT_ID_TYPE no_scam;
ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
uchar min_sdtr_index;
uchar max_sdtr_index;
struct asc_board *drv_ptr;
int ptr_map_count;
void **ptr_map;
ASC_DCNT uc_break;
} ASC_DVC_VAR;
typedef struct asc_dvc_inq_info {
uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
} ASC_DVC_INQ_INFO;
typedef struct asc_cap_info {
ASC_DCNT lba;
ASC_DCNT blk_size;
} ASC_CAP_INFO;
typedef struct asc_cap_info_array {
ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
} ASC_CAP_INFO_ARRAY;
#define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
#define ASC_MCNTL_NULL_TARGET (ushort)0x0002
#define ASC_CNTL_INITIATOR (ushort)0x0001
#define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
#define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
#define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
#define ASC_CNTL_NO_SCAM (ushort)0x0010
#define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
#define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
#define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
#define ASC_CNTL_RESET_SCSI (ushort)0x0200
#define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
#define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
#define ASC_CNTL_SCSI_PARITY (ushort)0x1000
#define ASC_CNTL_BURST_MODE (ushort)0x2000
#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
#define ASC_EEP_DVC_CFG_BEG_VL 2
#define ASC_EEP_MAX_DVC_ADDR_VL 15
#define ASC_EEP_DVC_CFG_BEG 32
#define ASC_EEP_MAX_DVC_ADDR 45
#define ASC_EEP_MAX_RETRY 20
/*
* These macros keep the chip SCSI id and ISA DMA speed
* bitfields in board order. C bitfields aren't portable
* between big and little-endian platforms so they are
* not used.
*/
#define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
#define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
typedef struct asceep_config {
ushort cfg_lsw;
ushort cfg_msw;
uchar init_sdtr;
uchar disc_enable;
uchar use_cmd_qng;
uchar start_motor;
uchar max_total_qng;
uchar max_tag_qng;
uchar bios_scan;
uchar power_up_wait;
uchar no_scam;
uchar id_speed; /* low order 4 bits is chip scsi id */
/* high order 4 bits is isa dma speed */
uchar dos_int13_table[ASC_MAX_TID + 1];
uchar adapter_info[6];
ushort cntl;
ushort chksum;
} ASCEEP_CONFIG;
#define ASC_EEP_CMD_READ 0x80
#define ASC_EEP_CMD_WRITE 0x40
#define ASC_EEP_CMD_WRITE_ABLE 0x30
#define ASC_EEP_CMD_WRITE_DISABLE 0x00
#define ASCV_MSGOUT_BEG 0x0000
#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
#define ASCV_BREAK_SAVED_CODE (ushort)0x0006
#define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
#define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
#define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
#define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
#define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
#define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
#define ASCV_BREAK_ADDR (ushort)0x0028
#define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
#define ASCV_BREAK_CONTROL (ushort)0x002C
#define ASCV_BREAK_HIT_COUNT (ushort)0x002E
#define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
#define ASCV_MCODE_CHKSUM_W (ushort)0x0032
#define ASCV_MCODE_SIZE_W (ushort)0x0034
#define ASCV_STOP_CODE_B (ushort)0x0036
#define ASCV_DVC_ERR_CODE_B (ushort)0x0037
#define ASCV_OVERRUN_PADDR_D (ushort)0x0038
#define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
#define ASCV_HALTCODE_W (ushort)0x0040
#define ASCV_CHKSUM_W (ushort)0x0042
#define ASCV_MC_DATE_W (ushort)0x0044
#define ASCV_MC_VER_W (ushort)0x0046
#define ASCV_NEXTRDY_B (ushort)0x0048
#define ASCV_DONENEXT_B (ushort)0x0049
#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
#define ASCV_SCSIBUSY_B (ushort)0x004B
#define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
#define ASCV_CURCDB_B (ushort)0x004D
#define ASCV_RCLUN_B (ushort)0x004E
#define ASCV_BUSY_QHEAD_B (ushort)0x004F
#define ASCV_DISC1_QHEAD_B (ushort)0x0050
#define ASCV_DISC_ENABLE_B (ushort)0x0052
#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
#define ASCV_HOSTSCSI_ID_B (ushort)0x0055
#define ASCV_MCODE_CNTL_B (ushort)0x0056
#define ASCV_NULL_TARGET_B (ushort)0x0057
#define ASCV_FREE_Q_HEAD_W (ushort)0x0058
#define ASCV_DONE_Q_TAIL_W (ushort)0x005A
#define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
#define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
#define ASCV_HOST_FLAG_B (ushort)0x005D
#define ASCV_TOTAL_READY_Q_B (ushort)0x0064
#define ASCV_VER_SERIAL_B (ushort)0x0065
#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
#define ASCV_WTM_FLAG_B (ushort)0x0068
#define ASCV_RISC_FLAG_B (ushort)0x006A
#define ASCV_REQ_SG_LIST_QP (ushort)0x006B
#define ASC_HOST_FLAG_IN_ISR 0x01
#define ASC_HOST_FLAG_ACK_INT 0x02
#define ASC_RISC_FLAG_GEN_INT 0x01
#define ASC_RISC_FLAG_REQ_SG_LIST 0x02
#define IOP_CTRL (0x0F)
#define IOP_STATUS (0x0E)
#define IOP_INT_ACK IOP_STATUS
#define IOP_REG_IFC (0x0D)
#define IOP_SYN_OFFSET (0x0B)
#define IOP_EXTRA_CONTROL (0x0D)
#define IOP_REG_PC (0x0C)
#define IOP_RAM_ADDR (0x0A)
#define IOP_RAM_DATA (0x08)
#define IOP_EEP_DATA (0x06)
#define IOP_EEP_CMD (0x07)
#define IOP_VERSION (0x03)
#define IOP_CONFIG_HIGH (0x04)
#define IOP_CONFIG_LOW (0x02)
#define IOP_SIG_BYTE (0x01)
#define IOP_SIG_WORD (0x00)
#define IOP_REG_DC1 (0x0E)
#define IOP_REG_DC0 (0x0C)
#define IOP_REG_SB (0x0B)
#define IOP_REG_DA1 (0x0A)
#define IOP_REG_DA0 (0x08)
#define IOP_REG_SC (0x09)
#define IOP_DMA_SPEED (0x07)
#define IOP_REG_FLAG (0x07)
#define IOP_FIFO_H (0x06)
#define IOP_FIFO_L (0x04)
#define IOP_REG_ID (0x05)
#define IOP_REG_QP (0x03)
#define IOP_REG_IH (0x02)
#define IOP_REG_IX (0x01)
#define IOP_REG_AX (0x00)
#define IFC_REG_LOCK (0x00)
#define IFC_REG_UNLOCK (0x09)
#define IFC_WR_EN_FILTER (0x10)
#define IFC_RD_NO_EEPROM (0x10)
#define IFC_SLEW_RATE (0x20)
#define IFC_ACT_NEG (0x40)
#define IFC_INP_FILTER (0x80)
#define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
#define SC_SEL (uchar)(0x80)
#define SC_BSY (uchar)(0x40)
#define SC_ACK (uchar)(0x20)
#define SC_REQ (uchar)(0x10)
#define SC_ATN (uchar)(0x08)
#define SC_IO (uchar)(0x04)
#define SC_CD (uchar)(0x02)
#define SC_MSG (uchar)(0x01)
#define SEC_SCSI_CTL (uchar)(0x80)
#define SEC_ACTIVE_NEGATE (uchar)(0x40)
#define SEC_SLEW_RATE (uchar)(0x20)
#define SEC_ENABLE_FILTER (uchar)(0x10)
#define ASC_HALT_EXTMSG_IN (ushort)0x8000
#define ASC_HALT_CHK_CONDITION (ushort)0x8100
#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
#define ASC_MAX_QNO 0xF8
#define ASC_DATA_SEC_BEG (ushort)0x0080
#define ASC_DATA_SEC_END (ushort)0x0080
#define ASC_CODE_SEC_BEG (ushort)0x0080
#define ASC_CODE_SEC_END (ushort)0x0080
#define ASC_QADR_BEG (0x4000)
#define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
#define ASC_QADR_END (ushort)0x7FFF
#define ASC_QLAST_ADR (ushort)0x7FC0
#define ASC_QBLK_SIZE 0x40
#define ASC_BIOS_DATA_QBEG 0xF8
#define ASC_MIN_ACTIVE_QNO 0x01
#define ASC_QLINK_END 0xFF
#define ASC_EEPROM_WORDS 0x10
#define ASC_MAX_MGS_LEN 0x10
#define ASC_BIOS_ADDR_DEF 0xDC00
#define ASC_BIOS_SIZE 0x3800
#define ASC_BIOS_RAM_OFF 0x3800
#define ASC_BIOS_RAM_SIZE 0x800
#define ASC_BIOS_MIN_ADDR 0xC000
#define ASC_BIOS_MAX_ADDR 0xEC00
#define ASC_BIOS_BANK_SIZE 0x0400
#define ASC_MCODE_START_ADDR 0x0080
#define ASC_CFG0_HOST_INT_ON 0x0020
#define ASC_CFG0_BIOS_ON 0x0040
#define ASC_CFG0_VERA_BURST_ON 0x0080
#define ASC_CFG0_SCSI_PARITY_ON 0x0800
#define ASC_CFG1_SCSI_TARGET_ON 0x0080
#define ASC_CFG1_LRAM_8BITS_ON 0x0800
#define ASC_CFG_MSW_CLR_MASK 0x3080
#define CSW_TEST1 (ASC_CS_TYPE)0x8000
#define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
#define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
#define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
#define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
#define CSW_TEST2 (ASC_CS_TYPE)0x0400
#define CSW_TEST3 (ASC_CS_TYPE)0x0200
#define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
#define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
#define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
#define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
#define CSW_HALTED (ASC_CS_TYPE)0x0010
#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
#define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
#define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
#define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
#define CIW_INT_ACK (ASC_CS_TYPE)0x0100
#define CIW_TEST1 (ASC_CS_TYPE)0x0200
#define CIW_TEST2 (ASC_CS_TYPE)0x0400
#define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
#define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
#define CC_CHIP_RESET (uchar)0x80
#define CC_SCSI_RESET (uchar)0x40
#define CC_HALT (uchar)0x20
#define CC_SINGLE_STEP (uchar)0x10
#define CC_DMA_ABLE (uchar)0x08
#define CC_TEST (uchar)0x04
#define CC_BANK_ONE (uchar)0x02
#define CC_DIAG (uchar)0x01
#define ASC_1000_ID0W 0x04C1
#define ASC_1000_ID0W_FIX 0x00C1
#define ASC_1000_ID1B 0x25
#define ASC_EISA_REV_IOP_MASK (0x0C83)
#define ASC_EISA_CFG_IOP_MASK (0x0C86)
#define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
#define INS_HALTINT (ushort)0x6281
#define INS_HALT (ushort)0x6280
#define INS_SINT (ushort)0x6200
#define INS_RFLAG_WTM (ushort)0x7380
#define ASC_MC_SAVE_CODE_WSIZE 0x500
#define ASC_MC_SAVE_DATA_WSIZE 0x40
typedef struct asc_mc_saved {
ushort data[ASC_MC_SAVE_DATA_WSIZE];
ushort code[ASC_MC_SAVE_CODE_WSIZE];
} ASC_MC_SAVED;
#define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
#define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
#define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
#define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
#define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
#define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
#define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
#define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
#define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
#define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
#define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
#define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
#define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
#define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
#define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
#define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
#define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
#define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
#define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
#define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
#define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
#define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
#define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
#define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
#define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
#define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
#define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
#define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
#define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
#define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
#define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
#define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
#define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
#define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
#define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
#define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
#define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
#define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
#define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
#define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
#define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
#define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
#define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
#define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
#define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
#define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
#define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
#define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
#define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
#define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
#define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
#define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
#define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
#define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
#define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
#define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
#define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
#define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
#define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
#define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
#define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
#define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
#define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
#define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
#define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
#define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
#define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
/*
* Portable Data Types
*
* Any instance where a 32-bit long or pointer type is assumed
* for precision or HW defined structures, the following define
* types must be used. In Linux the char, short, and int types
* are all consistent at 8, 16, and 32 bits respectively. Pointers
* and long types are 64 bits on Alpha and UltraSPARC.
*/
#define ADV_PADDR __u32 /* Physical address data type. */
#define ADV_VADDR __u32 /* Virtual address data type. */
#define ADV_DCNT __u32 /* Unsigned Data count type. */
#define ADV_SDCNT __s32 /* Signed Data count type. */
/*
* These macros are used to convert a virtual address to a
* 32-bit value. This currently can be used on Linux Alpha
* which uses 64-bit virtual address but a 32-bit bus address.
* This is likely to break in the future, but doing this now
* will give us time to change the HW and FW to handle 64-bit
* addresses.
*/
#define ADV_VADDR_TO_U32 virt_to_bus
#define ADV_U32_TO_VADDR bus_to_virt
#define AdvPortAddr void __iomem * /* Virtual memory address size */
/*
* Define Adv Library required memory access macros.
*/
#define ADV_MEM_READB(addr) readb(addr)
#define ADV_MEM_READW(addr) readw(addr)
#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
/*
* Define total number of simultaneous maximum element scatter-gather
* request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
* maximum number of outstanding commands per wide host adapter. Each
* command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
* elements. Allow each command to have at least one ADV_SG_BLOCK structure.
* This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
* structures or 255 scatter-gather elements.
*/
#define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
/*
* Define maximum number of scatter-gather elements per request.
*/
#define ADV_MAX_SG_LIST 255
#define NO_OF_SG_PER_BLOCK 15
#define ADV_EEP_DVC_CFG_BEGIN (0x00)
#define ADV_EEP_DVC_CFG_END (0x15)
#define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
#define ADV_EEP_MAX_WORD_ADDR (0x1E)
#define ADV_EEP_DELAY_MS 100
#define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
#define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
/*
* For the ASC3550 Bit 13 is Termination Polarity control bit.
* For later ICs Bit 13 controls whether the CIS (Card Information
* Service Section) is loaded from EEPROM.
*/
#define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
#define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
/*
* ASC38C1600 Bit 11
*
* If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
* INT A in the PCI Configuration Space Int Pin field. If it is 1, then
* Function 0 will specify INT B.
*
* If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
* INT B in the PCI Configuration Space Int Pin field. If it is 1, then
* Function 1 will specify INT A.
*/
#define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
typedef struct adveep_3550_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 13 set - Term Polarity Control */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_able; /* 04 Synchronous DTR able */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar reserved1; /* reserved byte (not used) */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 */
/* bit 14 */
/* bit 15 */
ushort ultra_able; /* 13 ULTRA speed able */
ushort reserved2; /* 14 reserved */
uchar max_host_qng; /* 15 maximum host queuing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort bug_fix; /* 17 control bit for bug fix */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort num_of_err; /* 36 number of error */
} ADVEEP_3550_CONFIG;
typedef struct adveep_38C0800_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 13 set - Load CIS */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination_se; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar termination_lvd; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 */
/* bit 14 */
/* bit 15 */
ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
uchar max_host_qng; /* 15 maximum host queueing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort reserved36; /* 36 reserved */
ushort reserved37; /* 37 reserved */
ushort reserved38; /* 38 reserved */
ushort reserved39; /* 39 reserved */
ushort reserved40; /* 40 reserved */
ushort reserved41; /* 41 reserved */
ushort reserved42; /* 42 reserved */
ushort reserved43; /* 43 reserved */
ushort reserved44; /* 44 reserved */
ushort reserved45; /* 45 reserved */
ushort reserved46; /* 46 reserved */
ushort reserved47; /* 47 reserved */
ushort reserved48; /* 48 reserved */
ushort reserved49; /* 49 reserved */
ushort reserved50; /* 50 reserved */
ushort reserved51; /* 51 reserved */
ushort reserved52; /* 52 reserved */
ushort reserved53; /* 53 reserved */
ushort reserved54; /* 54 reserved */
ushort reserved55; /* 55 reserved */
ushort cisptr_lsw; /* 56 CIS PTR LSW */
ushort cisprt_msw; /* 57 CIS PTR MSW */
ushort subsysvid; /* 58 SubSystem Vendor ID */
ushort subsysid; /* 59 SubSystem ID */
ushort reserved60; /* 60 reserved */
ushort reserved61; /* 61 reserved */
ushort reserved62; /* 62 reserved */
ushort reserved63; /* 63 reserved */
} ADVEEP_38C0800_CONFIG;
typedef struct adveep_38C1600_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 11 set - Func. 0 INTB, Func. 1 INTA */
/* clear - Func. 0 INTA, Func. 1 INTB */
/* bit 13 set - Load CIS */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination_se; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar termination_lvd; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 Basic Integrity Checking disabled */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
/* bit 14 */
/* bit 15 */
ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
uchar max_host_qng; /* 15 maximum host queueing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort reserved36; /* 36 reserved */
ushort reserved37; /* 37 reserved */
ushort reserved38; /* 38 reserved */
ushort reserved39; /* 39 reserved */
ushort reserved40; /* 40 reserved */
ushort reserved41; /* 41 reserved */
ushort reserved42; /* 42 reserved */
ushort reserved43; /* 43 reserved */
ushort reserved44; /* 44 reserved */
ushort reserved45; /* 45 reserved */
ushort reserved46; /* 46 reserved */
ushort reserved47; /* 47 reserved */
ushort reserved48; /* 48 reserved */
ushort reserved49; /* 49 reserved */
ushort reserved50; /* 50 reserved */
ushort reserved51; /* 51 reserved */
ushort reserved52; /* 52 reserved */
ushort reserved53; /* 53 reserved */
ushort reserved54; /* 54 reserved */
ushort reserved55; /* 55 reserved */
ushort cisptr_lsw; /* 56 CIS PTR LSW */
ushort cisprt_msw; /* 57 CIS PTR MSW */
ushort subsysvid; /* 58 SubSystem Vendor ID */
ushort subsysid; /* 59 SubSystem ID */
ushort reserved60; /* 60 reserved */
ushort reserved61; /* 61 reserved */
ushort reserved62; /* 62 reserved */
ushort reserved63; /* 63 reserved */
} ADVEEP_38C1600_CONFIG;
/*
* EEPROM Commands
*/
#define ASC_EEP_CMD_DONE 0x0200
/* bios_ctrl */
#define BIOS_CTRL_BIOS 0x0001
#define BIOS_CTRL_EXTENDED_XLAT 0x0002
#define BIOS_CTRL_GT_2_DISK 0x0004
#define BIOS_CTRL_BIOS_REMOVABLE 0x0008
#define BIOS_CTRL_BOOTABLE_CD 0x0010
#define BIOS_CTRL_MULTIPLE_LUN 0x0040
#define BIOS_CTRL_DISPLAY_MSG 0x0080
#define BIOS_CTRL_NO_SCAM 0x0100
#define BIOS_CTRL_RESET_SCSI_BUS 0x0200
#define BIOS_CTRL_INIT_VERBOSE 0x0800
#define BIOS_CTRL_SCSI_PARITY 0x1000
#define BIOS_CTRL_AIPP_DIS 0x2000
#define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
#define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
/*
* XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
* a special 16K Adv Library and Microcode version. After the issue is
* resolved, should restore 32K support.
*
* #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
*/
#define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
/*
* Byte I/O register address from base of 'iop_base'.
*/
#define IOPB_INTR_STATUS_REG 0x00
#define IOPB_CHIP_ID_1 0x01
#define IOPB_INTR_ENABLES 0x02
#define IOPB_CHIP_TYPE_REV 0x03
#define IOPB_RES_ADDR_4 0x04
#define IOPB_RES_ADDR_5 0x05
#define IOPB_RAM_DATA 0x06
#define IOPB_RES_ADDR_7 0x07
#define IOPB_FLAG_REG 0x08
#define IOPB_RES_ADDR_9 0x09
#define IOPB_RISC_CSR 0x0A
#define IOPB_RES_ADDR_B 0x0B
#define IOPB_RES_ADDR_C 0x0C
#define IOPB_RES_ADDR_D 0x0D
#define IOPB_SOFT_OVER_WR 0x0E
#define IOPB_RES_ADDR_F 0x0F
#define IOPB_MEM_CFG 0x10
#define IOPB_RES_ADDR_11 0x11
#define IOPB_GPIO_DATA 0x12
#define IOPB_RES_ADDR_13 0x13
#define IOPB_FLASH_PAGE 0x14
#define IOPB_RES_ADDR_15 0x15
#define IOPB_GPIO_CNTL 0x16
#define IOPB_RES_ADDR_17 0x17
#define IOPB_FLASH_DATA 0x18
#define IOPB_RES_ADDR_19 0x19
#define IOPB_RES_ADDR_1A 0x1A
#define IOPB_RES_ADDR_1B 0x1B
#define IOPB_RES_ADDR_1C 0x1C
#define IOPB_RES_ADDR_1D 0x1D
#define IOPB_RES_ADDR_1E 0x1E
#define IOPB_RES_ADDR_1F 0x1F
#define IOPB_DMA_CFG0 0x20
#define IOPB_DMA_CFG1 0x21
#define IOPB_TICKLE 0x22
#define IOPB_DMA_REG_WR 0x23
#define IOPB_SDMA_STATUS 0x24
#define IOPB_SCSI_BYTE_CNT 0x25
#define IOPB_HOST_BYTE_CNT 0x26
#define IOPB_BYTE_LEFT_TO_XFER 0x27
#define IOPB_BYTE_TO_XFER_0 0x28
#define IOPB_BYTE_TO_XFER_1 0x29
#define IOPB_BYTE_TO_XFER_2 0x2A
#define IOPB_BYTE_TO_XFER_3 0x2B
#define IOPB_ACC_GRP 0x2C
#define IOPB_RES_ADDR_2D 0x2D
#define IOPB_DEV_ID 0x2E
#define IOPB_RES_ADDR_2F 0x2F
#define IOPB_SCSI_DATA 0x30
#define IOPB_RES_ADDR_31 0x31
#define IOPB_RES_ADDR_32 0x32
#define IOPB_SCSI_DATA_HSHK 0x33
#define IOPB_SCSI_CTRL 0x34
#define IOPB_RES_ADDR_35 0x35
#define IOPB_RES_ADDR_36 0x36
#define IOPB_RES_ADDR_37 0x37
#define IOPB_RAM_BIST 0x38
#define IOPB_PLL_TEST 0x39
#define IOPB_PCI_INT_CFG 0x3A
#define IOPB_RES_ADDR_3B 0x3B
#define IOPB_RFIFO_CNT 0x3C
#define IOPB_RES_ADDR_3D 0x3D
#define IOPB_RES_ADDR_3E 0x3E
#define IOPB_RES_ADDR_3F 0x3F
/*
* Word I/O register address from base of 'iop_base'.
*/
#define IOPW_CHIP_ID_0 0x00 /* CID0 */
#define IOPW_CTRL_REG 0x02 /* CC */
#define IOPW_RAM_ADDR 0x04 /* LA */
#define IOPW_RAM_DATA 0x06 /* LD */
#define IOPW_RES_ADDR_08 0x08
#define IOPW_RISC_CSR 0x0A /* CSR */
#define IOPW_SCSI_CFG0 0x0C /* CFG0 */
#define IOPW_SCSI_CFG1 0x0E /* CFG1 */
#define IOPW_RES_ADDR_10 0x10
#define IOPW_SEL_MASK 0x12 /* SM */
#define IOPW_RES_ADDR_14 0x14
#define IOPW_FLASH_ADDR 0x16 /* FA */
#define IOPW_RES_ADDR_18 0x18
#define IOPW_EE_CMD 0x1A /* EC */
#define IOPW_EE_DATA 0x1C /* ED */
#define IOPW_SFIFO_CNT 0x1E /* SFC */
#define IOPW_RES_ADDR_20 0x20
#define IOPW_Q_BASE 0x22 /* QB */
#define IOPW_QP 0x24 /* QP */
#define IOPW_IX 0x26 /* IX */
#define IOPW_SP 0x28 /* SP */
#define IOPW_PC 0x2A /* PC */
#define IOPW_RES_ADDR_2C 0x2C
#define IOPW_RES_ADDR_2E 0x2E
#define IOPW_SCSI_DATA 0x30 /* SD */
#define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
#define IOPW_SCSI_CTRL 0x34 /* SC */
#define IOPW_HSHK_CFG 0x36 /* HCFG */
#define IOPW_SXFR_STATUS 0x36 /* SXS */
#define IOPW_SXFR_CNTL 0x38 /* SXL */
#define IOPW_SXFR_CNTH 0x3A /* SXH */
#define IOPW_RES_ADDR_3C 0x3C
#define IOPW_RFIFO_DATA 0x3E /* RFD */
/*
* Doubleword I/O register address from base of 'iop_base'.
*/
#define IOPDW_RES_ADDR_0 0x00
#define IOPDW_RAM_DATA 0x04
#define IOPDW_RES_ADDR_8 0x08
#define IOPDW_RES_ADDR_C 0x0C
#define IOPDW_RES_ADDR_10 0x10
#define IOPDW_COMMA 0x14
#define IOPDW_COMMB 0x18
#define IOPDW_RES_ADDR_1C 0x1C
#define IOPDW_SDMA_ADDR0 0x20
#define IOPDW_SDMA_ADDR1 0x24
#define IOPDW_SDMA_COUNT 0x28
#define IOPDW_SDMA_ERROR 0x2C
#define IOPDW_RDMA_ADDR0 0x30
#define IOPDW_RDMA_ADDR1 0x34
#define IOPDW_RDMA_COUNT 0x38
#define IOPDW_RDMA_ERROR 0x3C
#define ADV_CHIP_ID_BYTE 0x25
#define ADV_CHIP_ID_WORD 0x04C1
#define ADV_INTR_ENABLE_HOST_INTR 0x01
#define ADV_INTR_ENABLE_SEL_INTR 0x02
#define ADV_INTR_ENABLE_DPR_INTR 0x04
#define ADV_INTR_ENABLE_RTA_INTR 0x08
#define ADV_INTR_ENABLE_RMA_INTR 0x10
#define ADV_INTR_ENABLE_RST_INTR 0x20
#define ADV_INTR_ENABLE_DPE_INTR 0x40
#define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
#define ADV_INTR_STATUS_INTRA 0x01
#define ADV_INTR_STATUS_INTRB 0x02
#define ADV_INTR_STATUS_INTRC 0x04
#define ADV_RISC_CSR_STOP (0x0000)
#define ADV_RISC_TEST_COND (0x2000)
#define ADV_RISC_CSR_RUN (0x4000)
#define ADV_RISC_CSR_SINGLE_STEP (0x8000)
#define ADV_CTRL_REG_HOST_INTR 0x0100
#define ADV_CTRL_REG_SEL_INTR 0x0200
#define ADV_CTRL_REG_DPR_INTR 0x0400
#define ADV_CTRL_REG_RTA_INTR 0x0800
#define ADV_CTRL_REG_RMA_INTR 0x1000
#define ADV_CTRL_REG_RES_BIT14 0x2000
#define ADV_CTRL_REG_DPE_INTR 0x4000
#define ADV_CTRL_REG_POWER_DONE 0x8000
#define ADV_CTRL_REG_ANY_INTR 0xFF00
#define ADV_CTRL_REG_CMD_RESET 0x00C6
#define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
#define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
#define ADV_TICKLE_NOP 0x00
#define ADV_TICKLE_A 0x01
#define ADV_TICKLE_B 0x02
#define ADV_TICKLE_C 0x03
#define AdvIsIntPending(port) \
(AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
/*
* SCSI_CFG0 Register bit definitions
*/
#define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
#define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
#define EVEN_PARITY 0x1000 /* Select Even Parity */
#define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
#define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
#define PRIM_MODE 0x0100 /* Primitive SCSI mode */
#define SCAM_EN 0x0080 /* Enable SCAM selection */
#define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
#define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
#define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
#define OUR_ID 0x000F /* SCSI ID */
/*
* SCSI_CFG1 Register bit definitions
*/
#define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
#define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
#define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
#define FILTER_SEL 0x0C00 /* Filter Period Selection */
#define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
#define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
#define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
#define ACTIVE_DBL 0x0200 /* Disable Active Negation */
#define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
#define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
#define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
#define TERM_CTL 0x0030 /* External SCSI Termination Bits */
#define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
#define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
#define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
/*
* Addendum for ASC-38C0800 Chip
*
* The ASC-38C1600 Chip uses the same definitions except that the
* bus mode override bits [12:10] have been moved to byte register
* offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
* SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
* is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
* Also each ASC-38C1600 function or channel uses only cable bits [5:4]
* and [1:0]. Bits [14], [7:6], [3:2] are unused.
*/
#define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
#define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
#define HVD 0x1000 /* HVD Device Detect */
#define LVD 0x0800 /* LVD Device Detect */
#define SE 0x0400 /* SE Device Detect */
#define TERM_LVD 0x00C0 /* LVD Termination Bits */
#define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
#define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
#define TERM_SE 0x0030 /* SE Termination Bits */
#define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
#define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
#define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
#define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
#define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
#define C_DET_SE 0x0003 /* SE Cable Detect Bits */
#define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
#define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
#define CABLE_ILLEGAL_A 0x7
/* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
#define CABLE_ILLEGAL_B 0xB
/* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
/*
* MEM_CFG Register bit definitions
*/
#define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
#define FAST_EE_CLK 0x20 /* Diagnostic Bit */
#define RAM_SZ 0x1C /* Specify size of RAM to RISC */
#define RAM_SZ_2KB 0x00 /* 2 KB */
#define RAM_SZ_4KB 0x04 /* 4 KB */
#define RAM_SZ_8KB 0x08 /* 8 KB */
#define RAM_SZ_16KB 0x0C /* 16 KB */
#define RAM_SZ_32KB 0x10 /* 32 KB */
#define RAM_SZ_64KB 0x14 /* 64 KB */
/*
* DMA_CFG0 Register bit definitions
*
* This register is only accessible to the host.
*/
#define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
#define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
#define FIFO_THRESH_16B 0x00 /* 16 bytes */
#define FIFO_THRESH_32B 0x20 /* 32 bytes */
#define FIFO_THRESH_48B 0x30 /* 48 bytes */
#define FIFO_THRESH_64B 0x40 /* 64 bytes */
#define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
#define FIFO_THRESH_96B 0x60 /* 96 bytes */
#define FIFO_THRESH_112B 0x70 /* 112 bytes */
#define START_CTL 0x0C /* DMA start conditions */
#define START_CTL_TH 0x00 /* Wait threshold level (default) */
#define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
#define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
#define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
#define READ_CMD 0x03 /* Memory Read Method */
#define READ_CMD_MR 0x00 /* Memory Read */
#define READ_CMD_MRL 0x02 /* Memory Read Long */
#define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
/*
* ASC-38C0800 RAM BIST Register bit definitions
*/
#define RAM_TEST_MODE 0x80
#define PRE_TEST_MODE 0x40
#define NORMAL_MODE 0x00
#define RAM_TEST_DONE 0x10
#define RAM_TEST_STATUS 0x0F
#define RAM_TEST_HOST_ERROR 0x08
#define RAM_TEST_INTRAM_ERROR 0x04
#define RAM_TEST_RISC_ERROR 0x02
#define RAM_TEST_SCSI_ERROR 0x01
#define RAM_TEST_SUCCESS 0x00
#define PRE_TEST_VALUE 0x05
#define NORMAL_VALUE 0x00
/*
* ASC38C1600 Definitions
*
* IOPB_PCI_INT_CFG Bit Field Definitions
*/
#define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
/*
* Bit 1 can be set to change the interrupt for the Function to operate in
* Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
* Open Drain mode. Both functions of the ASC38C1600 must be set to the same
* mode, otherwise the operating mode is undefined.
*/
#define TOTEMPOLE 0x02
/*
* Bit 0 can be used to change the Int Pin for the Function. The value is
* 0 by default for both Functions with Function 0 using INT A and Function
* B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
* INT A is used.
*
* EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
* value specified in the PCI Configuration Space.
*/
#define INTAB 0x01
/*
* Adv Library Status Definitions
*/
#define ADV_TRUE 1
#define ADV_FALSE 0
#define ADV_SUCCESS 1
#define ADV_BUSY 0
#define ADV_ERROR (-1)
/*
* ADV_DVC_VAR 'warn_code' values
*/
#define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
#define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
#define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
#define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
#define ADV_MAX_TID 15 /* max. target identifier */
#define ADV_MAX_LUN 7 /* max. logical unit number */
/*
* Fixed locations of microcode operating variables.
*/
#define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
#define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
#define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
#define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
#define ASC_MC_VERSION_NUM 0x003A /* microcode number */
#define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
#define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
#define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
#define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
#define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
#define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
#define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
#define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
#define ASC_MC_CHIP_TYPE 0x009A
#define ASC_MC_INTRB_CODE 0x009B
#define ASC_MC_WDTR_ABLE 0x009C
#define ASC_MC_SDTR_ABLE 0x009E
#define ASC_MC_TAGQNG_ABLE 0x00A0
#define ASC_MC_DISC_ENABLE 0x00A2
#define ASC_MC_IDLE_CMD_STATUS 0x00A4
#define ASC_MC_IDLE_CMD 0x00A6
#define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
#define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
#define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
#define ASC_MC_DEFAULT_MEM_CFG 0x00B0
#define ASC_MC_DEFAULT_SEL_MASK 0x00B2
#define ASC_MC_SDTR_DONE 0x00B6
#define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
#define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
#define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
#define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
#define ASC_MC_WDTR_DONE 0x0124
#define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
#define ASC_MC_ICQ 0x0160
#define ASC_MC_IRQ 0x0164
#define ASC_MC_PPR_ABLE 0x017A
/*
* BIOS LRAM variable absolute offsets.
*/
#define BIOS_CODESEG 0x54
#define BIOS_CODELEN 0x56
#define BIOS_SIGNATURE 0x58
#define BIOS_VERSION 0x5A
/*
* Microcode Control Flags
*
* Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
* and handled by the microcode.
*/
#define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
#define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
/*
* ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
*/
#define HSHK_CFG_WIDE_XFR 0x8000
#define HSHK_CFG_RATE 0x0F00
#define HSHK_CFG_OFFSET 0x001F
#define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
#define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
#define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
#define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
#define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
#define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
#define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
#define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
#define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
#define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
#define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
#define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
/*
* Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
* ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
*/
#define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
#define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
/*
* All fields here are accessed by the board microcode and need to be
* little-endian.
*/
typedef struct adv_carr_t {
ADV_VADDR carr_va; /* Carrier Virtual Address */
ADV_PADDR carr_pa; /* Carrier Physical Address */
ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
/*
* next_vpa [31:4] Carrier Virtual or Physical Next Pointer
*
* next_vpa [3:1] Reserved Bits
* next_vpa [0] Done Flag set in Response Queue.
*/
ADV_VADDR next_vpa;
} ADV_CARR_T;
/*
* Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
*/
#define ASC_NEXT_VPA_MASK 0xFFFFFFF0
#define ASC_RQ_DONE 0x00000001
#define ASC_RQ_GOOD 0x00000002
#define ASC_CQ_STOPPER 0x00000000
#define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
#define ADV_CARRIER_NUM_PAGE_CROSSING \
(((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
#define ADV_CARRIER_BUFSIZE \
((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
/*
* ASC_SCSI_REQ_Q 'a_flag' definitions
*
* The Adv Library should limit use to the lower nibble (4 bits) of
* a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
*/
#define ADV_POLL_REQUEST 0x01 /* poll for request completion */
#define ADV_SCSIQ_DONE 0x02 /* request done */
#define ADV_DONT_RETRY 0x08 /* don't do retry */
#define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
#define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
#define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
/*
* Adapter temporary configuration structure
*
* This structure can be discarded after initialization. Don't add
* fields here needed after initialization.
*
* Field naming convention:
*
* *_enable indicates the field enables or disables a feature. The
* value of the field is never reset.
*/
typedef struct adv_dvc_cfg {
ushort disc_enable; /* enable disconnection */
uchar chip_version; /* chip version */
uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
ushort control_flag; /* Microcode Control Flag */
ushort mcode_date; /* Microcode date */
ushort mcode_version; /* Microcode version */
ushort serial1; /* EEPROM serial number word 1 */
ushort serial2; /* EEPROM serial number word 2 */
ushort serial3; /* EEPROM serial number word 3 */
} ADV_DVC_CFG;
struct adv_dvc_var;
struct adv_scsi_req_q;
typedef struct asc_sg_block {
uchar reserved1;
uchar reserved2;
uchar reserved3;
uchar sg_cnt; /* Valid entries in block. */
ADV_PADDR sg_ptr; /* Pointer to next sg block. */
struct {
ADV_PADDR sg_addr; /* SG element address. */
ADV_DCNT sg_count; /* SG element count. */
} sg_list[NO_OF_SG_PER_BLOCK];
} ADV_SG_BLOCK;
/*
* ADV_SCSI_REQ_Q - microcode request structure
*
* All fields in this structure up to byte 60 are used by the microcode.
* The microcode makes assumptions about the size and ordering of fields
* in this structure. Do not change the structure definition here without
* coordinating the change with the microcode.
*
* All fields accessed by microcode must be maintained in little_endian
* order.
*/
typedef struct adv_scsi_req_q {
uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
uchar target_cmd;
uchar target_id; /* Device target identifier. */
uchar target_lun; /* Device target logical unit number. */
ADV_PADDR data_addr; /* Data buffer physical address. */
ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
ADV_PADDR sense_addr;
ADV_PADDR carr_pa;
uchar mflag;
uchar sense_len;
uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
uchar scsi_cntl;
uchar done_status; /* Completion status. */
uchar scsi_status; /* SCSI status byte. */
uchar host_status; /* Ucode host status. */
uchar sg_working_ix;
uchar cdb[12]; /* SCSI CDB bytes 0-11. */
ADV_PADDR sg_real_addr; /* SG list physical address. */
ADV_PADDR scsiq_rptr;
uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
ADV_VADDR scsiq_ptr;
ADV_VADDR carr_va;
/*
* End of microcode structure - 60 bytes. The rest of the structure
* is used by the Adv Library and ignored by the microcode.
*/
ADV_VADDR srb_ptr;
ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
char *vdata_addr; /* Data buffer virtual address. */
uchar a_flag;
uchar pad[2]; /* Pad out to a word boundary. */
} ADV_SCSI_REQ_Q;
/*
* The following two structures are used to process Wide Board requests.
*
* The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
* and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
* adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
* Mid-Level SCSI request structure.
*
* Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
* ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
* up to 255 scatter-gather elements may be used per request or
* ADV_SCSI_REQ_Q.
*
* Both structures must be 32 byte aligned.
*/
typedef struct adv_sgblk {
ADV_SG_BLOCK sg_block; /* Sgblock structure. */
uchar align[32]; /* Sgblock structure padding. */
struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
} adv_sgblk_t;
typedef struct adv_req {
ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
uchar align[32]; /* Request structure padding. */
struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
struct adv_req *next_reqp; /* Next Request Structure. */
} adv_req_t;
/*
* Adapter operation variable structure.
*
* One structure is required per host adapter.
*
* Field naming convention:
*
* *_able indicates both whether a feature should be enabled or disabled
* and whether a device isi capable of the feature. At initialization
* this field may be set, but later if a device is found to be incapable
* of the feature, the field is cleared.
*/
typedef struct adv_dvc_var {
AdvPortAddr iop_base; /* I/O port address */
ushort err_code; /* fatal error code */
ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
ushort wdtr_able; /* try WDTR for a device */
ushort sdtr_able; /* try SDTR for a device */
ushort ultra_able; /* try SDTR Ultra speed for a device */
ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
ushort tagqng_able; /* try tagged queuing with a device */
ushort ppr_able; /* PPR message capable per TID bitmask. */
uchar max_dvc_qng; /* maximum number of tagged commands per device */
ushort start_motor; /* start motor command allowed */
uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
uchar chip_no; /* should be assigned by caller */
uchar max_host_qng; /* maximum number of Q'ed command allowed */
ushort no_scam; /* scam_tolerant of EEPROM */
struct asc_board *drv_ptr; /* driver pointer to private structure */
uchar chip_scsi_id; /* chip SCSI target ID */
uchar chip_type;
uchar bist_err_code;
ADV_CARR_T *carrier_buf;
ADV_CARR_T *carr_freelist; /* Carrier free list. */
ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
ushort carr_pending_cnt; /* Count of pending carriers. */
struct adv_req *orig_reqp; /* adv_req_t memory block. */
/*
* Note: The following fields will not be used after initialization. The
* driver may discard the buffer after initialization is done.
*/
ADV_DVC_CFG *cfg; /* temporary configuration structure */
} ADV_DVC_VAR;
/*
* Microcode idle loop commands
*/
#define IDLE_CMD_COMPLETED 0
#define IDLE_CMD_STOP_CHIP 0x0001
#define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
#define IDLE_CMD_SEND_INT 0x0004
#define IDLE_CMD_ABORT 0x0008
#define IDLE_CMD_DEVICE_RESET 0x0010
#define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
#define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
#define IDLE_CMD_SCSIREQ 0x0080
#define IDLE_CMD_STATUS_SUCCESS 0x0001
#define IDLE_CMD_STATUS_FAILURE 0x0002
/*
* AdvSendIdleCmd() flag definitions.
*/
#define ADV_NOWAIT 0x01
/*
* Wait loop time out values.
*/
#define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
#define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
#define SCSI_MAX_RETRY 10 /* retry count */
#define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
#define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
#define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
#define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
/* Read byte from a register. */
#define AdvReadByteRegister(iop_base, reg_off) \
(ADV_MEM_READB((iop_base) + (reg_off)))
/* Write byte to a register. */
#define AdvWriteByteRegister(iop_base, reg_off, byte) \
(ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
/* Read word (2 bytes) from a register. */
#define AdvReadWordRegister(iop_base, reg_off) \
(ADV_MEM_READW((iop_base) + (reg_off)))
/* Write word (2 bytes) to a register. */
#define AdvWriteWordRegister(iop_base, reg_off, word) \
(ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
/* Write dword (4 bytes) to a register. */
#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
(ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
/* Read byte from LRAM. */
#define AdvReadByteLram(iop_base, addr, byte) \
do { \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
(byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
} while (0)
/* Write byte to LRAM. */
#define AdvWriteByteLram(iop_base, addr, byte) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
/* Read word (2 bytes) from LRAM. */
#define AdvReadWordLram(iop_base, addr, word) \
do { \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
(word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
} while (0)
/* Write word (2 bytes) to LRAM. */
#define AdvWriteWordLram(iop_base, addr, word) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
/* Write little-endian double word (4 bytes) to LRAM */
/* Because of unspecified C language ordering don't use auto-increment. */
#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
/* Read word (2 bytes) from LRAM assuming that the address is already set. */
#define AdvReadWordAutoIncLram(iop_base) \
(ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
/* Write word (2 bytes) to LRAM assuming that the address is already set. */
#define AdvWriteWordAutoIncLram(iop_base, word) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
/*
* Define macro to check for Condor signature.
*
* Evaluate to ADV_TRUE if a Condor chip is found the specified port
* address 'iop_base'. Otherwise evalue to ADV_FALSE.
*/
#define AdvFindSignature(iop_base) \
(((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
ADV_CHIP_ID_BYTE) && \
(AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
/*
* Define macro to Return the version number of the chip at 'iop_base'.
*
* The second parameter 'bus_type' is currently unused.
*/
#define AdvGetChipVersion(iop_base, bus_type) \
AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
/*
* Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
* match the ASC_SCSI_REQ_Q 'srb_ptr' field.
*
* If the request has not yet been sent to the device it will simply be
* aborted from RISC memory. If the request is disconnected it will be
* aborted on reselection by sending an Abort Message to the target ID.
*
* Return value:
* ADV_TRUE(1) - Queue was successfully aborted.
* ADV_FALSE(0) - Queue was not found on the active queue list.
*/
#define AdvAbortQueue(asc_dvc, scsiq) \
AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
(ADV_DCNT) (scsiq))
/*
* Send a Bus Device Reset Message to the specified target ID.
*
* All outstanding commands will be purged if sending the
* Bus Device Reset Message is successful.
*
* Return Value:
* ADV_TRUE(1) - All requests on the target are purged.
* ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
* are not purged.
*/
#define AdvResetDevice(asc_dvc, target_id) \
AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
(ADV_DCNT) (target_id))
/*
* SCSI Wide Type definition.
*/
#define ADV_SCSI_BIT_ID_TYPE ushort
/*
* AdvInitScsiTarget() 'cntl_flag' options.
*/
#define ADV_SCAN_LUN 0x01
#define ADV_CAPINFO_NOLUN 0x02
/*
* Convert target id to target id bit mask.
*/
#define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
/*
* ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
*/
#define QD_NO_STATUS 0x00 /* Request not completed yet. */
#define QD_NO_ERROR 0x01
#define QD_ABORTED_BY_HOST 0x02
#define QD_WITH_ERROR 0x04
#define QHSTA_NO_ERROR 0x00
#define QHSTA_M_SEL_TIMEOUT 0x11
#define QHSTA_M_DATA_OVER_RUN 0x12
#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
#define QHSTA_M_QUEUE_ABORTED 0x15
#define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
#define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
#define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
#define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
#define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
#define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
#define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
#define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
#define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
#define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
#define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
#define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
#define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
#define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
#define QHSTA_M_WTM_TIMEOUT 0x41
#define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
#define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
#define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
#define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
#define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
/* Return the address that is aligned at the next doubleword >= to 'addr'. */
#define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
#define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
#define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
/*
* Total contiguous memory needed for driver SG blocks.
*
* ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
* number of scatter-gather elements the driver supports in a
* single request.
*/
#define ADV_SG_LIST_MAX_BYTE_SIZE \
(sizeof(ADV_SG_BLOCK) * \
((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
/* struct asc_board flags */
#define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
#define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
#define ASC_INFO_SIZE 128 /* advansys_info() line size */
#ifdef CONFIG_PROC_FS
/* /proc/scsi/advansys/[0...] related definitions */
#define ASC_PRTBUF_SIZE 2048
#define ASC_PRTLINE_SIZE 160
#define ASC_PRT_NEXT() \
if (cp) { \
totlen += len; \
leftlen -= len; \
if (leftlen == 0) { \
return totlen; \
} \
cp += len; \
}
#endif /* CONFIG_PROC_FS */
/* Asc Library return codes */
#define ASC_TRUE 1
#define ASC_FALSE 0
#define ASC_NOERROR 1
#define ASC_BUSY 0
#define ASC_ERROR (-1)
/* struct scsi_cmnd function return codes */
#define STATUS_BYTE(byte) (byte)
#define MSG_BYTE(byte) ((byte) << 8)
#define HOST_BYTE(byte) ((byte) << 16)
#define DRIVER_BYTE(byte) ((byte) << 24)
#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
#ifndef ADVANSYS_STATS
#define ASC_STATS_ADD(shost, counter, count)
#else /* ADVANSYS_STATS */
#define ASC_STATS_ADD(shost, counter, count) \
(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
#endif /* ADVANSYS_STATS */
/* If the result wraps when calculating tenths, return 0. */
#define ASC_TENTHS(num, den) \
(((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
/*
* Display a message to the console.
*/
#define ASC_PRINT(s) \
{ \
printk("advansys: "); \
printk(s); \
}
#define ASC_PRINT1(s, a1) \
{ \
printk("advansys: "); \
printk((s), (a1)); \
}
#define ASC_PRINT2(s, a1, a2) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2)); \
}
#define ASC_PRINT3(s, a1, a2, a3) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2), (a3)); \
}
#define ASC_PRINT4(s, a1, a2, a3, a4) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2), (a3), (a4)); \
}
#ifndef ADVANSYS_DEBUG
#define ASC_DBG(lvl, s...)
#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
#define ASC_DBG_PRT_HEX(lvl, name, start, length)
#define ASC_DBG_PRT_CDB(lvl, cdb, len)
#define ASC_DBG_PRT_SENSE(lvl, sense, len)
#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
#else /* ADVANSYS_DEBUG */
/*
* Debugging Message Levels:
* 0: Errors Only
* 1: High-Level Tracing
* 2-N: Verbose Tracing
*/
#define ASC_DBG(lvl, format, arg...) { \
if (asc_dbglvl >= (lvl)) \
printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
__func__ , ## arg); \
}
#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_scsi_host(s); \
} \
}
#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_asc_scsi_q(scsiqp); \
} \
}
#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_asc_qdone_info(qdone); \
} \
}
#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_adv_scsi_req_q(scsiqp); \
} \
}
#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_hex((name), (start), (length)); \
} \
}
#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
#endif /* ADVANSYS_DEBUG */
#ifdef ADVANSYS_STATS
/* Per board statistics structure */
struct asc_stats {
/* Driver Entrypoint Statistics */
ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
ADV_DCNT interrupt; /* # advansys_interrupt() calls */
ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
ADV_DCNT done; /* # calls to request's scsi_done function */
ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
ADV_DCNT exe_error; /* # ASC_ERROR returns. */
ADV_DCNT exe_unknown; /* # unknown returns. */
/* Data Transfer Statistics */
ADV_DCNT xfer_cnt; /* # I/O requests received */
ADV_DCNT xfer_elem; /* # scatter-gather elements */
ADV_DCNT xfer_sect; /* # 512-byte blocks */
};
#endif /* ADVANSYS_STATS */
/*
* Structure allocated for each board.
*
* This structure is allocated by scsi_host_alloc() at the end
* of the 'Scsi_Host' structure starting at the 'hostdata'
* field. It is guaranteed to be allocated from DMA-able memory.
*/
struct asc_board {
struct device *dev;
uint flags; /* Board flags */
unsigned int irq;
union {
ASC_DVC_VAR asc_dvc_var; /* Narrow board */
ADV_DVC_VAR adv_dvc_var; /* Wide board */
} dvc_var;
union {
ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
} dvc_cfg;
ushort asc_n_io_port; /* Number I/O ports. */
ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
union {
ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
} eep_config;
ulong last_reset; /* Saved last reset time */
/* /proc/scsi/advansys/[0...] */
char *prtbuf; /* /proc print buffer */
#ifdef ADVANSYS_STATS
struct asc_stats asc_stats; /* Board statistics */
#endif /* ADVANSYS_STATS */
/*
* The following fields are used only for Narrow Boards.
*/
uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
/*
* The following fields are used only for Wide Boards.
*/
void __iomem *ioremap_addr; /* I/O Memory remap address. */
ushort ioport; /* I/O Port address. */
adv_req_t *adv_reqp; /* Request structures. */
adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
ushort bios_signature; /* BIOS Signature. */
ushort bios_version; /* BIOS Version. */
ushort bios_codeseg; /* BIOS Code Segment. */
ushort bios_codelen; /* BIOS Code Segment Length. */
};
#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
dvc_var.asc_dvc_var)
#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
dvc_var.adv_dvc_var)
#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
#ifdef ADVANSYS_DEBUG
static int asc_dbglvl = 3;
/*
* asc_prt_asc_dvc_var()
*/
static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
{
printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
"%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
(unsigned)h->init_sdtr);
printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
"chip_no 0x%x,\n", (unsigned)h->sdtr_done,
(unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
(unsigned)h->chip_no);
printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
"%u,\n", (unsigned)h->queue_full_or_busy,
(unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
"in_critical_cnt %u,\n", (unsigned)h->is_in_int,
(unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
(unsigned)h->in_critical_cnt);
printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
"pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
(unsigned)h->init_state, (unsigned)h->no_scam,
(unsigned)h->pci_fix_asyn_xfer);
printk(" cfg 0x%lx\n", (ulong)h->cfg);
}
/*
* asc_prt_asc_dvc_cfg()
*/
static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
{
printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
h->can_tagged_qng, h->cmd_qng_enabled);
printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
h->disc_enable, h->sdtr_enable);
printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
h->isa_dma_channel, h->chip_version);
printk(" mcode_date 0x%x, mcode_version %d\n",
h->mcode_date, h->mcode_version);
}
/*
* asc_prt_adv_dvc_var()
*
* Display an ADV_DVC_VAR structure.
*/
static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
{
printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
(ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
(unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
(unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
(unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
(ulong)h->carr_freelist);
printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
(ulong)h->icq_sp, (ulong)h->irq_sp);
printk(" no_scam 0x%x, tagqng_able 0x%x\n",
(unsigned)h->no_scam, (unsigned)h->tagqng_able);
printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
(unsigned)h->chip_scsi_id, (ulong)h->cfg);
}
/*
* asc_prt_adv_dvc_cfg()
*
* Display an ADV_DVC_CFG structure.
*/
static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
{
printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
printk(" disc_enable 0x%x, termination 0x%x\n",
h->disc_enable, h->termination);
printk(" chip_version 0x%x, mcode_date 0x%x\n",
h->chip_version, h->mcode_date);
printk(" mcode_version 0x%x, control_flag 0x%x\n",
h->mcode_version, h->control_flag);
}
/*
* asc_prt_scsi_host()
*/
static void asc_prt_scsi_host(struct Scsi_Host *s)
{
struct asc_board *boardp = shost_priv(s);
printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
printk(" host_busy %u, host_no %d, last_reset %d,\n",
s->host_busy, s->host_no, (unsigned)s->last_reset);
printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
(ulong)s->base, (ulong)s->io_port, boardp->irq);
printk(" dma_channel %d, this_id %d, can_queue %d,\n",
s->dma_channel, s->this_id, s->can_queue);
printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
if (ASC_NARROW_BOARD(boardp)) {
asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
} else {
asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
}
}
/*
* asc_prt_hex()
*
* Print hexadecimal output in 4 byte groupings 32 bytes
* or 8 double-words per line.
*/
static void asc_prt_hex(char *f, uchar *s, int l)
{
int i;
int j;
int k;
int m;
printk("%s: (%d bytes)\n", f, l);
for (i = 0; i < l; i += 32) {
/* Display a maximum of 8 double-words per line. */
if ((k = (l - i) / 4) >= 8) {
k = 8;
m = 0;
} else {
m = (l - i) % 4;
}
for (j = 0; j < k; j++) {
printk(" %2.2X%2.2X%2.2X%2.2X",
(unsigned)s[i + (j * 4)],
(unsigned)s[i + (j * 4) + 1],
(unsigned)s[i + (j * 4) + 2],
(unsigned)s[i + (j * 4) + 3]);
}
switch (m) {
case 0:
default:
break;
case 1:
printk(" %2.2X", (unsigned)s[i + (j * 4)]);
break;
case 2:
printk(" %2.2X%2.2X",
(unsigned)s[i + (j * 4)],
(unsigned)s[i + (j * 4) + 1]);
break;
case 3:
printk(" %2.2X%2.2X%2.2X",
(unsigned)s[i + (j * 4) + 1],
(unsigned)s[i + (j * 4) + 2],
(unsigned)s[i + (j * 4) + 3]);
break;
}
printk("\n");
}
}
/*
* asc_prt_asc_scsi_q()
*/
static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
{
ASC_SG_HEAD *sgp;
int i;
printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
printk
(" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
q->q2.tag_code);
printk
(" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
(ulong)le32_to_cpu(q->q1.data_addr),
(ulong)le32_to_cpu(q->q1.data_cnt),
(ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
(ulong)q->cdbptr, q->q2.cdb_len,
(ulong)q->sg_head, q->q1.sg_queue_cnt);
if (q->sg_head) {
sgp = q->sg_head;
printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
sgp->queue_cnt);
for (i = 0; i < sgp->entry_cnt; i++) {
printk(" [%u]: addr 0x%lx, bytes %lu\n",
i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
(ulong)le32_to_cpu(sgp->sg_list[i].bytes));
}
}
}
/*
* asc_prt_asc_qdone_info()
*/
static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
{
printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
(ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
q->d2.tag_code);
printk
(" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
}
/*
* asc_prt_adv_sgblock()
*
* Display an ADV_SG_BLOCK structure.
*/
static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
{
int i;
printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
(ulong)b, sgblockno);
printk(" sg_cnt %u, sg_ptr 0x%lx\n",
b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
if (b->sg_ptr != 0)
BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
for (i = 0; i < b->sg_cnt; i++) {
printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
i, (ulong)b->sg_list[i].sg_addr,
(ulong)b->sg_list[i].sg_count);
}
}
/*
* asc_prt_adv_scsi_req_q()
*
* Display an ADV_SCSI_REQ_Q structure.
*/
static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
{
int sg_blk_cnt;
struct asc_sg_block *sg_ptr;
printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
(ulong)le32_to_cpu(q->data_cnt),
(ulong)le32_to_cpu(q->sense_addr), q->sense_len);
printk
(" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
q->cdb_len, q->done_status, q->host_status, q->scsi_status);
printk(" sg_working_ix 0x%x, target_cmd %u\n",
q->sg_working_ix, q->target_cmd);
printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
(ulong)le32_to_cpu(q->scsiq_rptr),
(ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
/* Display the request's ADV_SG_BLOCK structures. */
if (q->sg_list_ptr != NULL) {
sg_blk_cnt = 0;
while (1) {
/*
* 'sg_ptr' is a physical address. Convert it to a virtual
* address by indexing 'sg_blk_cnt' into the virtual address
* array 'sg_list_ptr'.
*
* XXX - Assumes all SG physical blocks are virtually contiguous.
*/
sg_ptr =
&(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
if (sg_ptr->sg_ptr == 0) {
break;
}
sg_blk_cnt++;
}
}
}
#endif /* ADVANSYS_DEBUG */
/*
* The advansys chip/microcode contains a 32-bit identifier for each command
* known as the 'srb'. I don't know what it stands for. The driver used
* to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
* with bus_to_virt. Now the driver keeps a per-host map of integers to
* pointers. It auto-expands when full, unless it can't allocate memory.
* Note that an srb of 0 is treated specially by the chip/firmware, hence
* the return of i+1 in this routine, and the corresponding subtraction in
* the inverse routine.
*/
#define BAD_SRB 0
static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
{
int i;
void **new_ptr;
for (i = 0; i < asc_dvc->ptr_map_count; i++) {
if (!asc_dvc->ptr_map[i])
goto out;
}
if (asc_dvc->ptr_map_count == 0)
asc_dvc->ptr_map_count = 1;
else
asc_dvc->ptr_map_count *= 2;
new_ptr = krealloc(asc_dvc->ptr_map,
asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
if (!new_ptr)
return BAD_SRB;
asc_dvc->ptr_map = new_ptr;
out:
ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
asc_dvc->ptr_map[i] = ptr;
return i + 1;
}
static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
{
void *ptr;
srb--;
if (srb >= asc_dvc->ptr_map_count) {
printk("advansys: bad SRB %u, max %u\n", srb,
asc_dvc->ptr_map_count);
return NULL;
}
ptr = asc_dvc->ptr_map[srb];
asc_dvc->ptr_map[srb] = NULL;
ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
return ptr;
}
/*
* advansys_info()
*
* Return suitable for printing on the console with the argument
* adapter's configuration information.
*
* Note: The information line should not exceed ASC_INFO_SIZE bytes,
* otherwise the static 'info' array will be overrun.
*/
static const char *advansys_info(struct Scsi_Host *shost)
{
static char info[ASC_INFO_SIZE];
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp;
ADV_DVC_VAR *adv_dvc_varp;
char *busname;
char *widename = NULL;
if (ASC_NARROW_BOARD(boardp)) {
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
ASC_DBG(1, "begin\n");
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
ASC_IS_ISAPNP) {
busname = "ISA PnP";
} else {
busname = "ISA";
}
sprintf(info,
"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
ASC_VERSION, busname,
(ulong)shost->io_port,
(ulong)shost->io_port + ASC_IOADR_GAP - 1,
boardp->irq, shost->dma_channel);
} else {
if (asc_dvc_varp->bus_type & ASC_IS_VL) {
busname = "VL";
} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
busname = "EISA";
} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
== ASC_IS_PCI_ULTRA) {
busname = "PCI Ultra";
} else {
busname = "PCI";
}
} else {
busname = "?";
shost_printk(KERN_ERR, shost, "unknown bus "
"type %d\n", asc_dvc_varp->bus_type);
}
sprintf(info,
"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
ASC_VERSION, busname, (ulong)shost->io_port,
(ulong)shost->io_port + ASC_IOADR_GAP - 1,
boardp->irq);
}
} else {
/*
* Wide Adapter Information
*
* Memory-mapped I/O is used instead of I/O space to access
* the adapter, but display the I/O Port range. The Memory
* I/O address is displayed through the driver /proc file.
*/
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
widename = "Ultra-Wide";
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
widename = "Ultra2-Wide";
} else {
widename = "Ultra3-Wide";
}
sprintf(info,
"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
}
BUG_ON(strlen(info) >= ASC_INFO_SIZE);
ASC_DBG(1, "end\n");
return info;
}
#ifdef CONFIG_PROC_FS
/*
* asc_prt_line()
*
* If 'cp' is NULL print to the console, otherwise print to a buffer.
*
* Return 0 if printing to the console, otherwise return the number of
* bytes written to the buffer.
*
* Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
* will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
*/
static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
{
va_list args;
int ret;
char s[ASC_PRTLINE_SIZE];
va_start(args, fmt);
ret = vsprintf(s, fmt, args);
BUG_ON(ret >= ASC_PRTLINE_SIZE);
if (buf == NULL) {
(void)printk(s);
ret = 0;
} else {
ret = min(buflen, ret);
memcpy(buf, s, ret);
}
va_end(args);
return ret;
}
/*
* asc_prt_board_devices()
*
* Print driver information for devices attached to the board.
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
int leftlen;
int totlen;
int len;
int chip_scsi_id;
int i;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nDevice Information for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
if (ASC_NARROW_BOARD(boardp)) {
chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
} else {
chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
}
len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
len = asc_prt_line(cp, leftlen, " %X,", i);
ASC_PRT_NEXT();
}
}
len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
ASC_PRT_NEXT();
return totlen;
}
/*
* Display Wide Board BIOS Information.
*/
static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
int leftlen;
int totlen;
int len;
ushort major, minor, letter;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
ASC_PRT_NEXT();
/*
* If the BIOS saved a valid signature, then fill in
* the BIOS code segment base address.
*/
if (boardp->bios_signature != 0x55AA) {
len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
ASC_PRT_NEXT();
} else {
major = (boardp->bios_version >> 12) & 0xF;
minor = (boardp->bios_version >> 8) & 0xF;
letter = (boardp->bios_version & 0xFF);
len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
major, minor,
letter >= 26 ? '?' : letter + 'A');
ASC_PRT_NEXT();
/*
* Current available ROM BIOS release is 3.1I for UW
* and 3.2I for U2W. This code doesn't differentiate
* UW and U2W boards.
*/
if (major < 3 || (major <= 3 && minor < 1) ||
(major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
len = asc_prt_line(cp, leftlen,
"Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
"ftp://ftp.connectcom.net/pub\n");
ASC_PRT_NEXT();
}
}
return totlen;
}
/*
* Add serial number to information bar if signature AAh
* is found in at bit 15-9 (7 bits) of word 1.
*
* Serial Number consists fo 12 alpha-numeric digits.
*
* 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
* 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
* 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
* 5 - Product revision (A-J) Word0: " "
*
* Signature Word1: 15-9 (7 bits)
* 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
* 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
*
* 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
*
* Note 1: Only production cards will have a serial number.
*
* Note 2: Signature is most significant 7 bits (0xFE).
*
* Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
*/
static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
{
ushort w, num;
if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
return ASC_FALSE;
} else {
/*
* First word - 6 digits.
*/
w = serialnum[0];
/* Product type - 1st digit. */
if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
/* Product type is P=Prototype */
*cp += 0x8;
}
cp++;
/* Manufacturing location - 2nd digit. */
*cp++ = 'A' + ((w & 0x1C00) >> 10);
/* Product ID - 3rd, 4th digits. */
num = w & 0x3FF;
*cp++ = '0' + (num / 100);
num %= 100;
*cp++ = '0' + (num / 10);
/* Product revision - 5th digit. */
*cp++ = 'A' + (num % 10);
/*
* Second word
*/
w = serialnum[1];
/*
* Year - 6th digit.
*
* If bit 15 of third word is set, then the
* last digit of the year is greater than 7.
*/
if (serialnum[2] & 0x8000) {
*cp++ = '8' + ((w & 0x1C0) >> 6);
} else {
*cp++ = '0' + ((w & 0x1C0) >> 6);
}
/* Week of year - 7th, 8th digits. */
num = w & 0x003F;
*cp++ = '0' + num / 10;
num %= 10;
*cp++ = '0' + num;
/*
* Third word
*/
w = serialnum[2] & 0x7FFF;
/* Serial number - 9th digit. */
*cp++ = 'A' + (w / 1000);
/* 10th, 11th, 12th digits. */
num = w % 1000;
*cp++ = '0' + num / 100;
num %= 100;
*cp++ = '0' + num / 10;
num %= 10;
*cp++ = '0' + num;
*cp = '\0'; /* Null Terminate the string. */
return ASC_TRUE;
}
}
/*
* asc_prt_asc_board_eeprom()
*
* Print board EEPROM configuration.
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp;
int leftlen;
int totlen;
int len;
ASCEEP_CONFIG *ep;
int i;
#ifdef CONFIG_ISA
int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
#endif /* CONFIG_ISA */
uchar serialstr[13];
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
ep = &boardp->eep_config.asc_eep;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
== ASC_TRUE) {
len =
asc_prt_line(cp, leftlen, " Serial Number: %s\n",
serialstr);
ASC_PRT_NEXT();
} else {
if (ep->adapter_info[5] == 0xBB) {
len = asc_prt_line(cp, leftlen,
" Default Settings Used for EEPROM-less Adapter.\n");
ASC_PRT_NEXT();
} else {
len = asc_prt_line(cp, leftlen,
" Serial Number Signature Not Present.\n");
ASC_PRT_NEXT();
}
}
len = asc_prt_line(cp, leftlen,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
ep->max_tag_qng);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Target ID: ");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %d", i);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Disconnects: ");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep->
disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Command Queuing: ");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep->
use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Start Motor: ");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep->
start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep->
init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
#ifdef CONFIG_ISA
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
len = asc_prt_line(cp, leftlen,
" Host ISA DMA speed: %d MB/S\n",
isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
ASC_PRT_NEXT();
}
#endif /* CONFIG_ISA */
return totlen;
}
/*
* asc_prt_adv_board_eeprom()
*
* Print board EEPROM configuration.
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
ADV_DVC_VAR *adv_dvc_varp;
int leftlen;
int totlen;
int len;
int i;
char *termstr;
uchar serialstr[13];
ADVEEP_3550_CONFIG *ep_3550 = NULL;
ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
ushort word;
ushort *wordp;
ushort sdtr_speed = 0;
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
ep_3550 = &boardp->eep_config.adv_3550_eep;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
} else {
ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
}
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
wordp = &ep_3550->serial_number_word1;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
wordp = &ep_38C0800->serial_number_word1;
} else {
wordp = &ep_38C1600->serial_number_word1;
}
if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
len =
asc_prt_line(cp, leftlen, " Serial Number: %s\n",
serialstr);
ASC_PRT_NEXT();
} else {
len = asc_prt_line(cp, leftlen,
" Serial Number Signature Not Present.\n");
ASC_PRT_NEXT();
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
len = asc_prt_line(cp, leftlen,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_3550->adapter_scsi_id,
ep_3550->max_host_qng, ep_3550->max_dvc_qng);
ASC_PRT_NEXT();
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
len = asc_prt_line(cp, leftlen,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_38C0800->adapter_scsi_id,
ep_38C0800->max_host_qng,
ep_38C0800->max_dvc_qng);
ASC_PRT_NEXT();
} else {
len = asc_prt_line(cp, leftlen,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_38C1600->adapter_scsi_id,
ep_38C1600->max_host_qng,
ep_38C1600->max_dvc_qng);
ASC_PRT_NEXT();
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->termination;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->termination_lvd;
} else {
word = ep_38C1600->termination_lvd;
}
switch (word) {
case 1:
termstr = "Low Off/High Off";
break;
case 2:
termstr = "Low Off/High On";
break;
case 3:
termstr = "Low On/High On";
break;
default:
case 0:
termstr = "Automatic";
break;
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
len = asc_prt_line(cp, leftlen,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_3550->termination, termstr,
ep_3550->bios_ctrl);
ASC_PRT_NEXT();
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
len = asc_prt_line(cp, leftlen,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_38C0800->termination_lvd, termstr,
ep_38C0800->bios_ctrl);
ASC_PRT_NEXT();
} else {
len = asc_prt_line(cp, leftlen,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_38C1600->termination_lvd, termstr,
ep_38C1600->bios_ctrl);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, " Target ID: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %X", i);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->disc_enable;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->disc_enable;
} else {
word = ep_38C1600->disc_enable;
}
len = asc_prt_line(cp, leftlen, " Disconnects: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->tagqng_able;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->tagqng_able;
} else {
word = ep_38C1600->tagqng_able;
}
len = asc_prt_line(cp, leftlen, " Command Queuing: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->start_motor;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->start_motor;
} else {
word = ep_38C1600->start_motor;
}
len = asc_prt_line(cp, leftlen, " Start Motor: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep_3550->
sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
len = asc_prt_line(cp, leftlen, " Ultra Transfer: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(ep_3550->
ultra_able & ADV_TID_TO_TIDMASK(i))
? 'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->wdtr_able;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->wdtr_able;
} else {
word = ep_38C1600->wdtr_able;
}
len = asc_prt_line(cp, leftlen, " Wide Transfer: ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
len = asc_prt_line(cp, leftlen, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
len = asc_prt_line(cp, leftlen,
" Synchronous Transfer Speed (Mhz):\n ");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
char *speed_str;
if (i == 0) {
sdtr_speed = adv_dvc_varp->sdtr_speed1;
} else if (i == 4) {
sdtr_speed = adv_dvc_varp->sdtr_speed2;
} else if (i == 8) {
sdtr_speed = adv_dvc_varp->sdtr_speed3;
} else if (i == 12) {
sdtr_speed = adv_dvc_varp->sdtr_speed4;
}
switch (sdtr_speed & ADV_MAX_TID) {
case 0:
speed_str = "Off";
break;
case 1:
speed_str = " 5";
break;
case 2:
speed_str = " 10";
break;
case 3:
speed_str = " 20";
break;
case 4:
speed_str = " 40";
break;
case 5:
speed_str = " 80";
break;
default:
speed_str = "Unk";
break;
}
len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
ASC_PRT_NEXT();
if (i == 7) {
len = asc_prt_line(cp, leftlen, "\n ");
ASC_PRT_NEXT();
}
sdtr_speed >>= 4;
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
}
return totlen;
}
/*
* asc_prt_driver_conf()
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
int leftlen;
int totlen;
int len;
int chip_scsi_id;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
shost->host_busy, shost->last_reset, shost->max_id,
shost->max_lun, shost->max_channel);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
shost->unique_id, shost->can_queue, shost->this_id,
shost->sg_tablesize, shost->cmd_per_lun);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" unchecked_isa_dma %d, use_clustering %d\n",
shost->unchecked_isa_dma, shost->use_clustering);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
boardp->flags, boardp->last_reset, jiffies,
boardp->asc_n_io_port);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
ASC_PRT_NEXT();
if (ASC_NARROW_BOARD(boardp)) {
chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
} else {
chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
}
return totlen;
}
/*
* asc_prt_asc_board_info()
*
* Print dynamic board configuration information.
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
int chip_scsi_id;
int leftlen;
int totlen;
int len;
ASC_DVC_VAR *v;
ASC_DVC_CFG *c;
int i;
int renegotiate = 0;
v = &boardp->dvc_var.asc_dvc_var;
c = &boardp->dvc_cfg.asc_dvc_cfg;
chip_scsi_id = c->chip_scsi_id;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
"mcode_version 0x%x, err_code %u\n",
c->chip_version, c->mcode_date, c->mcode_version,
v->err_code);
ASC_PRT_NEXT();
/* Current number of commands waiting for the host. */
len = asc_prt_line(cp, leftlen,
" Total Command Pending: %d\n", v->cur_total_qng);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Command Queuing:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%c",
i,
(v->
use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
'Y' : 'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
/* Current number of commands waiting for a device. */
len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
/* Current limit on number of commands that can be sent to a device. */
len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
/* Indicate whether the device has returned queue full status. */
len = asc_prt_line(cp, leftlen, " Command Queue Full:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
len = asc_prt_line(cp, leftlen, " %X:Y-%d",
i, boardp->queue_full_cnt[i]);
} else {
len = asc_prt_line(cp, leftlen, " %X:N", i);
}
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%c",
i,
(v->
sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
for (i = 0; i <= ASC_MAX_TID; i++) {
uchar syn_period_ix;
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:", i);
ASC_PRT_NEXT();
if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
len = asc_prt_line(cp, leftlen, " Asynchronous");
ASC_PRT_NEXT();
} else {
syn_period_ix =
(boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
1);
len = asc_prt_line(cp, leftlen,
" Transfer Period Factor: %d (%d.%d Mhz),",
v->sdtr_period_tbl[syn_period_ix],
250 /
v->sdtr_period_tbl[syn_period_ix],
ASC_TENTHS(250,
v->
sdtr_period_tbl
[syn_period_ix]));
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
boardp->
sdtr_data[i] & ASC_SYN_MAX_OFFSET);
ASC_PRT_NEXT();
}
if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
len = asc_prt_line(cp, leftlen, "*\n");
renegotiate = 1;
} else {
len = asc_prt_line(cp, leftlen, "\n");
}
ASC_PRT_NEXT();
}
if (renegotiate) {
len = asc_prt_line(cp, leftlen,
" * = Re-negotiation pending before next command.\n");
ASC_PRT_NEXT();
}
return totlen;
}
/*
* asc_prt_adv_board_info()
*
* Print dynamic board configuration information.
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
int leftlen;
int totlen;
int len;
int i;
ADV_DVC_VAR *v;
ADV_DVC_CFG *c;
AdvPortAddr iop_base;
ushort chip_scsi_id;
ushort lramword;
uchar lrambyte;
ushort tagqng_able;
ushort sdtr_able, wdtr_able;
ushort wdtr_done, sdtr_done;
ushort period = 0;
int renegotiate = 0;
v = &boardp->dvc_var.adv_dvc_var;
c = &boardp->dvc_cfg.adv_dvc_cfg;
iop_base = v->iop_base;
chip_scsi_id = v->chip_scsi_id;
leftlen = cplen;
totlen = len = 0;
len = asc_prt_line(cp, leftlen,
"\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" iop_base 0x%lx, cable_detect: %X, err_code %u\n",
v->iop_base,
AdvReadWordRegister(iop_base,
IOPW_SCSI_CFG1) & CABLE_DETECT,
v->err_code);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
"mcode_version 0x%x\n", c->chip_version,
c->mcode_date, c->mcode_version);
ASC_PRT_NEXT();
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%c",
i,
(tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Queue Limit:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
lrambyte);
len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, " Command Pending:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
lrambyte);
len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
len = asc_prt_line(cp, leftlen, " Wide Enabled:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%c",
i,
(wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadWordLram(iop_base,
ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
lramword);
len = asc_prt_line(cp, leftlen, " %X:%d",
i, (lramword & 0x8000) ? 16 : 8);
ASC_PRT_NEXT();
if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
(wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
len = asc_prt_line(cp, leftlen, "*");
ASC_PRT_NEXT();
renegotiate = 1;
}
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
ASC_PRT_NEXT();
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:%c",
i,
(sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
'N');
ASC_PRT_NEXT();
}
len = asc_prt_line(cp, leftlen, "\n");
ASC_PRT_NEXT();
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
for (i = 0; i <= ADV_MAX_TID; i++) {
AdvReadWordLram(iop_base,
ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
lramword);
lramword &= ~0x8000;
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
len = asc_prt_line(cp, leftlen, " %X:", i);
ASC_PRT_NEXT();
if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
len = asc_prt_line(cp, leftlen, " Asynchronous");
ASC_PRT_NEXT();
} else {
len =
asc_prt_line(cp, leftlen,
" Transfer Period Factor: ");
ASC_PRT_NEXT();
if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
len =
asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
ASC_PRT_NEXT();
} else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
len =
asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
ASC_PRT_NEXT();
} else { /* 20 Mhz or below. */
period = (((lramword >> 8) * 25) + 50) / 4;
if (period == 0) { /* Should never happen. */
len =
asc_prt_line(cp, leftlen,
"%d (? Mhz), ");
ASC_PRT_NEXT();
} else {
len = asc_prt_line(cp, leftlen,
"%d (%d.%d Mhz),",
period, 250 / period,
ASC_TENTHS(250,
period));
ASC_PRT_NEXT();
}
}
len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
lramword & 0x1F);
ASC_PRT_NEXT();
}
if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
len = asc_prt_line(cp, leftlen, "*\n");
renegotiate = 1;
} else {
len = asc_prt_line(cp, leftlen, "\n");
}
ASC_PRT_NEXT();
}
if (renegotiate) {
len = asc_prt_line(cp, leftlen,
" * = Re-negotiation pending before next command.\n");
ASC_PRT_NEXT();
}
return totlen;
}
/*
* asc_proc_copy()
*
* Copy proc information to a read buffer taking into account the current
* read offset in the file and the remaining space in the read buffer.
*/
static int
asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
char *cp, int cplen)
{
int cnt = 0;
ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
(unsigned)offset, (unsigned)advoffset, cplen);
if (offset <= advoffset) {
/* Read offset below current offset, copy everything. */
cnt = min(cplen, leftlen);
ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
(ulong)curbuf, (ulong)cp, cnt);
memcpy(curbuf, cp, cnt);
} else if (offset < advoffset + cplen) {
/* Read offset within current range, partial copy. */
cnt = (advoffset + cplen) - offset;
cp = (cp + cplen) - cnt;
cnt = min(cnt, leftlen);
ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
(ulong)curbuf, (ulong)cp, cnt);
memcpy(curbuf, cp, cnt);
}
return cnt;
}
#ifdef ADVANSYS_STATS
/*
* asc_prt_board_stats()
*
* Note: no single line should be greater than ASC_PRTLINE_SIZE,
* cf. asc_prt_line().
*
* Return the number of characters copied into 'cp'. No more than
* 'cplen' characters will be copied to 'cp'.
*/
static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
{
struct asc_board *boardp = shost_priv(shost);
struct asc_stats *s = &boardp->asc_stats;
int leftlen = cplen;
int len, totlen = 0;
len = asc_prt_line(cp, leftlen,
"\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
s->queuecommand, s->reset, s->biosparam,
s->interrupt);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
s->callback, s->done, s->build_error,
s->adv_build_noreq, s->adv_build_nosg);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen,
" exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
s->exe_noerror, s->exe_busy, s->exe_error,
s->exe_unknown);
ASC_PRT_NEXT();
/*
* Display data transfer statistics.
*/
if (s->xfer_cnt > 0) {
len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
s->xfer_cnt, s->xfer_elem);
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
ASC_PRT_NEXT();
/* Scatter gather transfer statistics */
len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
s->xfer_elem / s->xfer_cnt,
ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
(s->xfer_sect / 2) / s->xfer_elem,
ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
ASC_PRT_NEXT();
len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
(s->xfer_sect / 2) / s->xfer_cnt,
ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
ASC_PRT_NEXT();
}
return totlen;
}
#endif /* ADVANSYS_STATS */
/*
* advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
*
* *buffer: I/O buffer
* **start: if inout == FALSE pointer into buffer where user read should start
* offset: current offset into a /proc/scsi/advansys/[0...] file
* length: length of buffer
* hostno: Scsi_Host host_no
* inout: TRUE - user is writing; FALSE - user is reading
*
* Return the number of bytes read from or written to a
* /proc/scsi/advansys/[0...] file.
*
* Note: This function uses the per board buffer 'prtbuf' which is
* allocated when the board is initialized in advansys_detect(). The
* buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
* used to write to the buffer. The way asc_proc_copy() is written
* if 'prtbuf' is too small it will not be overwritten. Instead the
* user just won't get all the available statistics.
*/
static int
advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
off_t offset, int length, int inout)
{
struct asc_board *boardp = shost_priv(shost);
char *cp;
int cplen;
int cnt;
int totcnt;
int leftlen;
char *curbuf;
off_t advoffset;
ASC_DBG(1, "begin\n");
/*
* User write not supported.
*/
if (inout == TRUE)
return -ENOSYS;
/*
* User read of /proc/scsi/advansys/[0...] file.
*/
/* Copy read data starting at the beginning of the buffer. */
*start = buffer;
curbuf = buffer;
advoffset = 0;
totcnt = 0;
leftlen = length;
/*
* Get board configuration information.
*
* advansys_info() returns the board string from its own static buffer.
*/
cp = (char *)advansys_info(shost);
strcat(cp, "\n");
cplen = strlen(cp);
/* Copy board information. */
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
/*
* Display Wide Board BIOS Information.
*/
if (!ASC_NARROW_BOARD(boardp)) {
cp = boardp->prtbuf;
cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
}
/*
* Display driver information for each device attached to the board.
*/
cp = boardp->prtbuf;
cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
/*
* Display EEPROM configuration for the board.
*/
cp = boardp->prtbuf;
if (ASC_NARROW_BOARD(boardp)) {
cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
} else {
cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
}
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
/*
* Display driver configuration and information for the board.
*/
cp = boardp->prtbuf;
cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
#ifdef ADVANSYS_STATS
/*
* Display driver statistics for the board.
*/
cp = boardp->prtbuf;
cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
#endif /* ADVANSYS_STATS */
/*
* Display Asc Library dynamic configuration information
* for the board.
*/
cp = boardp->prtbuf;
if (ASC_NARROW_BOARD(boardp)) {
cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
} else {
cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
}
BUG_ON(cplen >= ASC_PRTBUF_SIZE);
cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
totcnt += cnt;
leftlen -= cnt;
if (leftlen == 0) {
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
advoffset += cplen;
curbuf += cnt;
ASC_DBG(1, "totcnt %d\n", totcnt);
return totcnt;
}
#endif /* CONFIG_PROC_FS */
static void asc_scsi_done(struct scsi_cmnd *scp)
{
scsi_dma_unmap(scp);
ASC_STATS(scp->device->host, done);
scp->scsi_done(scp);
}
static void AscSetBank(PortAddr iop_base, uchar bank)
{
uchar val;
val = AscGetChipControl(iop_base) &
(~
(CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
CC_CHIP_RESET));
if (bank == 1) {
val |= CC_BANK_ONE;
} else if (bank == 2) {
val |= CC_DIAG | CC_BANK_ONE;
} else {
val &= ~CC_BANK_ONE;
}
AscSetChipControl(iop_base, val);
}
static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
{
AscSetBank(iop_base, 1);
AscWriteChipIH(iop_base, ins_code);
AscSetBank(iop_base, 0);
}
static int AscStartChip(PortAddr iop_base)
{
AscSetChipControl(iop_base, 0);
if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
return (0);
}
return (1);
}
static int AscStopChip(PortAddr iop_base)
{
uchar cc_val;
cc_val =
AscGetChipControl(iop_base) &
(~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
AscSetChipIH(iop_base, INS_HALT);
AscSetChipIH(iop_base, INS_RFLAG_WTM);
if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
return (0);
}
return (1);
}
static int AscIsChipHalted(PortAddr iop_base)
{
if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
return (1);
}
}
return (0);
}
static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
int i = 10;
iop_base = asc_dvc->iop_base;
while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
&& (i-- > 0)) {
mdelay(100);
}
AscStopChip(iop_base);
AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
udelay(60);
AscSetChipIH(iop_base, INS_RFLAG_WTM);
AscSetChipIH(iop_base, INS_HALT);
AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
AscSetChipControl(iop_base, CC_HALT);
mdelay(200);
AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
return (AscIsChipHalted(iop_base));
}
static int AscFindSignature(PortAddr iop_base)
{
ushort sig_word;
ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
iop_base, AscGetChipSignatureByte(iop_base));
if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
iop_base, AscGetChipSignatureWord(iop_base));
sig_word = AscGetChipSignatureWord(iop_base);
if ((sig_word == (ushort)ASC_1000_ID0W) ||
(sig_word == (ushort)ASC_1000_ID0W_FIX)) {
return (1);
}
}
return (0);
}
static void AscEnableInterrupt(PortAddr iop_base)
{
ushort cfg;
cfg = AscGetChipCfgLsw(iop_base);
AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
}
static void AscDisableInterrupt(PortAddr iop_base)
{
ushort cfg;
cfg = AscGetChipCfgLsw(iop_base);
AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
}
static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
{
unsigned char byte_data;
unsigned short word_data;
if (isodd_word(addr)) {
AscSetChipLramAddr(iop_base, addr - 1);
word_data = AscGetChipLramData(iop_base);
byte_data = (word_data >> 8) & 0xFF;
} else {
AscSetChipLramAddr(iop_base, addr);
word_data = AscGetChipLramData(iop_base);
byte_data = word_data & 0xFF;
}
return byte_data;
}
static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
{
ushort word_data;
AscSetChipLramAddr(iop_base, addr);
word_data = AscGetChipLramData(iop_base);
return (word_data);
}
#if CC_VERY_LONG_SG_LIST
static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
{
ushort val_low, val_high;
ASC_DCNT dword_data;
AscSetChipLramAddr(iop_base, addr);
val_low = AscGetChipLramData(iop_base);
val_high = AscGetChipLramData(iop_base);
dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
return (dword_data);
}
#endif /* CC_VERY_LONG_SG_LIST */
static void
AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < words; i++) {
AscSetChipLramData(iop_base, set_wval);
}
}
static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
{
AscSetChipLramAddr(iop_base, addr);
AscSetChipLramData(iop_base, word_val);
}
static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
{
ushort word_data;
if (isodd_word(addr)) {
addr--;
word_data = AscReadLramWord(iop_base, addr);
word_data &= 0x00FF;
word_data |= (((ushort)byte_val << 8) & 0xFF00);
} else {
word_data = AscReadLramWord(iop_base, addr);
word_data &= 0xFF00;
word_data |= ((ushort)byte_val & 0x00FF);
}
AscWriteLramWord(iop_base, addr, word_data);
}
/*
* Copy 2 bytes to LRAM.
*
* The source data is assumed to be in little-endian order in memory
* and is maintained in little-endian order when written to LRAM.
*/
static void
AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
const uchar *s_buffer, int words)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
/*
* On a little-endian system the second argument below
* produces a little-endian ushort which is written to
* LRAM in little-endian order. On a big-endian system
* the second argument produces a big-endian ushort which
* is "transparently" byte-swapped by outpw() and written
* in little-endian order to LRAM.
*/
outpw(iop_base + IOP_RAM_DATA,
((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
}
}
/*
* Copy 4 bytes to LRAM.
*
* The source data is assumed to be in little-endian order in memory
* and is maintained in little-endian order when writen to LRAM.
*/
static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,
ushort s_addr, uchar *s_buffer, int dwords)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 4 * dwords; i += 4) {
outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
}
}
/*
* Copy 2 bytes from LRAM.
*
* The source data is assumed to be in little-endian order in LRAM
* and is maintained in little-endian order when written to memory.
*/
static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,
ushort s_addr, uchar *d_buffer, int words)
{
int i;
ushort word;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
word = inpw(iop_base + IOP_RAM_DATA);
d_buffer[i] = word & 0xff;
d_buffer[i + 1] = (word >> 8) & 0xff;
}
}
static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
{
ASC_DCNT sum;
int i;
sum = 0L;
for (i = 0; i < words; i++, s_addr += 2) {
sum += AscReadLramWord(iop_base, s_addr);
}
return (sum);
}
static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
{
uchar i;
ushort s_addr;
PortAddr iop_base;
ushort warn_code;
iop_base = asc_dvc->iop_base;
warn_code = 0;
AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
(ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
64) >> 1));
i = ASC_MIN_ACTIVE_QNO;
s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)(i + 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(asc_dvc->max_total_qng));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)i);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)(i + 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(i - 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)i);
}
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)ASC_QLINK_END);
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(asc_dvc->max_total_qng - 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)asc_dvc->max_total_qng);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
}
return warn_code;
}
static ASC_DCNT
AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
const uchar *mcode_buf, ushort mcode_size)
{
ASC_DCNT chksum;
ushort mcode_word_size;
ushort mcode_chksum;
/* Write the microcode buffer starting at LRAM address 0. */
mcode_word_size = (ushort)(mcode_size >> 1);
AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
(ushort)ASC_CODE_SEC_BEG,
(ushort)((mcode_size -
s_addr - (ushort)
ASC_CODE_SEC_BEG) /
2));
ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
return chksum;
}
static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
int i;
ushort lram_addr;
iop_base = asc_dvc->iop_base;
AscPutRiscVarFreeQHead(iop_base, 1);
AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
AscPutVarFreeQHead(iop_base, 1);
AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
(uchar)((int)asc_dvc->max_total_qng + 1));
AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
(uchar)((int)asc_dvc->max_total_qng + 2));
AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
asc_dvc->max_total_qng);
AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
AscPutQDoneInProgress(iop_base, 0);
lram_addr = ASC_QADR_BEG;
for (i = 0; i < 32; i++, lram_addr += 2) {
AscWriteLramWord(iop_base, lram_addr, 0);
}
}
static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
{
int i;
ushort warn_code;
PortAddr iop_base;
ASC_PADDR phy_addr;
ASC_DCNT phy_size;
struct asc_board *board = asc_dvc_to_board(asc_dvc);
iop_base = asc_dvc->iop_base;
warn_code = 0;
for (i = 0; i <= ASC_MAX_TID; i++) {
AscPutMCodeInitSDTRAtID(iop_base, i,
asc_dvc->cfg->sdtr_period_offset[i]);
}
AscInitQLinkVar(asc_dvc);
AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
asc_dvc->cfg->disc_enable);
AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
/* Ensure overrun buffer is aligned on an 8 byte boundary. */
BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
(uchar *)&phy_addr, 1);
phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
(uchar *)&phy_size, 1);
asc_dvc->cfg->mcode_date =
AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
asc_dvc->cfg->mcode_version =
AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
return warn_code;
}
if (AscStartChip(iop_base) != 1) {
asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
return warn_code;
}
return warn_code;
}
static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/mcode.bin";
int err;
unsigned long chksum;
ushort warn_code;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
warn_code = 0;
if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
!(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
AscResetChipAndScsiBus(asc_dvc);
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
}
asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
if (asc_dvc->err_code != 0)
return UW_ERR;
if (!AscFindSignature(asc_dvc->iop_base)) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return warn_code;
}
AscDisableInterrupt(iop_base);
warn_code |= AscInitLram(asc_dvc);
if (asc_dvc->err_code != 0)
return UW_ERR;
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
fw->size - 4) != chksum) {
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
release_firmware(fw);
return warn_code;
}
release_firmware(fw);
warn_code |= AscInitMicroCodeVar(asc_dvc);
asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
AscEnableInterrupt(iop_base);
return warn_code;
}
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*
* The microcode is stored compressed in the following format:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*
* Returns 0 or an error if the checksum doesn't match
*/
static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
int size, int memsize, int chksum)
{
int i, j, end, len = 0;
ADV_DCNT sum;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (i = 253 * 2; i < size; i++) {
if (buf[i] == 0xff) {
unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
for (j = 0; j < buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
i += 3;
} else if (buf[i] == 0xfe) {
unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
AdvWriteWordAutoIncLram(iop_base, word);
i += 2;
len += 2;
} else {
unsigned int off = buf[i] * 2;
unsigned short word = (buf[off + 1] << 8) | buf[off];
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
}
end = len;
while (len < memsize) {
AdvWriteWordAutoIncLram(iop_base, 0);
len += 2;
}
/* Verify the microcode checksum. */
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (len = 0; len < end; len += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
if (sum != chksum)
return ASC_IERR_MCODE_CHKSUM;
return 0;
}
static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
{
ADV_CARR_T *carrp;
ADV_SDCNT buf_size;
ADV_PADDR carr_paddr;
carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
asc_dvc->carr_freelist = NULL;
if (carrp == asc_dvc->carrier_buf) {
buf_size = ADV_CARRIER_BUFSIZE;
} else {
buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
}
do {
/* Get physical address of the carrier 'carrp'. */
carr_paddr = cpu_to_le32(virt_to_bus(carrp));
buf_size -= sizeof(ADV_CARR_T);
carrp->carr_pa = carr_paddr;
carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
/*
* Insert the carrier at the beginning of the freelist.
*/
carrp->next_vpa =
cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
asc_dvc->carr_freelist = carrp;
carrp++;
} while (buf_size > 0);
}
/*
* Send an idle command to the chip and wait for completion.
*
* Command completion is polled for once per microsecond.
*
* The function can be called from anywhere including an interrupt handler.
* But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
* functions to prevent reentrancy.
*
* Return Values:
* ADV_TRUE - command completed successfully
* ADV_FALSE - command failed
* ADV_ERROR - command timed out
*/
static int
AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
{
int result;
ADV_DCNT i, j;
AdvPortAddr iop_base;
iop_base = asc_dvc->iop_base;
/*
* Clear the idle command status which is set by the microcode
* to a non-zero value to indicate when the command is completed.
* The non-zero result is one of the IDLE_CMD_STATUS_* values
*/
AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
/*
* Write the idle command value after the idle command parameter
* has been written to avoid a race condition. If the order is not
* followed, the microcode may process the idle command before the
* parameters have been written to LRAM.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
cpu_to_le32(idle_cmd_parameter));
AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
/*
* Tickle the RISC to tell it to process the idle command.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_b' does not work unless the host
* value is cleared.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
}
/* Wait for up to 100 millisecond for the idle command to timeout. */
for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
/* Poll once each microsecond for command completion. */
for (j = 0; j < SCSI_US_PER_MSEC; j++) {
AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
result);
if (result != 0)
return result;
udelay(1);
}
}
BUG(); /* The idle command should never timeout. */
return ADV_ERROR;
}
/*
* Reset SCSI Bus and purge all outstanding requests.
*
* Return Value:
* ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
* ADV_FALSE(0) - Microcode command failed.
* ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
* may be hung which requires driver recovery.
*/
static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
{
int status;
/*
* Send the SCSI Bus Reset idle start idle command which asserts
* the SCSI Bus Reset signal.
*/
status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
if (status != ADV_TRUE) {
return status;
}
/*
* Delay for the specified SCSI Bus Reset hold time.
*
* The hold time delay is done on the host because the RISC has no
* microsecond accurate timer.
*/
udelay(ASC_SCSI_RESET_HOLD_TIME_US);
/*
* Send the SCSI Bus Reset end idle command which de-asserts
* the SCSI Bus Reset signal and purges any pending requests.
*/
status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
if (status != ADV_TRUE) {
return status;
}
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
return status;
}
/*
* Initialize the ASC-3550.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/3550.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able = 0, sdtr_able, tagqng_able;
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0)
return ADV_ERROR;
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC3550.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
ushort bios_version, major, minor;
bios_version =
bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
major = (bios_version >> 12) & 0xF;
minor = (bios_version >> 8) & 0xF;
if (major < 3 || (major == 3 && minor == 1)) {
/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
AdvReadWordLram(iop_base, 0x120, wdtr_able);
} else {
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
}
}
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_3550_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read and save microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC3550.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
* threshold of 128 bytes. This register is only accessible to the host.
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
START_CTL_EMFU | READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
* bitmask. These values determine the maximum SDTR speed negotiated
* with a device.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*
* 4-bit speed SDTR speed name
* =========== ===============
* 0000b (0x0) SDTR disabled
* 0001b (0x1) 5 Mhz
* 0010b (0x2) 10 Mhz
* 0011b (0x3) 20 Mhz (Ultra)
* 0100b (0x4) 40 Mhz (LVD/Ultra2)
* 0101b (0x5) 80 Mhz (LVD2/Ultra3)
* 0110b (0x6) Undefined
* .
* 1111b (0xF) Undefined
*/
word = 0;
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
/* Set Ultra speed for TID 'tid'. */
word |= (0x3 << (4 * (tid % 4)));
} else {
/* Set Fast speed for TID 'tid'. */
word |= (0x2 << (4 * (tid % 4)));
}
if (tid == 3) { /* Check if done with sdtr_speed1. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
word = 0;
} else if (tid == 7) { /* Check if done with sdtr_speed2. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
word = 0;
} else if (tid == 11) { /* Check if done with sdtr_speed3. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
word = 0;
} else if (tid == 15) { /* Check if done with sdtr_speed4. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
/* End of loop. */
}
}
/*
* Set microcode operating variable for the disconnect per TID bitmask.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If all three connectors are in use, return an error.
*/
if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
(scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
return ADV_ERROR;
}
/*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* If this is a differential board and a single-ended device
* is attached to one of the connectors, return an error.
*/
if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
return ADV_ERROR;
}
/*
* If automatic termination control is enabled, then set the
* termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting
* then 'termination' was set-up in AdvInitFrom3550EEPROM() and
* is ready to be 'ored' into SCSI_CFG1.
*/
if (asc_dvc->cfg->termination == 0) {
/*
* The software always controls termination by setting TERM_CTL_SEL.
* If TERM_CTL_SEL were set to 0, the hardware would set termination.
*/
asc_dvc->cfg->termination |= TERM_CTL_SEL;
switch (scsi_cfg1 & CABLE_DETECT) {
/* TERM_CTL_H: on, TERM_CTL_L: on */
case 0x3:
case 0x7:
case 0xB:
case 0xD:
case 0xE:
case 0xF:
asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
break;
/* TERM_CTL_H: on, TERM_CTL_L: off */
case 0x1:
case 0x5:
case 0x9:
case 0xA:
case 0xC:
asc_dvc->cfg->termination |= TERM_CTL_H;
break;
/* TERM_CTL_H: off, TERM_CTL_L: off */
case 0x2:
case 0x6:
break;
}
}
/*
* Clear any set TERM_CTL_H and TERM_CTL_L bits.
*/
scsi_cfg1 &= ~TERM_CTL;
/*
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
* set 'scsi_cfg1'. The TERM_POL bit does not need to be
* referenced, because the hardware internally inverts
* the Termination High and Low bits if TERM_POL is set.
*/
scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set filter value and possibly modified termination control
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
FLTR_DISABLE | scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-3550 has 8KB internal memory.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_8KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
/*
* The first command issued will be placed in the stopper carrier.
*/
asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC ICQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
/*
* The first command completed by the RISC will be placed in
* the stopper.
*
* Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
* completed the RISC will set the ASC_RQ_STOPPER bit.
*/
asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC IRQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* BIOS Handshake Configuration Table and do not perform
* a SCSI Bus Reset.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Initialize the ASC-38C0800.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/38C0800.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar byte;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able, sdtr_able, tagqng_able;
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0)
return ADV_ERROR;
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* RAM BIST (RAM Built-In Self Test)
*
* Address : I/O base + offset 0x38h register (byte).
* Function: Bit 7-6(RW) : RAM mode
* Normal Mode : 0x00
* Pre-test Mode : 0x40
* RAM Test Mode : 0x80
* Bit 5 : unused
* Bit 4(RO) : Done bit
* Bit 3-0(RO) : Status
* Host Error : 0x08
* Int_RAM Error : 0x04
* RISC Error : 0x02
* SCSI Error : 0x01
* No Error : 0x00
*
* Note: RAM BIST code should be put right here, before loading the
* microcode and after saving the RISC memory BIOS region.
*/
/*
* LRAM Pre-test
*
* Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
* an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
* to NORMAL_MODE, return an error too.
*/
for (i = 0; i < 2; i++) {
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
/*
* LRAM Test - It takes about 1.5 ms to run through the test.
*
* Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
* If Done bit not set or Status not 0, save register byte, set the
* err_code, and return an error.
*/
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
mdelay(10); /* Wait for 10ms before checking status. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_38C0800_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC38C0800.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
scsi_cfg1 | DIS_TERM_DRV);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
* bits for the default FIFO threshold.
*
* Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
*
* For DMA Errata #4 set the BC_THRESH_ENB bit.
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for DISC and SDTR_SPEED1,
* SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
* configuration values.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* All kind of combinations of devices attached to one of four
* connectors are acceptable except HVD device attached. For example,
* LVD device can be attached to SE connector while SE device attached
* to LVD connector. If LVD device attached to SE connector, it only
* runs up to Ultra speed.
*
* If an HVD device is attached to one of LVD connectors, return an
* error. However, there is no way to detect HVD device attached to
* SE connectors.
*/
if (scsi_cfg1 & HVD) {
asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
return ADV_ERROR;
}
/*
* If either SE or LVD automatic termination control is enabled, then
* set the termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting then
* 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
* to be 'ored' into SCSI_CFG1.
*/
if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
/* SE automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1:
case 0x2:
case 0x3:
asc_dvc->cfg->termination |= TERM_SE;
break;
/* TERM_SE_HI: on, TERM_SE_LO: off */
case 0x0:
asc_dvc->cfg->termination |= TERM_SE_HI;
break;
}
}
if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
/* LVD automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_LVD) {
/* TERM_LVD_HI: on, TERM_LVD_LO: on */
case 0x4:
case 0x8:
case 0xC:
asc_dvc->cfg->termination |= TERM_LVD;
break;
/* TERM_LVD_HI: off, TERM_LVD_LO: off */
case 0x0:
break;
}
}
/*
* Clear any set TERM_SE and TERM_LVD bits.
*/
scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
/*
* Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
/*
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
* bits and set possibly modified termination control bits in the
* Microcode SCSI_CFG1 Register Value.
*/
scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control and reset DIS_TERM_DRV
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C0800 has 16KB internal memory.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_16KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
/*
* The first command issued will be placed in the stopper carrier.
*/
asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC ICQ physical address start value.
* carr_pa is LE, must be native before write
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
/*
* The first command completed by the RISC will be placed in
* the stopper.
*
* Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
* completed the RISC will set the ASC_RQ_STOPPER bit.
*/
asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC IRQ physical address start value.
*
* carr_pa is LE, must be native before write *
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* BIOS Handshake Configuration Table and do not perform
* a SCSI Bus Reset.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Initialize the ASC-38C1600.
*
* On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/38C1600.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
long word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar byte;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
uchar max_cmd[ASC_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0) {
return ADV_ERROR;
}
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* RAM BIST (Built-In Self Test)
*
* Address : I/O base + offset 0x38h register (byte).
* Function: Bit 7-6(RW) : RAM mode
* Normal Mode : 0x00
* Pre-test Mode : 0x40
* RAM Test Mode : 0x80
* Bit 5 : unused
* Bit 4(RO) : Done bit
* Bit 3-0(RO) : Status
* Host Error : 0x08
* Int_RAM Error : 0x04
* RISC Error : 0x02
* SCSI Error : 0x01
* No Error : 0x00
*
* Note: RAM BIST code should be put right here, before loading the
* microcode and after saving the RISC memory BIOS region.
*/
/*
* LRAM Pre-test
*
* Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
* an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
* to NORMAL_MODE, return an error too.
*/
for (i = 0; i < 2; i++) {
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
/*
* LRAM Test - It takes about 1.5 ms to run through the test.
*
* Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
* If Done bit not set or Status not 0, save register byte, set the
* err_code, and return an error.
*/
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
mdelay(10); /* Wait for 10ms before checking status. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_38C1600_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC38C1600.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
scsi_cfg1 | DIS_TERM_DRV);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* If the BIOS control flag AIPP (Asynchronous Information
* Phase Protection) disable bit is not set, then set the firmware
* 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
* AIPP checking and encoding.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_ENABLE_AIPP;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
* and START_CTL_TH [3:2].
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for DISC and SDTR_SPEED1,
* SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
* configuration values.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Calculate SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*
* Each ASC-38C1600 function has only two cable detect bits.
* The bus mode override bits are in IOPB_SOFT_OVER_WR.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If the cable is reversed all of the SCSI_CTRL register signals
* will be set. Check for and return an error if this condition is
* found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* Each ASC-38C1600 function has two connectors. Only an HVD device
* can not be connected to either connector. An LVD device or SE device
* may be connected to either connecor. If an SE device is connected,
* then at most Ultra speed (20 Mhz) can be used on both connectors.
*
* If an HVD device is attached, return an error.
*/
if (scsi_cfg1 & HVD) {
asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
return ADV_ERROR;
}
/*
* Each function in the ASC-38C1600 uses only the SE cable detect and
* termination because there are two connectors for each function. Each
* function may use either LVD or SE mode. Corresponding the SE automatic
* termination control EEPROM bits are used for each function. Each
* function has its own EEPROM. If SE automatic control is enabled for
* the function, then set the termination value based on a table listed
* in a_condor.h.
*
* If manual termination is specified in the EEPROM for the function,
* then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
* ready to be 'ored' into SCSI_CFG1.
*/
if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
/* SE automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1:
case 0x2:
case 0x3:
asc_dvc->cfg->termination |= TERM_SE;
break;
case 0x0:
if (PCI_FUNC(pdev->devfn) == 0) {
/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
} else {
/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
asc_dvc->cfg->termination |= TERM_SE_HI;
}
break;
}
}
/*
* Clear any set TERM_SE bits.
*/
scsi_cfg1 &= ~TERM_SE;
/*
* Invert the TERM_SE bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
/*
* Clear Big Endian and Terminator Polarity bits and set possibly
* modified termination control bits in the Microcode SCSI_CFG1
* Register Value.
*
* Big Endian bit is not used even on big endian machines.
*/
scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control bits in the Microcode
* SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C1600 has 32KB internal memory.
*
* XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
* out a special 16K Adv Library and Microcode version. After the issue
* resolved, we should turn back to the 32K support. Both a_condor.h and
* mcode.sas files also need to be updated.
*
* AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
* BIOS_EN | RAM_SZ_32KB);
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_16KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
/*
* The first command issued will be placed in the stopper carrier.
*/
asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC ICQ physical address start value. Initialize the
* COMMA register to the same value otherwise the RISC will
* prematurely detect a command is available.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
le32_to_cpu(asc_dvc->icq_sp->carr_pa));
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
/*
* The first command completed by the RISC will be placed in
* the stopper.
*
* Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
* completed the RISC will set the ASC_RQ_STOPPER bit.
*/
asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Set RISC IRQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* per TID microcode operating variables.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Reset chip and SCSI Bus.
*
* Return Value:
* ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
* ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
*/
static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
{
int status;
ushort wdtr_able, sdtr_able, tagqng_able;
ushort ppr_able = 0;
uchar tid, max_cmd[ADV_MAX_TID + 1];
AdvPortAddr iop_base;
ushort bios_sig;
iop_base = asc_dvc->iop_base;
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
}
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* Force the AdvInitAsc3550/38C0800Driver() function to
* perform a SCSI Bus Reset by clearing the BIOS signature word.
* The initialization functions assumes a SCSI Bus Reset is not
* needed if the BIOS signature word is present.
*/
AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
/*
* Stop chip and reset it.
*/
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
mdelay(100);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_WR_IO_REG);
/*
* Reset Adv Library error code, if any, and try
* re-initializing the chip.
*/
asc_dvc->err_code = 0;
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
status = AdvInitAsc38C1600Driver(asc_dvc);
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
status = AdvInitAsc38C0800Driver(asc_dvc);
} else {
status = AdvInitAsc3550Driver(asc_dvc);
}
/* Translate initialization return value to status value. */
if (status == 0) {
status = ADV_TRUE;
} else {
status = ADV_FALSE;
}
/*
* Restore the BIOS signature word.
*/
AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
}
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
return status;
}
/*
* adv_async_callback() - Adv Library asynchronous event callback function.
*/
static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
{
switch (code) {
case ADV_ASYNC_SCSI_BUS_RESET_DET:
/*
* The firmware detected a SCSI Bus reset.
*/
ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
break;
case ADV_ASYNC_RDMA_FAILURE:
/*
* Handle RDMA failure by resetting the SCSI Bus and
* possibly the chip if it is unresponsive. Log the error
* with a unique code.
*/
ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
AdvResetChipAndSB(adv_dvc_varp);
break;
case ADV_HOST_SCSI_BUS_RESET:
/*
* Host generated SCSI bus reset occurred.
*/
ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
break;
default:
ASC_DBG(0, "unknown code 0x%x\n", code);
break;
}
}
/*
* adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
*
* Callback function for the Wide SCSI Adv Library.
*/
static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
{
struct asc_board *boardp;
adv_req_t *reqp;
adv_sgblk_t *sgblkp;
struct scsi_cmnd *scp;
struct Scsi_Host *shost;
ADV_DCNT resid_cnt;
ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
(ulong)adv_dvc_varp, (ulong)scsiqp);
ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
/*
* Get the adv_req_t structure for the command that has been
* completed. The adv_req_t structure actually contains the
* completed ADV_SCSI_REQ_Q structure.
*/
reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
if (reqp == NULL) {
ASC_PRINT("adv_isr_callback: reqp is NULL\n");
return;
}
/*
* Get the struct scsi_cmnd structure and Scsi_Host structure for the
* command that has been completed.
*
* Note: The adv_req_t request structure and adv_sgblk_t structure,
* if any, are dropped, because a board structure pointer can not be
* determined.
*/
scp = reqp->cmndp;
ASC_DBG(1, "scp 0x%p\n", scp);
if (scp == NULL) {
ASC_PRINT
("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
return;
}
ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
shost = scp->device->host;
ASC_STATS(shost, callback);
ASC_DBG(1, "shost 0x%p\n", shost);
boardp = shost_priv(shost);
BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
/*
* 'done_status' contains the command's ending status.
*/
switch (scsiqp->done_status) {
case QD_NO_ERROR:
ASC_DBG(2, "QD_NO_ERROR\n");
scp->result = 0;
/*
* Check for an underrun condition.
*
* If there was no error and an underrun condition, then
* then return the number of underrun bytes.
*/
resid_cnt = le32_to_cpu(scsiqp->data_cnt);
if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
resid_cnt <= scsi_bufflen(scp)) {
ASC_DBG(1, "underrun condition %lu bytes\n",
(ulong)resid_cnt);
scsi_set_resid(scp, resid_cnt);
}
break;
case QD_WITH_ERROR:
ASC_DBG(2, "QD_WITH_ERROR\n");
switch (scsiqp->host_status) {
case QHSTA_NO_ERROR:
if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE);
/*
* Note: The 'status_byte()' macro used by
* target drivers defined in scsi.h shifts the
* status byte returned by host drivers right
* by 1 bit. This is why target drivers also
* use right shifted status byte definitions.
* For instance target drivers use
* CHECK_CONDITION, defined to 0x1, instead of
* the SCSI defined check condition value of
* 0x2. Host drivers are supposed to return
* the status byte as it is defined by SCSI.
*/
scp->result = DRIVER_BYTE(DRIVER_SENSE) |
STATUS_BYTE(scsiqp->scsi_status);
} else {
scp->result = STATUS_BYTE(scsiqp->scsi_status);
}
break;
default:
/* Some other QHSTA error occurred. */
ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
scp->result = HOST_BYTE(DID_BAD_TARGET);
break;
}
break;
case QD_ABORTED_BY_HOST:
ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
scp->result =
HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
break;
default:
ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
scp->result =
HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
break;
}
/*
* If the 'init_tidmask' bit isn't already set for the target and the
* current request finished normally, then set the bit for the target
* to indicate that a device is present.
*/
if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
scsiqp->done_status == QD_NO_ERROR &&
scsiqp->host_status == QHSTA_NO_ERROR) {
boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
}
asc_scsi_done(scp);
/*
* Free all 'adv_sgblk_t' structures allocated for the request.
*/
while ((sgblkp = reqp->sgblkp) != NULL) {
/* Remove 'sgblkp' from the request list. */
reqp->sgblkp = sgblkp->next_sgblkp;
/* Add 'sgblkp' to the board free list. */
sgblkp->next_sgblkp = boardp->adv_sgblkp;
boardp->adv_sgblkp = sgblkp;
}
/*
* Free the adv_req_t structure used with the command by adding
* it back to the board free list.
*/
reqp->next_reqp = boardp->adv_reqp;
boardp->adv_reqp = reqp;
ASC_DBG(1, "done\n");
}
/*
* Adv Library Interrupt Service Routine
*
* This function is called by a driver's interrupt service routine.
* The function disables and re-enables interrupts.
*
* When a microcode idle command is completed, the ADV_DVC_VAR
* 'idle_cmd_done' field is set to ADV_TRUE.
*
* Note: AdvISR() can be called when interrupts are disabled or even
* when there is no hardware interrupt condition present. It will
* always check for completed idle commands and microcode requests.
* This is an important feature that shouldn't be changed because it
* allows commands to be completed from polling mode loops.
*
* Return:
* ADV_TRUE(1) - interrupt was pending
* ADV_FALSE(0) - no interrupt was pending
*/
static int AdvISR(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
uchar int_stat;
ushort target_bit;
ADV_CARR_T *free_carrp;
ADV_VADDR irq_next_vpa;
ADV_SCSI_REQ_Q *scsiq;
iop_base = asc_dvc->iop_base;
/* Reading the register clears the interrupt. */
int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
ADV_INTR_STATUS_INTRC)) == 0) {
return ADV_FALSE;
}
/*
* Notify the driver of an asynchronous microcode condition by
* calling the adv_async_callback function. The function
* is passed the microcode ASC_MC_INTRB_CODE byte value.
*/
if (int_stat & ADV_INTR_STATUS_INTRB) {
uchar intrb_code;
AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
asc_dvc->carr_pending_cnt != 0) {
AdvWriteByteRegister(iop_base, IOPB_TICKLE,
ADV_TICKLE_A);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
AdvWriteByteRegister(iop_base,
IOPB_TICKLE,
ADV_TICKLE_NOP);
}
}
}
adv_async_callback(asc_dvc, intrb_code);
}
/*
* Check if the IRQ stopper carrier contains a completed request.
*/
while (((irq_next_vpa =
le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
/*
* Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
* The RISC will have set 'areq_vpa' to a virtual address.
*
* The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
* field to the carrier ADV_CARR_T.areq_vpa field. The conversion
* below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
* in AdvExeScsiQueue().
*/
scsiq = (ADV_SCSI_REQ_Q *)
ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
/*
* Request finished with good status and the queue was not
* DMAed to host memory by the firmware. Set all status fields
* to indicate good status.
*/
if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
scsiq->done_status = QD_NO_ERROR;
scsiq->host_status = scsiq->scsi_status = 0;
scsiq->data_cnt = 0L;
}
/*
* Advance the stopper pointer to the next carrier
* ignoring the lower four bits. Free the previous
* stopper carrier.
*/
free_carrp = asc_dvc->irq_sp;
asc_dvc->irq_sp = (ADV_CARR_T *)
ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
free_carrp->next_vpa =
cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
asc_dvc->carr_freelist = free_carrp;
asc_dvc->carr_pending_cnt--;
target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
/*
* Clear request microcode control flag.
*/
scsiq->cntl = 0;
/*
* Notify the driver of the completed request by passing
* the ADV_SCSI_REQ_Q pointer to its callback function.
*/
scsiq->a_flag |= ADV_SCSIQ_DONE;
adv_isr_callback(asc_dvc, scsiq);
/*
* Note: After the driver callback function is called, 'scsiq'
* can no longer be referenced.
*
* Fall through and continue processing other completed
* requests...
*/
}
return ADV_TRUE;
}
static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
{
if (asc_dvc->err_code == 0) {
asc_dvc->err_code = err_code;
AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
err_code);
}
return err_code;
}
static void AscAckInterrupt(PortAddr iop_base)
{
uchar host_flag;
uchar risc_flag;
ushort loop;
loop = 0;
do {
risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
if (loop++ > 0x7FFF) {
break;
}
} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
host_flag =
AscReadLramByte(iop_base,
ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
(uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
AscSetChipStatus(iop_base, CIW_INT_ACK);
loop = 0;
while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
AscSetChipStatus(iop_base, CIW_INT_ACK);
if (loop++ > 3) {
break;
}
}
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
}
static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
{
const uchar *period_table;
int max_index;
int min_index;
int i;
period_table = asc_dvc->sdtr_period_tbl;
max_index = (int)asc_dvc->max_sdtr_index;
min_index = (int)asc_dvc->min_sdtr_index;
if ((syn_time <= period_table[max_index])) {
for (i = min_index; i < (max_index - 1); i++) {
if (syn_time <= period_table[i]) {
return (uchar)i;
}
}
return (uchar)max_index;
} else {
return (uchar)(max_index + 1);
}
}
static uchar
AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
{
EXT_MSG sdtr_buf;
uchar sdtr_period_index;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
sdtr_buf.msg_type = EXTENDED_MESSAGE;
sdtr_buf.msg_len = MS_SDTR_LEN;
sdtr_buf.msg_req = EXTENDED_SDTR;
sdtr_buf.xfer_period = sdtr_period;
sdtr_offset &= ASC_SYN_MAX_OFFSET;
sdtr_buf.req_ack_offset = sdtr_offset;
sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
(uchar *)&sdtr_buf,
sizeof(EXT_MSG) >> 1);
return ((sdtr_period_index << 4) | sdtr_offset);
} else {
sdtr_buf.req_ack_offset = 0;
AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
(uchar *)&sdtr_buf,
sizeof(EXT_MSG) >> 1);
return 0;
}
}
static uchar
AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
{
uchar byte;
uchar sdtr_period_ix;
sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
if (sdtr_period_ix > asc_dvc->max_sdtr_index)
return 0xFF;
byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
return byte;
}
static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
{
ASC_SCSI_BIT_ID_TYPE org_id;
int i;
int sta = TRUE;
AscSetBank(iop_base, 1);
org_id = AscReadChipDvcID(iop_base);
for (i = 0; i <= ASC_MAX_TID; i++) {
if (org_id == (0x01 << i))
break;
}
org_id = (ASC_SCSI_BIT_ID_TYPE) i;
AscWriteChipDvcID(iop_base, id);
if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
AscSetBank(iop_base, 0);
AscSetChipSyn(iop_base, sdtr_data);
if (AscGetChipSyn(iop_base) != sdtr_data) {
sta = FALSE;
}
} else {
sta = FALSE;
}
AscSetBank(iop_base, 1);
AscWriteChipDvcID(iop_base, org_id);
AscSetBank(iop_base, 0);
return (sta);
}
static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
{
AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
}
static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
{
EXT_MSG ext_msg;
EXT_MSG out_msg;
ushort halt_q_addr;
int sdtr_accept;
ushort int_halt_code;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
PortAddr iop_base;
uchar tag_code;
uchar q_status;
uchar halt_qp;
uchar sdtr_data;
uchar target_ix;
uchar q_cntl, tid_no;
uchar cur_dvc_qng;
uchar asyn_sdtr;
uchar scsi_status;
struct asc_board *boardp;
BUG_ON(!asc_dvc->drv_ptr);
boardp = asc_dvc->drv_ptr;
iop_base = asc_dvc->iop_base;
int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
target_ix = AscReadLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_TARGET_IX));
q_cntl = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
tid_no = ASC_TIX_TO_TID(target_ix);
target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
} else {
asyn_sdtr = 0;
}
if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iop_base, 0, tid_no);
boardp->sdtr_data[tid_no] = 0;
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
AscMemWordCopyPtrFromLram(iop_base,
ASCV_MSGIN_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
if (ext_msg.msg_type == EXTENDED_MESSAGE &&
ext_msg.msg_req == EXTENDED_SDTR &&
ext_msg.msg_len == MS_SDTR_LEN) {
sdtr_accept = TRUE;
if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
sdtr_accept = FALSE;
ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
}
if ((ext_msg.xfer_period <
asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
|| (ext_msg.xfer_period >
asc_dvc->sdtr_period_tbl[asc_dvc->
max_sdtr_index])) {
sdtr_accept = FALSE;
ext_msg.xfer_period =
asc_dvc->sdtr_period_tbl[asc_dvc->
min_sdtr_index];
}
if (sdtr_accept) {
sdtr_data =
AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
if ((sdtr_data == 0xFF)) {
q_cntl |= QC_MSG_OUT;
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr,
tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
}
if (ext_msg.req_ack_offset == 0) {
q_cntl &= ~QC_MSG_OUT;
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
} else {
if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
q_cntl &= ~QC_MSG_OUT;
asc_dvc->sdtr_done |= target_id;
asc_dvc->init_sdtr |= target_id;
asc_dvc->pci_fix_asyn_xfer &=
~target_id;
sdtr_data =
AscCalSDTRData(asc_dvc,
ext_msg.xfer_period,
ext_msg.
req_ack_offset);
AscSetChipSDTR(iop_base, sdtr_data,
tid_no);
boardp->sdtr_data[tid_no] = sdtr_data;
} else {
q_cntl |= QC_MSG_OUT;
AscMsgOutSDTR(asc_dvc,
ext_msg.xfer_period,
ext_msg.req_ack_offset);
asc_dvc->pci_fix_asyn_xfer &=
~target_id;
sdtr_data =
AscCalSDTRData(asc_dvc,
ext_msg.xfer_period,
ext_msg.
req_ack_offset);
AscSetChipSDTR(iop_base, sdtr_data,
tid_no);
boardp->sdtr_data[tid_no] = sdtr_data;
asc_dvc->sdtr_done |= target_id;
asc_dvc->init_sdtr |= target_id;
}
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
ext_msg.msg_req == EXTENDED_WDTR &&
ext_msg.msg_len == MS_WDTR_LEN) {
ext_msg.wdtr_width = 0;
AscMemWordCopyPtrToLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
q_cntl |= QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else {
ext_msg.msg_type = MESSAGE_REJECT;
AscMemWordCopyPtrToLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
q_cntl |= QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
}
} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
q_cntl |= QC_REQ_SENSE;
if ((asc_dvc->init_sdtr & target_id) != 0) {
asc_dvc->sdtr_done &= ~target_id;
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
q_cntl |= QC_MSG_OUT;
AscMsgOutSDTR(asc_dvc,
asc_dvc->
sdtr_period_tbl[(sdtr_data >> 4) &
(uchar)(asc_dvc->
max_sdtr_index -
1)],
(uchar)(sdtr_data & (uchar)
ASC_SYN_MAX_OFFSET));
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL), q_cntl);
tag_code = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)
ASC_SCSIQ_B_TAG_CODE));
tag_code &= 0xDC;
if ((asc_dvc->pci_fix_asyn_xfer & target_id)
&& !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
) {
tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
| ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_TAG_CODE),
tag_code);
q_status = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)
ASC_SCSIQ_B_STATUS));
q_status |= (QS_READY | QS_BUSY);
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_STATUS),
q_status);
scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
AscMemWordCopyPtrFromLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&out_msg,
sizeof(EXT_MSG) >> 1);
if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
(out_msg.msg_len == MS_SDTR_LEN) &&
(out_msg.msg_req == EXTENDED_SDTR)) {
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
q_cntl &= ~QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL), q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
scsi_status = AscReadLramByte(iop_base,
(ushort)((ushort)halt_q_addr +
(ushort)
ASC_SCSIQ_SCSI_STATUS));
cur_dvc_qng =
AscReadLramByte(iop_base,
(ushort)((ushort)ASC_QADR_BEG +
(ushort)target_ix));
if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
scsi_busy = AscReadLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B);
scsi_busy |= target_id;
AscWriteLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B, scsi_busy);
asc_dvc->queue_full_or_busy |= target_id;
if (scsi_status == SAM_STAT_TASK_SET_FULL) {
if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
cur_dvc_qng -= 1;
asc_dvc->max_dvc_qng[tid_no] =
cur_dvc_qng;
AscWriteLramByte(iop_base,
(ushort)((ushort)
ASCV_MAX_DVC_QNG_BEG
+ (ushort)
tid_no),
cur_dvc_qng);
/*
* Set the device queue depth to the
* number of active requests when the
* QUEUE FULL condition was encountered.
*/
boardp->queue_full |= target_id;
boardp->queue_full_cnt[tid_no] =
cur_dvc_qng;
}
}
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
}
#if CC_VERY_LONG_SG_LIST
else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
uchar q_no;
ushort q_addr;
uchar sg_wk_q_no;
uchar first_sg_wk_q_no;
ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
ushort sg_list_dwords;
ushort sg_entry_cnt;
uchar next_qp;
int i;
q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
if (q_no == ASC_QLINK_END)
return 0;
q_addr = ASC_QNO_TO_QADDR(q_no);
/*
* Convert the request's SRB pointer to a host ASC_SCSI_REQ
* structure pointer using a macro provided by the driver.
* The ASC_SCSI_REQ pointer provides a pointer to the
* host ASC_SG_HEAD structure.
*/
/* Read request's SRB pointer. */
scsiq = (ASC_SCSI_Q *)
ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
(ushort)
(q_addr +
ASC_SCSIQ_D_SRBPTR))));
/*
* Get request's first and working SG queue.
*/
sg_wk_q_no = AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_SG_WK_QP));
first_sg_wk_q_no = AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_FIRST_SG_WK_QP));
/*
* Reset request's working SG queue back to the
* first SG queue.
*/
AscWriteLramByte(iop_base,
(ushort)(q_addr +
(ushort)ASC_SCSIQ_B_SG_WK_QP),
first_sg_wk_q_no);
sg_head = scsiq->sg_head;
/*
* Set sg_entry_cnt to the number of SG elements
* that will be completed on this interrupt.
*
* Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
* SG elements. The data_cnt and data_addr fields which
* add 1 to the SG element capacity are not used when
* restarting SG handling after a halt.
*/
if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
sg_entry_cnt = ASC_MAX_SG_LIST - 1;
/*
* Keep track of remaining number of SG elements that
* will need to be handled on the next interrupt.
*/
scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
} else {
sg_entry_cnt = scsiq->remain_sg_entry_cnt;
scsiq->remain_sg_entry_cnt = 0;
}
/*
* Copy SG elements into the list of allocated SG queues.
*
* Last index completed is saved in scsiq->next_sg_index.
*/
next_qp = first_sg_wk_q_no;
q_addr = ASC_QNO_TO_QADDR(next_qp);
scsi_sg_q.sg_head_qp = q_no;
scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
for (i = 0; i < sg_head->queue_cnt; i++) {
scsi_sg_q.seq_no = i + 1;
if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
sg_entry_cnt -= ASC_SG_LIST_PER_Q;
/*
* After very first SG queue RISC FW uses next
* SG queue first element then checks sg_list_cnt
* against zero and then decrements, so set
* sg_list_cnt 1 less than number of SG elements
* in each SG queue.
*/
scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
scsi_sg_q.sg_cur_list_cnt =
ASC_SG_LIST_PER_Q - 1;
} else {
/*
* This is the last SG queue in the list of
* allocated SG queues. If there are more
* SG elements than will fit in the allocated
* queues, then set the QCSG_SG_XFER_MORE flag.
*/
if (scsiq->remain_sg_entry_cnt != 0) {
scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
} else {
scsi_sg_q.cntl |= QCSG_SG_XFER_END;
}
/* equals sg_entry_cnt * 2 */
sg_list_dwords = sg_entry_cnt << 1;
scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
sg_entry_cnt = 0;
}
scsi_sg_q.q_no = next_qp;
AscMemWordCopyPtrToLram(iop_base,
q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
(uchar *)&scsi_sg_q,
sizeof(ASC_SG_LIST_Q) >> 1);
AscMemDWordCopyPtrToLram(iop_base,
q_addr + ASC_SGQ_LIST_BEG,
(uchar *)&sg_head->
sg_list[scsiq->next_sg_index],
sg_list_dwords);
scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
/*
* If the just completed SG queue contained the
* last SG element, then no more SG queues need
* to be written.
*/
if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
break;
}
next_qp = AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_FWD));
q_addr = ASC_QNO_TO_QADDR(next_qp);
}
/*
* Clear the halt condition so the RISC will be restarted
* after the return.
*/
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return (0);
}
#endif /* CC_VERY_LONG_SG_LIST */
return (0);
}
/*
* void
* DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
*
* Calling/Exit State:
* none
*
* Description:
* Input an ASC_QDONE_INFO structure from the chip
*/
static void
DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
{
int i;
ushort word;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
if (i == 10) {
continue;
}
word = inpw(iop_base + IOP_RAM_DATA);
inbuf[i] = word & 0xff;
inbuf[i + 1] = (word >> 8) & 0xff;
}
ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
}
static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,
ushort q_addr,
ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
{
ushort _val;
uchar sg_queue_cnt;
DvcGetQinfo(iop_base,
q_addr + ASC_SCSIQ_DONE_INFO_BEG,
(uchar *)scsiq,
(sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
scsiq->q_status = (uchar)_val;
scsiq->q_no = (uchar)(_val >> 8);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
scsiq->cntl = (uchar)_val;
sg_queue_cnt = (uchar)(_val >> 8);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr +
(ushort)ASC_SCSIQ_B_SENSE_LEN));
scsiq->sense_len = (uchar)_val;
scsiq->extra_bytes = (uchar)(_val >> 8);
/*
* Read high word of remain bytes from alternate location.
*/
scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
(ushort)(q_addr +
(ushort)
ASC_SCSIQ_W_ALT_DC1)))
<< 16);
/*
* Read low word of remain bytes from original location.
*/
scsiq->remain_bytes += AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)
ASC_SCSIQ_DW_REMAIN_XFER_CNT));
scsiq->remain_bytes &= max_dma_count;
return sg_queue_cnt;
}
/*
* asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
*
* Interrupt callback function for the Narrow SCSI Asc Library.
*/
static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
{
struct asc_board *boardp;
struct scsi_cmnd *scp;
struct Scsi_Host *shost;
ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
if (!scp)
return;
ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
shost = scp->device->host;
ASC_STATS(shost, callback);
ASC_DBG(1, "shost 0x%p\n", shost);
boardp = shost_priv(shost);
BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
/*
* 'qdonep' contains the command's ending status.
*/
switch (qdonep->d3.done_stat) {
case QD_NO_ERROR:
ASC_DBG(2, "QD_NO_ERROR\n");
scp->result = 0;
/*
* Check for an underrun condition.
*
* If there was no error and an underrun condition, then
* return the number of underrun bytes.
*/
if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
qdonep->remain_bytes <= scsi_bufflen(scp)) {
ASC_DBG(1, "underrun condition %u bytes\n",
(unsigned)qdonep->remain_bytes);
scsi_set_resid(scp, qdonep->remain_bytes);
}
break;
case QD_WITH_ERROR:
ASC_DBG(2, "QD_WITH_ERROR\n");
switch (qdonep->d3.host_stat) {
case QHSTA_NO_ERROR:
if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE);
/*
* Note: The 'status_byte()' macro used by
* target drivers defined in scsi.h shifts the
* status byte returned by host drivers right
* by 1 bit. This is why target drivers also
* use right shifted status byte definitions.
* For instance target drivers use
* CHECK_CONDITION, defined to 0x1, instead of
* the SCSI defined check condition value of
* 0x2. Host drivers are supposed to return
* the status byte as it is defined by SCSI.
*/
scp->result = DRIVER_BYTE(DRIVER_SENSE) |
STATUS_BYTE(qdonep->d3.scsi_stat);
} else {
scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
}
break;
default:
/* QHSTA error occurred */
ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
scp->result = HOST_BYTE(DID_BAD_TARGET);
break;
}
break;
case QD_ABORTED_BY_HOST:
ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
scp->result =
HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
scsi_msg) |
STATUS_BYTE(qdonep->d3.scsi_stat);
break;
default:
ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
scp->result =
HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
scsi_msg) |
STATUS_BYTE(qdonep->d3.scsi_stat);
break;
}
/*
* If the 'init_tidmask' bit isn't already set for the target and the
* current request finished normally, then set the bit for the target
* to indicate that a device is present.
*/
if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
qdonep->d3.done_stat == QD_NO_ERROR &&
qdonep->d3.host_stat == QHSTA_NO_ERROR) {
boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
}
asc_scsi_done(scp);
}
static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
{
uchar next_qp;
uchar n_q_used;
uchar sg_list_qp;
uchar sg_queue_cnt;
uchar q_cnt;
uchar done_q_tail;
uchar tid_no;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
PortAddr iop_base;
ushort q_addr;
ushort sg_q_addr;
uchar cur_target_qng;
ASC_QDONE_INFO scsiq_buf;
ASC_QDONE_INFO *scsiq;
int false_overrun;
iop_base = asc_dvc->iop_base;
n_q_used = 1;
scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
q_addr = ASC_QNO_TO_QADDR(done_q_tail);
next_qp = AscReadLramByte(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
if (next_qp != ASC_QLINK_END) {
AscPutVarDoneQTail(iop_base, next_qp);
q_addr = ASC_QNO_TO_QADDR(next_qp);
sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
asc_dvc->max_dma_count);
AscWriteLramByte(iop_base,
(ushort)(q_addr +
(ushort)ASC_SCSIQ_B_STATUS),
(uchar)(scsiq->
q_status & (uchar)~(QS_READY |
QS_ABORTED)));
tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
if ((scsiq->cntl & QC_SG_HEAD) != 0) {
sg_q_addr = q_addr;
sg_list_qp = next_qp;
for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
sg_list_qp = AscReadLramByte(iop_base,
(ushort)(sg_q_addr
+ (ushort)
ASC_SCSIQ_B_FWD));
sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
if (sg_list_qp == ASC_QLINK_END) {
AscSetLibErrorCode(asc_dvc,
ASCQ_ERR_SG_Q_LINKS);
scsiq->d3.done_stat = QD_WITH_ERROR;
scsiq->d3.host_stat =
QHSTA_D_QDONE_SG_LIST_CORRUPTED;
goto FATAL_ERR_QDONE;
}
AscWriteLramByte(iop_base,
(ushort)(sg_q_addr + (ushort)
ASC_SCSIQ_B_STATUS),
QS_FREE);
}
n_q_used = sg_queue_cnt + 1;
AscPutVarDoneQTail(iop_base, sg_list_qp);
}
if (asc_dvc->queue_full_or_busy & target_id) {
cur_target_qng = AscReadLramByte(iop_base,
(ushort)((ushort)
ASC_QADR_BEG
+ (ushort)
scsiq->d2.
target_ix));
if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
scsi_busy = AscReadLramByte(iop_base, (ushort)
ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B,
scsi_busy);
asc_dvc->queue_full_or_busy &= ~target_id;
}
}
if (asc_dvc->cur_total_qng >= n_q_used) {
asc_dvc->cur_total_qng -= n_q_used;
if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
asc_dvc->cur_dvc_qng[tid_no]--;
}
} else {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
scsiq->d3.done_stat = QD_WITH_ERROR;
goto FATAL_ERR_QDONE;
}
if ((scsiq->d2.srb_ptr == 0UL) ||
((scsiq->q_status & QS_ABORTED) != 0)) {
return (0x11);
} else if (scsiq->q_status == QS_DONE) {
false_overrun = FALSE;
if (scsiq->extra_bytes != 0) {
scsiq->remain_bytes +=
(ADV_DCNT)scsiq->extra_bytes;
}
if (scsiq->d3.done_stat == QD_WITH_ERROR) {
if (scsiq->d3.host_stat ==
QHSTA_M_DATA_OVER_RUN) {
if ((scsiq->
cntl & (QC_DATA_IN | QC_DATA_OUT))
== 0) {
scsiq->d3.done_stat =
QD_NO_ERROR;
scsiq->d3.host_stat =
QHSTA_NO_ERROR;
} else if (false_overrun) {
scsiq->d3.done_stat =
QD_NO_ERROR;
scsiq->d3.host_stat =
QHSTA_NO_ERROR;
}
} else if (scsiq->d3.host_stat ==
QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
AscStopChip(iop_base);
AscSetChipControl(iop_base,
(uchar)(CC_SCSI_RESET
| CC_HALT));
udelay(60);
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base,
CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
AscSetChipControl(iop_base, 0);
}
}
if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
asc_isr_callback(asc_dvc, scsiq);
} else {
if ((AscReadLramByte(iop_base,
(ushort)(q_addr + (ushort)
ASC_SCSIQ_CDB_BEG))
== START_STOP)) {
asc_dvc->unit_not_ready &= ~target_id;
if (scsiq->d3.done_stat != QD_NO_ERROR) {
asc_dvc->start_motor &=
~target_id;
}
}
}
return (1);
} else {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
FATAL_ERR_QDONE:
if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
asc_isr_callback(asc_dvc, scsiq);
}
return (0x80);
}
}
return (0);
}
static int AscISR(ASC_DVC_VAR *asc_dvc)
{
ASC_CS_TYPE chipstat;
PortAddr iop_base;
ushort saved_ram_addr;
uchar ctrl_reg;
uchar saved_ctrl_reg;
int int_pending;
int status;
uchar host_flag;
iop_base = asc_dvc->iop_base;
int_pending = FALSE;
if (AscIsIntPending(iop_base) == 0)
return int_pending;
if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
return ERR;
}
if (asc_dvc->in_critical_cnt != 0) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
return ERR;
}
if (asc_dvc->is_in_int) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
return ERR;
}
asc_dvc->is_in_int = TRUE;
ctrl_reg = AscGetChipControl(iop_base);
saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
CC_SINGLE_STEP | CC_DIAG | CC_TEST));
chipstat = AscGetChipStatus(iop_base);
if (chipstat & CSW_SCSI_RESET_LATCH) {
if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
int i = 10;
int_pending = TRUE;
asc_dvc->sdtr_done = 0;
saved_ctrl_reg &= (uchar)(~CC_HALT);
while ((AscGetChipStatus(iop_base) &
CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
mdelay(100);
}
AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
chipstat = AscGetChipStatus(iop_base);
}
}
saved_ram_addr = AscGetChipLramAddr(iop_base);
host_flag = AscReadLramByte(iop_base,
ASCV_HOST_FLAG_B) &
(uchar)(~ASC_HOST_FLAG_IN_ISR);
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
(uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
AscAckInterrupt(iop_base);
int_pending = TRUE;
if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
if (AscIsrChipHalted(asc_dvc) == ERR) {
goto ISR_REPORT_QDONE_FATAL_ERROR;
} else {
saved_ctrl_reg &= (uchar)(~CC_HALT);
}
} else {
ISR_REPORT_QDONE_FATAL_ERROR:
if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
while (((status =
AscIsrQDone(asc_dvc)) & 0x01) != 0) {
}
} else {
do {
if ((status =
AscIsrQDone(asc_dvc)) == 1) {
break;
}
} while (status == 0x11);
}
if ((status & 0x80) != 0)
int_pending = ERR;
}
}
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
AscSetChipLramAddr(iop_base, saved_ram_addr);
AscSetChipControl(iop_base, saved_ctrl_reg);
asc_dvc->is_in_int = FALSE;
return int_pending;
}
/*
* advansys_reset()
*
* Reset the bus associated with the command 'scp'.
*
* This function runs its own thread. Interrupts must be blocked but
* sleeping is allowed and no locking other than for host structures is
* required. Returns SUCCESS or FAILED.
*/
static int advansys_reset(struct scsi_cmnd *scp)
{
struct Scsi_Host *shost = scp->device->host;
struct asc_board *boardp = shost_priv(shost);
unsigned long flags;
int status;
int ret = SUCCESS;
ASC_DBG(1, "0x%p\n", scp);
ASC_STATS(shost, reset);
scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
if (ASC_NARROW_BOARD(boardp)) {
ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
/* Reset the chip and SCSI bus. */
ASC_DBG(1, "before AscInitAsc1000Driver()\n");
status = AscInitAsc1000Driver(asc_dvc);
/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
if (asc_dvc->err_code) {
scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
"0x%x\n", asc_dvc->err_code);
ret = FAILED;
} else if (status) {
scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
"0x%x\n", status);
} else {
scmd_printk(KERN_INFO, scp, "SCSI bus reset "
"successful\n");
}
ASC_DBG(1, "after AscInitAsc1000Driver()\n");
spin_lock_irqsave(shost->host_lock, flags);
} else {
/*
* If the suggest reset bus flags are set, then reset the bus.
* Otherwise only reset the device.
*/
ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
/*
* Reset the target's SCSI bus.
*/
ASC_DBG(1, "before AdvResetChipAndSB()\n");
switch (AdvResetChipAndSB(adv_dvc)) {
case ASC_TRUE:
scmd_printk(KERN_INFO, scp, "SCSI bus reset "
"successful\n");
break;
case ASC_FALSE:
default:
scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
ret = FAILED;
break;
}
spin_lock_irqsave(shost->host_lock, flags);
AdvISR(adv_dvc);
}
/* Save the time of the most recently completed reset. */
boardp->last_reset = jiffies;
spin_unlock_irqrestore(shost->host_lock, flags);
ASC_DBG(1, "ret %d\n", ret);
return ret;
}
/*
* advansys_biosparam()
*
* Translate disk drive geometry if the "BIOS greater than 1 GB"
* support is enabled for a drive.
*
* ip (information pointer) is an int array with the following definition:
* ip[0]: heads
* ip[1]: sectors
* ip[2]: cylinders
*/
static int
advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int ip[])
{
struct asc_board *boardp = shost_priv(sdev->host);
ASC_DBG(1, "begin\n");
ASC_STATS(sdev->host, biosparam);
if (ASC_NARROW_BOARD(boardp)) {
if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
ip[0] = 255;
ip[1] = 63;
} else {
ip[0] = 64;
ip[1] = 32;
}
} else {
if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
ip[0] = 255;
ip[1] = 63;
} else {
ip[0] = 64;
ip[1] = 32;
}
}
ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
ASC_DBG(1, "end\n");
return 0;
}
/*
* First-level interrupt handler.
*
* 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
*/
static irqreturn_t advansys_interrupt(int irq, void *dev_id)
{
struct Scsi_Host *shost = dev_id;
struct asc_board *boardp = shost_priv(shost);
irqreturn_t result = IRQ_NONE;
ASC_DBG(2, "boardp 0x%p\n", boardp);
spin_lock(shost->host_lock);
if (ASC_NARROW_BOARD(boardp)) {
if (AscIsIntPending(shost->io_port)) {
result = IRQ_HANDLED;
ASC_STATS(shost, interrupt);
ASC_DBG(1, "before AscISR()\n");
AscISR(&boardp->dvc_var.asc_dvc_var);
}
} else {
ASC_DBG(1, "before AdvISR()\n");
if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
result = IRQ_HANDLED;
ASC_STATS(shost, interrupt);
}
}
spin_unlock(shost->host_lock);
ASC_DBG(1, "end\n");
return result;
}
static int AscHostReqRiscHalt(PortAddr iop_base)
{
int count = 0;
int sta = 0;
uchar saved_stop_code;
if (AscIsChipHalted(iop_base))
return (1);
saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
do {
if (AscIsChipHalted(iop_base)) {
sta = 1;
break;
}
mdelay(100);
} while (count++ < 20);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
return (sta);
}
static int
AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
{
int sta = FALSE;
if (AscHostReqRiscHalt(iop_base)) {
sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
AscStartChip(iop_base);
}
return sta;
}
static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
{
char type = sdev->type;
ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
return;
if (asc_dvc->init_sdtr & tid_bits)
return;
if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
asc_dvc->pci_fix_asyn_xfer |= tid_bits;
if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
(type == TYPE_ROM) || (type == TYPE_TAPE))
asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
ASYN_SDTR_DATA_FIX_PCI_REV_AB);
}
static void
advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
{
ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
if (sdev->lun == 0) {
ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
asc_dvc->init_sdtr |= tid_bit;
} else {
asc_dvc->init_sdtr &= ~tid_bit;
}
if (orig_init_sdtr != asc_dvc->init_sdtr)
AscAsyncFix(asc_dvc, sdev);
}
if (sdev->tagged_supported) {
if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
if (sdev->lun == 0) {
asc_dvc->cfg->can_tagged_qng |= tid_bit;
asc_dvc->use_tagged_qng |= tid_bit;
}
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
asc_dvc->max_dvc_qng[sdev->id]);
}
} else {
if (sdev->lun == 0) {
asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
asc_dvc->use_tagged_qng &= ~tid_bit;
}
scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
}
if ((sdev->lun == 0) &&
(orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
asc_dvc->cfg->disc_enable);
AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
asc_dvc->use_tagged_qng);
AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
asc_dvc->cfg->can_tagged_qng);
asc_dvc->max_dvc_qng[sdev->id] =
asc_dvc->cfg->max_tag_qng[sdev->id];
AscWriteLramByte(asc_dvc->iop_base,
(ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
asc_dvc->max_dvc_qng[sdev->id]);
}
}
/*
* Wide Transfers
*
* If the EEPROM enabled WDTR for the device and the device supports wide
* bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
* write the new value to the microcode.
*/
static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
{
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
if ((cfg_word & tidmask) != 0)
return;
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
/*
* Clear the microcode SDTR and WDTR negotiation done indicators for
* the target to cause it to negotiate with the new setting set above.
* WDTR when accepted causes the target to enter asynchronous mode, so
* SDTR must be negotiated.
*/
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
}
/*
* Synchronous Transfers
*
* If the EEPROM enabled SDTR for the device and the device
* supports synchronous transfers, then turn on the device's
* 'sdtr_able' bit. Write the new value to the microcode.
*/
static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
{
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
if ((cfg_word & tidmask) != 0)
return;
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
/*
* Clear the microcode "SDTR negotiation" done indicator for the
* target to cause it to negotiate with the new setting set above.
*/
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
}
/*
* PPR (Parallel Protocol Request) Capable
*
* If the device supports DT mode, then it must be PPR capable.
* The PPR message will be used in place of the SDTR and WDTR
* messages to negotiate synchronous speed and offset, transfer
* width, and protocol options.
*/
static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
AdvPortAddr iop_base, unsigned short tidmask)
{
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
adv_dvc->ppr_able |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
}
static void
advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
{
AdvPortAddr iop_base = adv_dvc->iop_base;
unsigned short tidmask = 1 << sdev->id;
if (sdev->lun == 0) {
/*
* Handle WDTR, SDTR, and Tag Queuing. If the feature
* is enabled in the EEPROM and the device supports the
* feature, then enable it in the microcode.
*/
if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
advansys_wide_enable_wdtr(iop_base, tidmask);
if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
advansys_wide_enable_sdtr(iop_base, tidmask);
if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
/*
* Tag Queuing is disabled for the BIOS which runs in polled
* mode and would see no benefit from Tag Queuing. Also by
* disabling Tag Queuing in the BIOS devices with Tag Queuing
* bugs will at least work with the BIOS.
*/
if ((adv_dvc->tagqng_able & tidmask) &&
sdev->tagged_supported) {
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
cfg_word);
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
adv_dvc->max_dvc_qng);
}
}
if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
adv_dvc->max_dvc_qng);
} else {
scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
}
}
/*
* Set the number of commands to queue per device for the
* specified host adapter.
*/
static int advansys_slave_configure(struct scsi_device *sdev)
{
struct asc_board *boardp = shost_priv(sdev->host);
if (ASC_NARROW_BOARD(boardp))
advansys_narrow_slave_configure(sdev,
&boardp->dvc_var.asc_dvc_var);
else
advansys_wide_slave_configure(sdev,
&boardp->dvc_var.adv_dvc_var);
return 0;
}
static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
{
struct asc_board *board = shost_priv(scp->device->host);
scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
dma_cache_sync(board->dev, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
return cpu_to_le32(scp->SCp.dma_handle);
}
static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
struct asc_scsi_q *asc_scsi_q)
{
struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
int use_sg;
memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
/*
* Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
*/
asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
scp->result = HOST_BYTE(DID_SOFT_ERROR);
return ASC_ERROR;
}
/*
* Build the ASC_SCSI_Q request.
*/
asc_scsi_q->cdbptr = &scp->cmnd[0];
asc_scsi_q->q2.cdb_len = scp->cmd_len;
asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
asc_scsi_q->q1.target_lun = scp->device->lun;
asc_scsi_q->q2.target_ix =
ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
/*
* If there are any outstanding requests for the current target,
* then every 255th request send an ORDERED request. This heuristic
* tries to retain the benefit of request sorting while preventing
* request starvation. 255 is the max number of tags or pending commands
* a device may have outstanding.
*
* The request count is incremented below for every successfully
* started request.
*
*/
if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
(boardp->reqcnt[scp->device->id] % 255) == 0) {
asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
} else {
asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
}
/* Build ASC_SCSI_Q */
use_sg = scsi_dma_map(scp);
if (use_sg != 0) {
int sgcnt;
struct scatterlist *slp;
struct asc_sg_head *asc_sg_head;
if (use_sg > scp->device->host->sg_tablesize) {
scmd_printk(KERN_ERR, scp, "use_sg %d > "
"sg_tablesize %d\n", use_sg,
scp->device->host->sg_tablesize);
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_ERROR);
return ASC_ERROR;
}
asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
if (!asc_sg_head) {
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_SOFT_ERROR);
return ASC_ERROR;
}
asc_scsi_q->q1.cntl |= QC_SG_HEAD;
asc_scsi_q->sg_head = asc_sg_head;
asc_scsi_q->q1.data_cnt = 0;
asc_scsi_q->q1.data_addr = 0;
/* This is a byte value, otherwise it would need to be swapped. */
asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
ASC_STATS_ADD(scp->device->host, xfer_elem,
asc_sg_head->entry_cnt);
/*
* Convert scatter-gather list into ASC_SG_HEAD list.
*/
scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
asc_sg_head->sg_list[sgcnt].addr =
cpu_to_le32(sg_dma_address(slp));
asc_sg_head->sg_list[sgcnt].bytes =
cpu_to_le32(sg_dma_len(slp));
ASC_STATS_ADD(scp->device->host, xfer_sect,
DIV_ROUND_UP(sg_dma_len(slp), 512));
}
}
ASC_STATS(scp->device->host, xfer_cnt);
ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
return ASC_NOERROR;
}
/*
* Build scatter-gather list for Adv Library (Wide Board).
*
* Additional ADV_SG_BLOCK structures will need to be allocated
* if the total number of scatter-gather elements exceeds
* NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
* assumed to be physically contiguous.
*
* Return:
* ADV_SUCCESS(1) - SG List successfully created
* ADV_ERROR(-1) - SG List creation failed
*/
static int
adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
int use_sg)
{
adv_sgblk_t *sgblkp;
ADV_SCSI_REQ_Q *scsiqp;
struct scatterlist *slp;
int sg_elem_cnt;
ADV_SG_BLOCK *sg_block, *prev_sg_block;
ADV_PADDR sg_block_paddr;
int i;
scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
slp = scsi_sglist(scp);
sg_elem_cnt = use_sg;
prev_sg_block = NULL;
reqp->sgblkp = NULL;
for (;;) {
/*
* Allocate a 'adv_sgblk_t' structure from the board free
* list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
* (15) scatter-gather elements.
*/
if ((sgblkp = boardp->adv_sgblkp) == NULL) {
ASC_DBG(1, "no free adv_sgblk_t\n");
ASC_STATS(scp->device->host, adv_build_nosg);
/*
* Allocation failed. Free 'adv_sgblk_t' structures
* already allocated for the request.
*/
while ((sgblkp = reqp->sgblkp) != NULL) {
/* Remove 'sgblkp' from the request list. */
reqp->sgblkp = sgblkp->next_sgblkp;
/* Add 'sgblkp' to the board free list. */
sgblkp->next_sgblkp = boardp->adv_sgblkp;
boardp->adv_sgblkp = sgblkp;
}
return ASC_BUSY;
}
/* Complete 'adv_sgblk_t' board allocation. */
boardp->adv_sgblkp = sgblkp->next_sgblkp;
sgblkp->next_sgblkp = NULL;
/*
* Get 8 byte aligned virtual and physical addresses
* for the allocated ADV_SG_BLOCK structure.
*/
sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
sg_block_paddr = virt_to_bus(sg_block);
/*
* Check if this is the first 'adv_sgblk_t' for the
* request.
*/
if (reqp->sgblkp == NULL) {
/* Request's first scatter-gather block. */
reqp->sgblkp = sgblkp;
/*
* Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
* address pointers.
*/
scsiqp->sg_list_ptr = sg_block;
scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
} else {
/* Request's second or later scatter-gather block. */
sgblkp->next_sgblkp = reqp->sgblkp;
reqp->sgblkp = sgblkp;
/*
* Point the previous ADV_SG_BLOCK structure to
* the newly allocated ADV_SG_BLOCK structure.
*/
prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
}
for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
sg_block->sg_list[i].sg_addr =
cpu_to_le32(sg_dma_address(slp));
sg_block->sg_list[i].sg_count =
cpu_to_le32(sg_dma_len(slp));
ASC_STATS_ADD(scp->device->host, xfer_sect,
DIV_ROUND_UP(sg_dma_len(slp), 512));
if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
sg_block->sg_cnt = i + 1;
sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
return ADV_SUCCESS;
}
slp++;
}
sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
prev_sg_block = sg_block;
}
}
/*
* Build a request structure for the Adv Library (Wide Board).
*
* If an adv_req_t can not be allocated to issue the request,
* then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
*
* Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
* microcode for DMA addresses or math operations are byte swapped
* to little-endian order.
*/
static int
adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
ADV_SCSI_REQ_Q **adv_scsiqpp)
{
adv_req_t *reqp;
ADV_SCSI_REQ_Q *scsiqp;
int i;
int ret;
int use_sg;
/*
* Allocate an adv_req_t structure from the board to execute
* the command.
*/
if (boardp->adv_reqp == NULL) {
ASC_DBG(1, "no free adv_req_t\n");
ASC_STATS(scp->device->host, adv_build_noreq);
return ASC_BUSY;
} else {
reqp = boardp->adv_reqp;
boardp->adv_reqp = reqp->next_reqp;
reqp->next_reqp = NULL;
}
/*
* Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
*/
scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
/*
* Initialize the structure.
*/
scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
/*
* Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
*/
scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
/*
* Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
*/
reqp->cmndp = scp;
/*
* Build the ADV_SCSI_REQ_Q request.
*/
/* Set CDB length and copy it to the request structure. */
scsiqp->cdb_len = scp->cmd_len;
/* Copy first 12 CDB bytes to cdb[]. */
for (i = 0; i < scp->cmd_len && i < 12; i++) {
scsiqp->cdb[i] = scp->cmnd[i];
}
/* Copy last 4 CDB bytes, if present, to cdb16[]. */
for (; i < scp->cmd_len; i++) {
scsiqp->cdb16[i - 12] = scp->cmnd[i];
}
scsiqp->target_id = scp->device->id;
scsiqp->target_lun = scp->device->lun;
scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
/* Build ADV_SCSI_REQ_Q */
use_sg = scsi_dma_map(scp);
if (use_sg == 0) {
/* Zero-length transfer */
reqp->sgblkp = NULL;
scsiqp->data_cnt = 0;
scsiqp->vdata_addr = NULL;
scsiqp->data_addr = 0;
scsiqp->sg_list_ptr = NULL;
scsiqp->sg_real_addr = 0;
} else {
if (use_sg > ADV_MAX_SG_LIST) {
scmd_printk(KERN_ERR, scp, "use_sg %d > "
"ADV_MAX_SG_LIST %d\n", use_sg,
scp->device->host->sg_tablesize);
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_ERROR);
/*
* Free the 'adv_req_t' structure by adding it back
* to the board free list.
*/
reqp->next_reqp = boardp->adv_reqp;
boardp->adv_reqp = reqp;
return ASC_ERROR;
}
scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
ret = adv_get_sglist(boardp, reqp, scp, use_sg);
if (ret != ADV_SUCCESS) {
/*
* Free the adv_req_t structure by adding it back to
* the board free list.
*/
reqp->next_reqp = boardp->adv_reqp;
boardp->adv_reqp = reqp;
return ret;
}
ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
}
ASC_STATS(scp->device->host, xfer_cnt);
ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
*adv_scsiqpp = scsiqp;
return ASC_NOERROR;
}
static int AscSgListToQueue(int sg_list)
{
int n_sg_list_qs;
n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
n_sg_list_qs++;
return n_sg_list_qs + 1;
}
static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
{
uint cur_used_qs;
uint cur_free_qs;
ASC_SCSI_BIT_ID_TYPE target_id;
uchar tid_no;
target_id = ASC_TIX_TO_TARGET_ID(target_ix);
tid_no = ASC_TIX_TO_TID(target_ix);
if ((asc_dvc->unit_not_ready & target_id) ||
(asc_dvc->queue_full_or_busy & target_id)) {
return 0;
}
if (n_qs == 1) {
cur_used_qs = (uint) asc_dvc->cur_total_qng +
(uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
} else {
cur_used_qs = (uint) asc_dvc->cur_total_qng +
(uint) ASC_MIN_FREE_Q;
}
if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
if (asc_dvc->cur_dvc_qng[tid_no] >=
asc_dvc->max_dvc_qng[tid_no]) {
return 0;
}
return cur_free_qs;
}
if (n_qs > 1) {
if ((n_qs > asc_dvc->last_q_shortage)
&& (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
asc_dvc->last_q_shortage = n_qs;
}
}
return 0;
}
static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
{
ushort q_addr;
uchar next_qp;
uchar q_status;
q_addr = ASC_QNO_TO_QADDR(free_q_head);
q_status = (uchar)AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_STATUS));
next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
return next_qp;
return ASC_QLINK_END;
}
static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
{
uchar i;
for (i = 0; i < n_free_q; i++) {
free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
if (free_q_head == ASC_QLINK_END)
break;
}
return free_q_head;
}
/*
* void
* DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
*
* Calling/Exit State:
* none
*
* Description:
* Output an ASC_SCSI_Q structure to the chip
*/
static void
DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
{
int i;
ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
if (i == 4 || i == 20) {
continue;
}
outpw(iop_base + IOP_RAM_DATA,
((ushort)outbuf[i + 1] << 8) | outbuf[i]);
}
}
static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
{
ushort q_addr;
uchar tid_no;
uchar sdtr_data;
uchar syn_period_ix;
uchar syn_offset;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
syn_period_ix =
(sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
AscMsgOutSDTR(asc_dvc,
asc_dvc->sdtr_period_tbl[syn_period_ix],
syn_offset);
scsiq->q1.cntl |= QC_MSG_OUT;
}
q_addr = ASC_QNO_TO_QADDR(q_no);
if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
}
scsiq->q1.status = QS_FREE;
AscMemWordCopyPtrToLram(iop_base,
q_addr + ASC_SCSIQ_CDB_BEG,
(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
DvcPutScsiQ(iop_base,
q_addr + ASC_SCSIQ_CPY_BEG,
(uchar *)&scsiq->q1.cntl,
((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
AscWriteLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
(ushort)(((ushort)scsiq->q1.
q_no << 8) | (ushort)QS_READY));
return 1;
}
static int
AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
{
int sta;
int i;
ASC_SG_HEAD *sg_head;
ASC_SG_LIST_Q scsi_sg_q;
ASC_DCNT saved_data_addr;
ASC_DCNT saved_data_cnt;
PortAddr iop_base;
ushort sg_list_dwords;
ushort sg_index;
ushort sg_entry_cnt;
ushort q_addr;
uchar next_qp;
iop_base = asc_dvc->iop_base;
sg_head = scsiq->sg_head;
saved_data_addr = scsiq->q1.data_addr;
saved_data_cnt = scsiq->q1.data_cnt;
scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
#if CC_VERY_LONG_SG_LIST
/*
* If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
* then not all SG elements will fit in the allocated queues.
* The rest of the SG elements will be copied when the RISC
* completes the SG elements that fit and halts.
*/
if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
/*
* Set sg_entry_cnt to be the number of SG elements that
* will fit in the allocated SG queues. It is minus 1, because
* the first SG element is handled above. ASC_MAX_SG_LIST is
* already inflated by 1 to account for this. For example it
* may be 50 which is 1 + 7 queues * 7 SG elements.
*/
sg_entry_cnt = ASC_MAX_SG_LIST - 1;
/*
* Keep track of remaining number of SG elements that will
* need to be handled from a_isr.c.
*/
scsiq->remain_sg_entry_cnt =
sg_head->entry_cnt - ASC_MAX_SG_LIST;
} else {
#endif /* CC_VERY_LONG_SG_LIST */
/*
* Set sg_entry_cnt to be the number of SG elements that
* will fit in the allocated SG queues. It is minus 1, because
* the first SG element is handled above.
*/
sg_entry_cnt = sg_head->entry_cnt - 1;
#if CC_VERY_LONG_SG_LIST
}
#endif /* CC_VERY_LONG_SG_LIST */
if (sg_entry_cnt != 0) {
scsiq->q1.cntl |= QC_SG_HEAD;
q_addr = ASC_QNO_TO_QADDR(q_no);
sg_index = 1;
scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
scsi_sg_q.sg_head_qp = q_no;
scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
for (i = 0; i < sg_head->queue_cnt; i++) {
scsi_sg_q.seq_no = i + 1;
if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
sg_entry_cnt -= ASC_SG_LIST_PER_Q;
if (i == 0) {
scsi_sg_q.sg_list_cnt =
ASC_SG_LIST_PER_Q;
scsi_sg_q.sg_cur_list_cnt =
ASC_SG_LIST_PER_Q;
} else {
scsi_sg_q.sg_list_cnt =
ASC_SG_LIST_PER_Q - 1;
scsi_sg_q.sg_cur_list_cnt =
ASC_SG_LIST_PER_Q - 1;
}
} else {
#if CC_VERY_LONG_SG_LIST
/*
* This is the last SG queue in the list of
* allocated SG queues. If there are more
* SG elements than will fit in the allocated
* queues, then set the QCSG_SG_XFER_MORE flag.
*/
if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
} else {
#endif /* CC_VERY_LONG_SG_LIST */
scsi_sg_q.cntl |= QCSG_SG_XFER_END;
#if CC_VERY_LONG_SG_LIST
}
#endif /* CC_VERY_LONG_SG_LIST */
sg_list_dwords = sg_entry_cnt << 1;
if (i == 0) {
scsi_sg_q.sg_list_cnt = sg_entry_cnt;
scsi_sg_q.sg_cur_list_cnt =
sg_entry_cnt;
} else {
scsi_sg_q.sg_list_cnt =
sg_entry_cnt - 1;
scsi_sg_q.sg_cur_list_cnt =
sg_entry_cnt - 1;
}
sg_entry_cnt = 0;
}
next_qp = AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_FWD));
scsi_sg_q.q_no = next_qp;
q_addr = ASC_QNO_TO_QADDR(next_qp);
AscMemWordCopyPtrToLram(iop_base,
q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
(uchar *)&scsi_sg_q,
sizeof(ASC_SG_LIST_Q) >> 1);
AscMemDWordCopyPtrToLram(iop_base,
q_addr + ASC_SGQ_LIST_BEG,
(uchar *)&sg_head->
sg_list[sg_index],
sg_list_dwords);
sg_index += ASC_SG_LIST_PER_Q;
scsiq->next_sg_index = sg_index;
}
} else {
scsiq->q1.cntl &= ~QC_SG_HEAD;
}
sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
scsiq->q1.data_addr = saved_data_addr;
scsiq->q1.data_cnt = saved_data_cnt;
return (sta);
}
static int
AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
{
PortAddr iop_base;
uchar free_q_head;
uchar next_qp;
uchar tid_no;
uchar target_ix;
int sta;
iop_base = asc_dvc->iop_base;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
sta = 0;
free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
if (n_q_required > 1) {
next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
(uchar)n_q_required);
if (next_qp != ASC_QLINK_END) {
asc_dvc->last_q_shortage = 0;
scsiq->sg_head->queue_cnt = n_q_required - 1;
scsiq->q1.q_no = free_q_head;
sta = AscPutReadySgListQueue(asc_dvc, scsiq,
free_q_head);
}
} else if (n_q_required == 1) {
next_qp = AscAllocFreeQueue(iop_base, free_q_head);
if (next_qp != ASC_QLINK_END) {
scsiq->q1.q_no = free_q_head;
sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
}
}
if (sta == 1) {
AscPutVarFreeQHead(iop_base, next_qp);
asc_dvc->cur_total_qng += n_q_required;
asc_dvc->cur_dvc_qng[tid_no]++;
}
return sta;
}
#define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
INQUIRY,
REQUEST_SENSE,
READ_CAPACITY,
READ_TOC,
MODE_SELECT,
MODE_SENSE,
MODE_SELECT_10,
MODE_SENSE_10,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF
};
static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
{
PortAddr iop_base;
int sta;
int n_q_required;
int disable_syn_offset_one_fix;
int i;
ASC_PADDR addr;
ushort sg_entry_cnt = 0;
ushort sg_entry_cnt_minus_one = 0;
uchar target_ix;
uchar tid_no;
uchar sdtr_data;
uchar extra_bytes;
uchar scsi_cmd;
uchar disable_cmd;
ASC_SG_HEAD *sg_head;
ASC_DCNT data_cnt;
iop_base = asc_dvc->iop_base;
sg_head = scsiq->sg_head;
if (asc_dvc->err_code != 0)
return (ERR);
scsiq->q1.q_no = 0;
if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
scsiq->q1.extra_bytes = 0;
}
sta = 0;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
n_q_required = 1;
if (scsiq->cdbptr[0] == REQUEST_SENSE) {
if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
AscMsgOutSDTR(asc_dvc,
asc_dvc->
sdtr_period_tbl[(sdtr_data >> 4) &
(uchar)(asc_dvc->
max_sdtr_index -
1)],
(uchar)(sdtr_data & (uchar)
ASC_SYN_MAX_OFFSET));
scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
}
}
if (asc_dvc->in_critical_cnt != 0) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
return (ERR);
}
asc_dvc->in_critical_cnt++;
if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
asc_dvc->in_critical_cnt--;
return (ERR);
}
#if !CC_VERY_LONG_SG_LIST
if (sg_entry_cnt > ASC_MAX_SG_LIST) {
asc_dvc->in_critical_cnt--;
return (ERR);
}
#endif /* !CC_VERY_LONG_SG_LIST */
if (sg_entry_cnt == 1) {
scsiq->q1.data_addr =
(ADV_PADDR)sg_head->sg_list[0].addr;
scsiq->q1.data_cnt =
(ADV_DCNT)sg_head->sg_list[0].bytes;
scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
}
sg_entry_cnt_minus_one = sg_entry_cnt - 1;
}
scsi_cmd = scsiq->cdbptr[0];
disable_syn_offset_one_fix = FALSE;
if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
!(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
if (scsiq->q1.cntl & QC_SG_HEAD) {
data_cnt = 0;
for (i = 0; i < sg_entry_cnt; i++) {
data_cnt +=
(ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
bytes);
}
} else {
data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
}
if (data_cnt != 0UL) {
if (data_cnt < 512UL) {
disable_syn_offset_one_fix = TRUE;
} else {
for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
i++) {
disable_cmd =
_syn_offset_one_disable_cmd[i];
if (disable_cmd == 0xFF) {
break;
}
if (scsi_cmd == disable_cmd) {
disable_syn_offset_one_fix =
TRUE;
break;
}
}
}
}
}
if (disable_syn_offset_one_fix) {
scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
ASC_TAG_FLAG_DISABLE_DISCONNECT);
} else {
scsiq->q2.tag_code &= 0x27;
}
if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
if (asc_dvc->bug_fix_cntl) {
if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == READ_6) ||
(scsi_cmd == READ_10)) {
addr =
(ADV_PADDR)le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
addr) +
(ADV_DCNT)le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes);
extra_bytes =
(uchar)((ushort)addr & 0x0003);
if ((extra_bytes != 0)
&&
((scsiq->q2.
tag_code &
ASC_TAG_FLAG_EXTRA_BYTES)
== 0)) {
scsiq->q2.tag_code |=
ASC_TAG_FLAG_EXTRA_BYTES;
scsiq->q1.extra_bytes =
extra_bytes;
data_cnt =
le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes);
data_cnt -=
(ASC_DCNT) extra_bytes;
sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes =
cpu_to_le32(data_cnt);
}
}
}
}
sg_head->entry_to_copy = sg_head->entry_cnt;
#if CC_VERY_LONG_SG_LIST
/*
* Set the sg_entry_cnt to the maximum possible. The rest of
* the SG elements will be copied when the RISC completes the
* SG elements that fit and halts.
*/
if (sg_entry_cnt > ASC_MAX_SG_LIST) {
sg_entry_cnt = ASC_MAX_SG_LIST;
}
#endif /* CC_VERY_LONG_SG_LIST */
n_q_required = AscSgListToQueue(sg_entry_cnt);
if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
(uint) n_q_required)
|| ((scsiq->q1.cntl & QC_URGENT) != 0)) {
if ((sta =
AscSendScsiQueue(asc_dvc, scsiq,
n_q_required)) == 1) {
asc_dvc->in_critical_cnt--;
return (sta);
}
}
} else {
if (asc_dvc->bug_fix_cntl) {
if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == READ_6) ||
(scsi_cmd == READ_10)) {
addr =
le32_to_cpu(scsiq->q1.data_addr) +
le32_to_cpu(scsiq->q1.data_cnt);
extra_bytes =
(uchar)((ushort)addr & 0x0003);
if ((extra_bytes != 0)
&&
((scsiq->q2.
tag_code &
ASC_TAG_FLAG_EXTRA_BYTES)
== 0)) {
data_cnt =
le32_to_cpu(scsiq->q1.
data_cnt);
if (((ushort)data_cnt & 0x01FF)
== 0) {
scsiq->q2.tag_code |=
ASC_TAG_FLAG_EXTRA_BYTES;
data_cnt -= (ASC_DCNT)
extra_bytes;
scsiq->q1.data_cnt =
cpu_to_le32
(data_cnt);
scsiq->q1.extra_bytes =
extra_bytes;
}
}
}
}
}
n_q_required = 1;
if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
((scsiq->q1.cntl & QC_URGENT) != 0)) {
if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
n_q_required)) == 1) {
asc_dvc->in_critical_cnt--;
return (sta);
}
}
}
asc_dvc->in_critical_cnt--;
return (sta);
}
/*
* AdvExeScsiQueue() - Send a request to the RISC microcode program.
*
* Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
* add the carrier to the ICQ (Initiator Command Queue), and tickle the
* RISC to notify it a new command is ready to be executed.
*
* If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
* set to SCSI_MAX_RETRY.
*
* Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
* for DMA addresses or math operations are byte swapped to little-endian
* order.
*
* Return:
* ADV_SUCCESS(1) - The request was successfully queued.
* ADV_BUSY(0) - Resource unavailable; Retry again after pending
* request completes.
* ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
* host IC error.
*/
static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
{
AdvPortAddr iop_base;
ADV_PADDR req_paddr;
ADV_CARR_T *new_carrp;
/*
* The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
*/
if (scsiq->target_id > ADV_MAX_TID) {
scsiq->host_status = QHSTA_M_INVALID_DEVICE;
scsiq->done_status = QD_WITH_ERROR;
return ADV_ERROR;
}
iop_base = asc_dvc->iop_base;
/*
* Allocate a carrier ensuring at least one carrier always
* remains on the freelist and initialize fields.
*/
if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
return ADV_BUSY;
}
asc_dvc->carr_freelist = (ADV_CARR_T *)
ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
asc_dvc->carr_pending_cnt++;
/*
* Set the carrier to be a stopper by setting 'next_vpa'
* to the stopper value. The current stopper will be changed
* below to point to the new stopper.
*/
new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
/*
* Clear the ADV_SCSI_REQ_Q done flag.
*/
scsiq->a_flag &= ~ADV_SCSIQ_DONE;
req_paddr = virt_to_bus(scsiq);
BUG_ON(req_paddr & 31);
/* Wait for assertion before making little-endian */
req_paddr = cpu_to_le32(req_paddr);
/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
scsiq->scsiq_rptr = req_paddr;
scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
/*
* Every ADV_CARR_T.carr_pa is byte swapped to little-endian
* order during initialization.
*/
scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
/*
* Use the current stopper to send the ADV_SCSI_REQ_Q command to
* the microcode. The newly allocated stopper will become the new
* stopper.
*/
asc_dvc->icq_sp->areq_vpa = req_paddr;
/*
* Set the 'next_vpa' pointer for the old stopper to be the
* physical address of the new stopper. The RISC can only
* follow physical addresses.
*/
asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
/*
* Set the host adapter stopper pointer to point to the new carrier.
*/
asc_dvc->icq_sp = new_carrp;
if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
/*
* Tickle the RISC to tell it to read its Command Queue Head pointer.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_a' does not work unless the host
* value is cleared.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE,
ADV_TICKLE_NOP);
}
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
/*
* Notify the RISC a carrier is ready by writing the physical
* address of the new carrier stopper to the COMMA register.
*/
AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
le32_to_cpu(new_carrp->carr_pa));
}
return ADV_SUCCESS;
}
/*
* Execute a single 'Scsi_Cmnd'.
*/
static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
{
int ret, err_code;
struct asc_board *boardp = shost_priv(scp->device->host);
ASC_DBG(1, "scp 0x%p\n", scp);
if (ASC_NARROW_BOARD(boardp)) {
ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
struct asc_scsi_q asc_scsi_q;
/* asc_build_req() can not return ASC_BUSY. */
ret = asc_build_req(boardp, scp, &asc_scsi_q);
if (ret == ASC_ERROR) {
ASC_STATS(scp->device->host, build_error);
return ASC_ERROR;
}
ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
kfree(asc_scsi_q.sg_head);
err_code = asc_dvc->err_code;
} else {
ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
ADV_SCSI_REQ_Q *adv_scsiqp;
switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
case ASC_NOERROR:
ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
break;
case ASC_BUSY:
ASC_DBG(1, "adv_build_req ASC_BUSY\n");
/*
* The asc_stats fields 'adv_build_noreq' and
* 'adv_build_nosg' count wide board busy conditions.
* They are updated in adv_build_req and
* adv_get_sglist, respectively.
*/
return ASC_BUSY;
case ASC_ERROR:
default:
ASC_DBG(1, "adv_build_req ASC_ERROR\n");
ASC_STATS(scp->device->host, build_error);
return ASC_ERROR;
}
ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
err_code = adv_dvc->err_code;
}
switch (ret) {
case ASC_NOERROR:
ASC_STATS(scp->device->host, exe_noerror);
/*
* Increment monotonically increasing per device
* successful request counter. Wrapping doesn't matter.
*/
boardp->reqcnt[scp->device->id]++;
ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
break;
case ASC_BUSY:
ASC_STATS(scp->device->host, exe_busy);
break;
case ASC_ERROR:
scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
"err_code 0x%x\n", err_code);
ASC_STATS(scp->device->host, exe_error);
scp->result = HOST_BYTE(DID_ERROR);
break;
default:
scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
"err_code 0x%x\n", err_code);
ASC_STATS(scp->device->host, exe_unknown);
scp->result = HOST_BYTE(DID_ERROR);
break;
}
ASC_DBG(1, "end\n");
return ret;
}
/*
* advansys_queuecommand() - interrupt-driven I/O entrypoint.
*
* This function always returns 0. Command return status is saved
* in the 'scp' result field.
*/
static int
advansys_queuecommand(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
{
struct Scsi_Host *shost = scp->device->host;
int asc_res, result = 0;
ASC_STATS(shost, queuecommand);
scp->scsi_done = done;
asc_res = asc_execute_scsi_cmnd(scp);
switch (asc_res) {
case ASC_NOERROR:
break;
case ASC_BUSY:
result = SCSI_MLQUEUE_HOST_BUSY;
break;
case ASC_ERROR:
default:
asc_scsi_done(scp);
break;
}
return result;
}
static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
{
PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
(PortAddr) (ASC_EISA_CFG_IOP_MASK);
return inpw(eisa_cfg_iop);
}
/*
* Return the BIOS address of the adapter at the specified
* I/O port and with the specified bus type.
*/
static unsigned short __devinit
AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
{
unsigned short cfg_lsw;
unsigned short bios_addr;
/*
* The PCI BIOS is re-located by the motherboard BIOS. Because
* of this the driver can not determine where a PCI BIOS is
* loaded and executes.
*/
if (bus_type & ASC_IS_PCI)
return 0;
if ((bus_type & ASC_IS_EISA) != 0) {
cfg_lsw = AscGetEisaChipCfg(iop_base);
cfg_lsw &= 0x000F;
bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
return bios_addr;
}
cfg_lsw = AscGetChipCfgLsw(iop_base);
/*
* ISA PnP uses the top bit as the 32K BIOS flag
*/
if (bus_type == ASC_IS_ISAPNP)
cfg_lsw &= 0x7FFF;
bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
return bios_addr;
}
static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
{
ushort cfg_lsw;
if (AscGetChipScsiID(iop_base) == new_host_id) {
return (new_host_id);
}
cfg_lsw = AscGetChipCfgLsw(iop_base);
cfg_lsw &= 0xF8FF;
cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
AscSetChipCfgLsw(iop_base, cfg_lsw);
return (AscGetChipScsiID(iop_base));
}
static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
{
unsigned char sc;
AscSetBank(iop_base, 1);
sc = inp(iop_base + IOP_REG_SC);
AscSetBank(iop_base, 0);
return sc;
}
static unsigned char __devinit
AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
{
if (bus_type & ASC_IS_EISA) {
PortAddr eisa_iop;
unsigned char revision;
eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
(PortAddr) ASC_EISA_REV_IOP_MASK;
revision = inp(eisa_iop);
return ASC_CHIP_MIN_VER_EISA - 1 + revision;
}
return AscGetChipVerNo(iop_base);
}
#ifdef CONFIG_ISA
static void __devinit AscEnableIsaDma(uchar dma_channel)
{
if (dma_channel < 4) {
outp(0x000B, (ushort)(0xC0 | dma_channel));
outp(0x000A, dma_channel);
} else if (dma_channel < 8) {
outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
outp(0x00D4, (ushort)(dma_channel - 4));
}
}
#endif /* CONFIG_ISA */
static int AscStopQueueExe(PortAddr iop_base)
{
int count = 0;
if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
ASC_STOP_REQ_RISC_STOP);
do {
if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
ASC_STOP_ACK_RISC_STOP) {
return (1);
}
mdelay(100);
} while (count++ < 20);
}
return (0);
}
static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
{
if (bus_type & ASC_IS_ISA)
return ASC_MAX_ISA_DMA_COUNT;
else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
return ASC_MAX_VL_DMA_COUNT;
return ASC_MAX_PCI_DMA_COUNT;
}
#ifdef CONFIG_ISA
static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
{
ushort channel;
channel = AscGetChipCfgLsw(iop_base) & 0x0003;
if (channel == 0x03)
return (0);
else if (channel == 0x00)
return (7);
return (channel + 4);
}
static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
{
ushort cfg_lsw;
uchar value;
if ((dma_channel >= 5) && (dma_channel <= 7)) {
if (dma_channel == 7)
value = 0x00;
else
value = dma_channel - 4;
cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
cfg_lsw |= value;
AscSetChipCfgLsw(iop_base, cfg_lsw);
return (AscGetIsaDmaChannel(iop_base));
}
return 0;
}
static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
{
uchar speed_value;
AscSetBank(iop_base, 1);
speed_value = AscReadChipDmaSpeed(iop_base);
speed_value &= 0x07;
AscSetBank(iop_base, 0);
return speed_value;
}
static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
{
speed_value &= 0x07;
AscSetBank(iop_base, 1);
AscWriteChipDmaSpeed(iop_base, speed_value);
AscSetBank(iop_base, 0);
return AscGetIsaDmaSpeed(iop_base);
}
#endif /* CONFIG_ISA */
static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
{
int i;
PortAddr iop_base;
ushort warn_code;
uchar chip_version;
iop_base = asc_dvc->iop_base;
warn_code = 0;
asc_dvc->err_code = 0;
if ((asc_dvc->bus_type &
(ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
}
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base, 0);
asc_dvc->bug_fix_cntl = 0;
asc_dvc->pci_fix_asyn_xfer = 0;
asc_dvc->pci_fix_asyn_xfer_always = 0;
/* asc_dvc->init_state initalized in AscInitGetConfig(). */
asc_dvc->sdtr_done = 0;
asc_dvc->cur_total_qng = 0;
asc_dvc->is_in_int = 0;
asc_dvc->in_critical_cnt = 0;
asc_dvc->last_q_shortage = 0;
asc_dvc->use_tagged_qng = 0;
asc_dvc->no_scam = 0;
asc_dvc->unit_not_ready = 0;
asc_dvc->queue_full_or_busy = 0;
asc_dvc->redo_scam = 0;
asc_dvc->res2 = 0;
asc_dvc->min_sdtr_index = 0;
asc_dvc->cfg->can_tagged_qng = 0;
asc_dvc->cfg->cmd_qng_enabled = 0;
asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
asc_dvc->init_sdtr = 0;
asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
asc_dvc->scsi_reset_wait = 3;
asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
asc_dvc->cfg->chip_version = chip_version;
asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
asc_dvc->max_sdtr_index = 7;
if ((asc_dvc->bus_type & ASC_IS_PCI) &&
(chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
asc_dvc->max_sdtr_index = 15;
if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE |
SEC_ENABLE_FILTER));
}
}
if (asc_dvc->bus_type == ASC_IS_PCI) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
}
asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
#ifdef CONFIG_ISA
if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
asc_dvc->bus_type = ASC_IS_ISAPNP;
}
asc_dvc->cfg->isa_dma_channel =
(uchar)AscGetIsaDmaChannel(iop_base);
}
#endif /* CONFIG_ISA */
for (i = 0; i <= ASC_MAX_TID; i++) {
asc_dvc->cur_dvc_qng[i] = 0;
asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
}
return warn_code;
}
static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
{
int retry;
for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
unsigned char read_back;
AscSetChipEEPCmd(iop_base, cmd_reg);
mdelay(1);
read_back = AscGetChipEEPCmd(iop_base);
if (read_back == cmd_reg)
return 1;
}
return 0;
}
static void __devinit AscWaitEEPRead(void)
{
mdelay(1);
}
static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
{
ushort read_wval;
uchar cmd_reg;
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
cmd_reg = addr | ASC_EEP_CMD_READ;
AscWriteEEPCmdReg(iop_base, cmd_reg);
AscWaitEEPRead();
read_wval = AscGetChipEEPData(iop_base);
AscWaitEEPRead();
return read_wval;
}
static ushort __devinit
AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
{
ushort wval;
ushort sum;
ushort *wbuf;
int cfg_beg;
int cfg_end;
int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
int s_addr;
wbuf = (ushort *)cfg_buf;
sum = 0;
/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
sum += *wbuf;
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
wval = AscReadEEPWord(iop_base, (uchar)s_addr);
if (s_addr <= uchar_end_in_config) {
/*
* Swap all char fields - must unswap bytes already swapped
* by AscReadEEPWord().
*/
*wbuf = le16_to_cpu(wval);
} else {
/* Don't swap word field at the end - cntl field. */
*wbuf = wval;
}
sum += wval; /* Checksum treats all EEPROM data as words. */
}
/*
* Read the checksum word which will be compared against 'sum'
* by the caller. Word field already swapped.
*/
*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
return sum;
}
static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
ushort q_addr;
ushort saved_word;
int sta;
iop_base = asc_dvc->iop_base;
sta = 0;
q_addr = ASC_QNO_TO_QADDR(241);
saved_word = AscReadLramWord(iop_base, q_addr);
AscSetChipLramAddr(iop_base, q_addr);
AscSetChipLramData(iop_base, 0x55AA);
mdelay(10);
AscSetChipLramAddr(iop_base, q_addr);
if (AscGetChipLramData(iop_base) == 0x55AA) {
sta = 1;
AscWriteLramWord(iop_base, q_addr, saved_word);
}
return (sta);
}
static void __devinit AscWaitEEPWrite(void)
{
mdelay(20);
}
static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
{
ushort read_back;
int retry;
retry = 0;
while (TRUE) {
AscSetChipEEPData(iop_base, data_reg);
mdelay(1);
read_back = AscGetChipEEPData(iop_base);
if (read_back == data_reg) {
return (1);
}
if (retry++ > ASC_EEP_MAX_RETRY) {
return (0);
}
}
}
static ushort __devinit
AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
{
ushort read_wval;
read_wval = AscReadEEPWord(iop_base, addr);
if (read_wval != word_val) {
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
AscWaitEEPRead();
AscWriteEEPDataReg(iop_base, word_val);
AscWaitEEPRead();
AscWriteEEPCmdReg(iop_base,
(uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
AscWaitEEPWrite();
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
return (AscReadEEPWord(iop_base, addr));
}
return (read_wval);
}
static int __devinit
AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
{
int n_error;
ushort *wbuf;
ushort word;
ushort sum;
int s_addr;
int cfg_beg;
int cfg_end;
int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
wbuf = (ushort *)cfg_buf;
n_error = 0;
sum = 0;
/* Write two config words; AscWriteEEPWord() will swap bytes. */
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
n_error++;
}
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
if (s_addr <= uchar_end_in_config) {
/*
* This is a char field. Swap char fields before they are
* swapped again by AscWriteEEPWord().
*/
word = cpu_to_le16(*wbuf);
if (word !=
AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
n_error++;
}
} else {
/* Don't swap word field at the end - cntl field. */
if (*wbuf !=
AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
n_error++;
}
}
sum += *wbuf; /* Checksum calculated from word values. */
}
/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
*wbuf = sum;
if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
n_error++;
}
/* Read EEPROM back again. */
wbuf = (ushort *)cfg_buf;
/*
* Read two config words; Byte-swapping done by AscReadEEPWord().
*/
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
n_error++;
}
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
if (s_addr <= uchar_end_in_config) {
/*
* Swap all char fields. Must unswap bytes already swapped
* by AscReadEEPWord().
*/
word =
le16_to_cpu(AscReadEEPWord
(iop_base, (uchar)s_addr));
} else {
/* Don't swap word field at the end - cntl field. */
word = AscReadEEPWord(iop_base, (uchar)s_addr);
}
if (*wbuf != word) {
n_error++;
}
}
/* Read checksum; Byte swapping not needed. */
if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
n_error++;
}
return n_error;
}
static int __devinit
AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
{
int retry;
int n_error;
retry = 0;
while (TRUE) {
if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
bus_type)) == 0) {
break;
}
if (++retry > ASC_EEP_MAX_RETRY) {
break;
}
}
return n_error;
}
static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
{
ASCEEP_CONFIG eep_config_buf;
ASCEEP_CONFIG *eep_config;
PortAddr iop_base;
ushort chksum;
ushort warn_code;
ushort cfg_msw, cfg_lsw;
int i;
int write_eep = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
AscStopQueueExe(iop_base);
if ((AscStopChip(iop_base) == FALSE) ||
(AscGetChipScsiCtrl(iop_base) != 0)) {
asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
AscResetChipAndScsiBus(asc_dvc);
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
}
if (AscIsChipHalted(iop_base) == FALSE) {
asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
return (warn_code);
}
AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
return (warn_code);
}
eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
cfg_msw = AscGetChipCfgMsw(iop_base);
cfg_lsw = AscGetChipCfgLsw(iop_base);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
AscSetChipCfgMsw(iop_base, cfg_msw);
}
chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
ASC_DBG(1, "chksum 0x%x\n", chksum);
if (chksum == 0) {
chksum = 0xaa55;
}
if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
if (asc_dvc->cfg->chip_version == 3) {
if (eep_config->cfg_lsw != cfg_lsw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_lsw =
AscGetChipCfgLsw(iop_base);
}
if (eep_config->cfg_msw != cfg_msw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_msw =
AscGetChipCfgMsw(iop_base);
}
}
}
eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
if (chksum != eep_config->chksum) {
if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
ASC_CHIP_VER_PCI_ULTRA_3050) {
ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
eep_config->init_sdtr = 0xFF;
eep_config->disc_enable = 0xFF;
eep_config->start_motor = 0xFF;
eep_config->use_cmd_qng = 0;
eep_config->max_total_qng = 0xF0;
eep_config->max_tag_qng = 0x20;
eep_config->cntl = 0xBFFF;
ASC_EEP_SET_CHIP_ID(eep_config, 7);
eep_config->no_scam = 0;
eep_config->adapter_info[0] = 0;
eep_config->adapter_info[1] = 0;
eep_config->adapter_info[2] = 0;
eep_config->adapter_info[3] = 0;
eep_config->adapter_info[4] = 0;
/* Indicate EEPROM-less board. */
eep_config->adapter_info[5] = 0xBB;
} else {
ASC_PRINT
("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
write_eep = 1;
warn_code |= ASC_WARN_EEPROM_CHKSUM;
}
}
asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
asc_dvc->cfg->disc_enable = eep_config->disc_enable;
asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
asc_dvc->start_motor = eep_config->start_motor;
asc_dvc->dvc_cntl = eep_config->cntl;
asc_dvc->no_scam = eep_config->no_scam;
asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
if (!AscTestExternalLram(asc_dvc)) {
if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
ASC_IS_PCI_ULTRA)) {
eep_config->max_total_qng =
ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
eep_config->max_tag_qng =
ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
} else {
eep_config->cfg_msw |= 0x0800;
cfg_msw |= 0x0800;
AscSetChipCfgMsw(iop_base, cfg_msw);
eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
}
} else {
}
if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
}
if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
}
if (eep_config->max_tag_qng > eep_config->max_total_qng) {
eep_config->max_tag_qng = eep_config->max_total_qng;
}
if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
}
asc_dvc->max_total_qng = eep_config->max_total_qng;
if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
eep_config->use_cmd_qng) {
eep_config->disc_enable = eep_config->use_cmd_qng;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
ASC_EEP_SET_CHIP_ID(eep_config,
ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
!(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
}
for (i = 0; i <= ASC_MAX_TID; i++) {
asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
asc_dvc->cfg->sdtr_period_offset[i] =
(uchar)(ASC_DEF_SDTR_OFFSET |
(asc_dvc->min_sdtr_index << 4));
}
eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
if (write_eep) {
if ((i = AscSetEEPConfig(iop_base, eep_config,
asc_dvc->bus_type)) != 0) {
ASC_PRINT1
("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
i);
} else {
ASC_PRINT
("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
}
}
return (warn_code);
}
static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
unsigned short warn_code = 0;
asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
if (asc_dvc->err_code != 0)
return asc_dvc->err_code;
if (AscFindSignature(asc_dvc->iop_base)) {
warn_code |= AscInitAscDvcVar(asc_dvc);
warn_code |= AscInitFromEEP(asc_dvc);
asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
} else {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
}
switch (warn_code) {
case 0: /* No error */
break;
case ASC_WARN_IO_PORT_ROTATE:
shost_printk(KERN_WARNING, shost, "I/O port address "
"modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
shost_printk(KERN_WARNING, shost, "I/O port increment switch "
"enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
shost_printk(KERN_WARNING, shost, "IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
"disconnects\n");
break;
default:
shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
warn_code);
break;
}
if (asc_dvc->err_code != 0)
shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
return asc_dvc->err_code;
}
static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
PortAddr iop_base = asc_dvc->iop_base;
unsigned short cfg_msw;
unsigned short warn_code = 0;
asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
if (asc_dvc->err_code != 0)
return asc_dvc->err_code;
if (!AscFindSignature(asc_dvc->iop_base)) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return asc_dvc->err_code;
}
cfg_msw = AscGetChipCfgMsw(iop_base);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
AscSetChipCfgMsw(iop_base, cfg_msw);
}
if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
asc_dvc->cfg->cmd_qng_enabled) {
asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
}
#ifdef CONFIG_PCI
if (asc_dvc->bus_type & ASC_IS_PCI) {
cfg_msw &= 0xFFC0;
AscSetChipCfgMsw(iop_base, cfg_msw);
if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
} else {
if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
(pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
asc_dvc->bug_fix_cntl |=
ASC_BUG_FIX_ASYN_USE_SYN;
}
}
} else
#endif /* CONFIG_PCI */
if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
== ASC_CHIP_VER_ASYN_BUG) {
asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
}
}
if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
asc_dvc->cfg->chip_scsi_id) {
asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
}
#ifdef CONFIG_ISA
if (asc_dvc->bus_type & ASC_IS_ISA) {
AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
}
#endif /* CONFIG_ISA */
asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
switch (warn_code) {
case 0: /* No error. */
break;
case ASC_WARN_IO_PORT_ROTATE:
shost_printk(KERN_WARNING, shost, "I/O port address "
"modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
shost_printk(KERN_WARNING, shost, "I/O port increment switch "
"enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
shost_printk(KERN_WARNING, shost, "IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
shost_printk(KERN_WARNING, shost, "tag queuing w/o "
"disconnects\n");
break;
default:
shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
warn_code);
break;
}
if (asc_dvc->err_code != 0)
shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
return asc_dvc->err_code;
}
/*
* EEPROM Configuration.
*
* All drivers should use this structure to set the default EEPROM
* configuration. The BIOS now uses this structure when it is built.
* Additional structure information can be found in a_condor.h where
* the structure is defined.
*
* The *_Field_IsChar structs are needed to correct for endianness.
* These values are read from the board 16 bits at a time directly
* into the structs. Because some fields are char, the values will be
* in the wrong order. The *_Field_IsChar tells when to flip the
* bytes. Data read and written to PCI memory is automatically swapped
* on big-endian platforms so char fields read as words are actually being
* unswapped on big-endian platforms.
*/
static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
0x0000, /* cfg_msw */
0xFFFF, /* disc_enable */
0xFFFF, /* wdtr_able */
0xFFFF, /* sdtr_able */
0xFFFF, /* start_motor */
0xFFFF, /* tagqng_able */
0xFFFF, /* bios_scan */
0, /* scam_tolerant */
7, /* adapter_scsi_id */
0, /* bios_boot_delay */
3, /* scsi_reset_delay */
0, /* bios_id_lun */
0, /* termination */
0, /* reserved1 */
0xFFE7, /* bios_ctrl */
0xFFFF, /* ultra_able */
0, /* reserved2 */
ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* dvc_cntl */
0, /* bug_fix */
0, /* serial_number_word1 */
0, /* serial_number_word2 */
0, /* serial_number_word3 */
0, /* check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* oem_name[16] */
0, /* dvc_err_code */
0, /* adv_err_code */
0, /* adv_err_addr */
0, /* saved_dvc_err_code */
0, /* saved_adv_err_code */
0, /* saved_adv_err_addr */
0 /* num_of_err */
};
static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
0, /* cfg_lsw */
0, /* cfg_msw */
0, /* -disc_enable */
0, /* wdtr_able */
0, /* sdtr_able */
0, /* start_motor */
0, /* tagqng_able */
0, /* bios_scan */
0, /* scam_tolerant */
1, /* adapter_scsi_id */
1, /* bios_boot_delay */
1, /* scsi_reset_delay */
1, /* bios_id_lun */
1, /* termination */
1, /* reserved1 */
0, /* bios_ctrl */
0, /* ultra_able */
0, /* reserved2 */
1, /* max_host_qng */
1, /* max_dvc_qng */
0, /* dvc_cntl */
0, /* bug_fix */
0, /* serial_number_word1 */
0, /* serial_number_word2 */
0, /* serial_number_word3 */
0, /* check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* oem_name[16] */
0, /* dvc_err_code */
0, /* adv_err_code */
0, /* adv_err_addr */
0, /* saved_dvc_err_code */
0, /* saved_adv_err_code */
0, /* saved_adv_err_addr */
0 /* num_of_err */
};
static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
0x4444, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
0x4444, /* 13 sdtr_speed2 */
0x4444, /* 14 sdtr_speed3 */
ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0x4444, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ID_ASP, /* 58 subsysvid */
PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
0, /* 00 cfg_lsw */
0, /* 01 cfg_msw */
0, /* 02 disc_enable */
0, /* 03 wdtr_able */
0, /* 04 sdtr_speed1 */
0, /* 05 start_motor */
0, /* 06 tagqng_able */
0, /* 07 bios_scan */
0, /* 08 scam_tolerant */
1, /* 09 adapter_scsi_id */
1, /* bios_boot_delay */
1, /* 10 scsi_reset_delay */
1, /* bios_id_lun */
1, /* 11 termination_se */
1, /* termination_lvd */
0, /* 12 bios_ctrl */
0, /* 13 sdtr_speed2 */
0, /* 14 sdtr_speed3 */
1, /* 15 max_host_qng */
1, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
0, /* 58 subsysvid */
0, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
0x5555, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
0x5555, /* 13 sdtr_speed2 */
0x5555, /* 14 sdtr_speed3 */
ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0x5555, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ID_ASP, /* 58 subsysvid */
PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
0, /* 00 cfg_lsw */
0, /* 01 cfg_msw */
0, /* 02 disc_enable */
0, /* 03 wdtr_able */
0, /* 04 sdtr_speed1 */
0, /* 05 start_motor */
0, /* 06 tagqng_able */
0, /* 07 bios_scan */
0, /* 08 scam_tolerant */
1, /* 09 adapter_scsi_id */
1, /* bios_boot_delay */
1, /* 10 scsi_reset_delay */
1, /* bios_id_lun */
1, /* 11 termination_se */
1, /* termination_lvd */
0, /* 12 bios_ctrl */
0, /* 13 sdtr_speed2 */
0, /* 14 sdtr_speed3 */
1, /* 15 max_host_qng */
1, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
0, /* 58 subsysvid */
0, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
#ifdef CONFIG_PCI
/*
* Wait for EEPROM command to complete
*/
static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
{
int eep_delay_ms;
for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
ASC_EEP_CMD_DONE) {
break;
}
mdelay(1);
}
if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
0)
BUG();
}
/*
* Read the EEPROM from specified location
*/
static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
{
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_READ | eep_word_addr);
AdvWaitEEPCmd(iop_base);
return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void __devinit
AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort addr, chksum;
ushort *charfields;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void __devinit
AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort *charfields;
ushort addr, chksum;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void __devinit
AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort *charfields;
ushort addr, chksum;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort __devinit
AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort __devinit
AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort __devinit
AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
* ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_3550_CONFIG eep_config;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_3550_EEPROM_Config,
sizeof(ADVEEP_3550_CONFIG));
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet3550EEPConfig(iop_base, &eep_config);
}
/*
* Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_able = eep_config.sdtr_able;
asc_dvc->ultra_able = eep_config.ultra_able;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ADV_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ADV_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination == 0) {
asc_dvc->cfg->termination = 0; /* auto termination */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination == 1) {
asc_dvc->cfg->termination = TERM_CTL_SEL;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination == 2) {
asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination == 3) {
asc_dvc->cfg->termination =
TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
} else {
/*
* The EEPROM 'termination' field contains a bad value. Use
* automatic termination instead.
*/
asc_dvc->cfg->termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
* ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_38C0800_CONFIG eep_config;
uchar tid, termination;
ushort sdtr_speed = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
eep_config.check_sum) {
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
sizeof(ADVEEP_38C0800_CONFIG));
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet38C0800EEPConfig(iop_base, &eep_config);
}
/*
* Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
/*
* For every Target ID if any of its 'sdtr_speed[1234]' bits
* are set, then set an 'sdtr_able' bit for it.
*/
asc_dvc->sdtr_able = 0;
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
if (tid == 0) {
sdtr_speed = asc_dvc->sdtr_speed1;
} else if (tid == 4) {
sdtr_speed = asc_dvc->sdtr_speed2;
} else if (tid == 8) {
sdtr_speed = asc_dvc->sdtr_speed3;
} else if (tid == 12) {
sdtr_speed = asc_dvc->sdtr_speed4;
}
if (sdtr_speed & ADV_MAX_TID) {
asc_dvc->sdtr_able |= (1 << tid);
}
sdtr_speed >>= 4;
}
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ADV_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ADV_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination_se == 0) {
termination = 0; /* auto termination for SE */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_se == 1) {
termination = 0;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_se == 2) {
termination = TERM_SE_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_se == 3) {
termination = TERM_SE;
} else {
/*
* The EEPROM 'termination_se' field contains a bad value.
* Use automatic termination instead.
*/
termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
if (eep_config.termination_lvd == 0) {
asc_dvc->cfg->termination = termination; /* auto termination for LVD */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_lvd == 1) {
asc_dvc->cfg->termination = termination;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_lvd == 2) {
asc_dvc->cfg->termination = termination | TERM_LVD_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_lvd == 3) {
asc_dvc->cfg->termination = termination | TERM_LVD;
} else {
/*
* The EEPROM 'termination_lvd' field contains a bad value.
* Use automatic termination instead.
*/
asc_dvc->cfg->termination = termination;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
* ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_38C1600_CONFIG eep_config;
uchar tid, termination;
ushort sdtr_speed = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
eep_config.check_sum) {
struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
sizeof(ADVEEP_38C1600_CONFIG));
if (PCI_FUNC(pdev->devfn) != 0) {
u8 ints;
/*
* Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
* and old Mac system booting problem. The Expansion
* ROM must be disabled in Function 1 for these systems
*/
eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
/*
* Clear the INTAB (bit 11) if the GPIO 0 input
* indicates the Function 1 interrupt line is wired
* to INTB.
*
* Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
* 1 - Function 1 interrupt line wired to INT A.
* 0 - Function 1 interrupt line wired to INT B.
*
* Note: Function 0 is always wired to INTA.
* Put all 5 GPIO bits in input mode and then read
* their input values.
*/
AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
if ((ints & 0x01) == 0)
eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
}
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet38C1600EEPConfig(iop_base, &eep_config);
}
/*
* Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
asc_dvc->ppr_able = 0;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
/*
* For every Target ID if any of its 'sdtr_speed[1234]' bits
* are set, then set an 'sdtr_able' bit for it.
*/
asc_dvc->sdtr_able = 0;
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
if (tid == 0) {
sdtr_speed = asc_dvc->sdtr_speed1;
} else if (tid == 4) {
sdtr_speed = asc_dvc->sdtr_speed2;
} else if (tid == 8) {
sdtr_speed = asc_dvc->sdtr_speed3;
} else if (tid == 12) {
sdtr_speed = asc_dvc->sdtr_speed4;
}
if (sdtr_speed & ASC_MAX_TID) {
asc_dvc->sdtr_able |= (1 << tid);
}
sdtr_speed >>= 4;
}
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ASC_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ASC_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination_se == 0) {
termination = 0; /* auto termination for SE */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_se == 1) {
termination = 0;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_se == 2) {
termination = TERM_SE_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_se == 3) {
termination = TERM_SE;
} else {
/*
* The EEPROM 'termination_se' field contains a bad value.
* Use automatic termination instead.
*/
termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
if (eep_config.termination_lvd == 0) {
asc_dvc->cfg->termination = termination; /* auto termination for LVD */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_lvd == 1) {
asc_dvc->cfg->termination = termination;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_lvd == 2) {
asc_dvc->cfg->termination = termination | TERM_LVD_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_lvd == 3) {
asc_dvc->cfg->termination = termination | TERM_LVD;
} else {
/*
* The EEPROM 'termination_lvd' field contains a bad value.
* Use automatic termination instead.
*/
asc_dvc->cfg->termination = termination;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Initialize the ADV_DVC_VAR structure.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*/
static int __devinit
AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
unsigned short warn_code = 0;
AdvPortAddr iop_base = asc_dvc->iop_base;
u16 cmd;
int status;
asc_dvc->err_code = 0;
/*
* Save the state of the PCI Configuration Command Register
* "Parity Error Response Control" Bit. If the bit is clear (0),
* in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
* DMA parity errors.
*/
asc_dvc->cfg->control_flag = 0;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if ((cmd & PCI_COMMAND_PARITY) == 0)
asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
asc_dvc->cfg->chip_version =
AdvGetChipVersion(iop_base, asc_dvc->bus_type);
ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
(ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
(ushort)ADV_CHIP_ID_BYTE);
ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
(ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
(ushort)ADV_CHIP_ID_WORD);
/*
* Reset the chip to start and allow register writes.
*/
if (AdvFindSignature(iop_base) == 0) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return ADV_ERROR;
} else {
/*
* The caller must set 'chip_type' to a valid setting.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
/*
* Reset Chip.
*/
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_RESET);
mdelay(100);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_WR_IO_REG);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
status = AdvInitFrom38C1600EEP(asc_dvc);
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
status = AdvInitFrom38C0800EEP(asc_dvc);
} else {
status = AdvInitFrom3550EEP(asc_dvc);
}
warn_code |= status;
}
if (warn_code != 0)
shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
if (asc_dvc->err_code)
shost_printk(KERN_ERR, shost, "error code 0x%x\n",
asc_dvc->err_code);
return asc_dvc->err_code;
}
#endif
static struct scsi_host_template advansys_template = {
.proc_name = DRV_NAME,
#ifdef CONFIG_PROC_FS
.proc_info = advansys_proc_info,
#endif
.name = DRV_NAME,
.info = advansys_info,
.queuecommand = advansys_queuecommand,
.eh_bus_reset_handler = advansys_reset,
.bios_param = advansys_biosparam,
.slave_configure = advansys_slave_configure,
/*
* Because the driver may control an ISA adapter 'unchecked_isa_dma'
* must be set. The flag will be cleared in advansys_board_found
* for non-ISA adapters.
*/
.unchecked_isa_dma = 1,
/*
* All adapters controlled by this driver are capable of large
* scatter-gather lists. According to the mid-level SCSI documentation
* this obviates any performance gain provided by setting
* 'use_clustering'. But empirically while CPU utilization is increased
* by enabling clustering, I/O throughput increases as well.
*/
.use_clustering = ENABLE_CLUSTERING,
};
static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
int req_cnt = 0;
adv_req_t *reqp = NULL;
int sg_cnt = 0;
adv_sgblk_t *sgp;
int warn_code, err_code;
/*
* Allocate buffer carrier structures. The total size
* is about 4 KB, so allocate all at once.
*/
adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
if (!adv_dvc->carrier_buf)
goto kmalloc_failed;
/*
* Allocate up to 'max_host_qng' request structures for the Wide
* board. The total size is about 16 KB, so allocate all at once.
* If the allocation fails decrement and try again.
*/
for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
(ulong)sizeof(adv_req_t) * req_cnt);
if (reqp)
break;
}
if (!reqp)
goto kmalloc_failed;
adv_dvc->orig_reqp = reqp;
/*
* Allocate up to ADV_TOT_SG_BLOCK request structures for
* the Wide board. Each structure is about 136 bytes.
*/
board->adv_sgblkp = NULL;
for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
if (!sgp)
break;
sgp->next_sgblkp = board->adv_sgblkp;
board->adv_sgblkp = sgp;
}
ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
sizeof(adv_sgblk_t) * sg_cnt);
if (!board->adv_sgblkp)
goto kmalloc_failed;
/*
* Point 'adv_reqp' to the request structures and
* link them together.
*/
req_cnt--;
reqp[req_cnt].next_reqp = NULL;
for (; req_cnt > 0; req_cnt--) {
reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
}
board->adv_reqp = &reqp[0];
if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
ASC_DBG(2, "AdvInitAsc3550Driver()\n");
warn_code = AdvInitAsc3550Driver(adv_dvc);
} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
warn_code = AdvInitAsc38C0800Driver(adv_dvc);
} else {
ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
warn_code = AdvInitAsc38C1600Driver(adv_dvc);
}
err_code = adv_dvc->err_code;
if (warn_code || err_code) {
shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
"0x%x\n", warn_code, err_code);
}
goto exit;
kmalloc_failed:
shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
err_code = ADV_ERROR;
exit:
return err_code;
}
static void advansys_wide_free_mem(struct asc_board *board)
{
struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
kfree(adv_dvc->carrier_buf);
adv_dvc->carrier_buf = NULL;
kfree(adv_dvc->orig_reqp);
adv_dvc->orig_reqp = board->adv_reqp = NULL;
while (board->adv_sgblkp) {
adv_sgblk_t *sgp = board->adv_sgblkp;
board->adv_sgblkp = sgp->next_sgblkp;
kfree(sgp);
}
}
static int __devinit advansys_board_found(struct Scsi_Host *shost,
unsigned int iop, int bus_type)
{
struct pci_dev *pdev;
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp = NULL;
ADV_DVC_VAR *adv_dvc_varp = NULL;
int share_irq, warn_code, ret;
pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
if (ASC_NARROW_BOARD(boardp)) {
ASC_DBG(1, "narrow board\n");
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
asc_dvc_varp->bus_type = bus_type;
asc_dvc_varp->drv_ptr = boardp;
asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
asc_dvc_varp->iop_base = iop;
} else {
#ifdef CONFIG_PCI
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
adv_dvc_varp->drv_ptr = boardp;
adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
ASC_DBG(1, "wide board ASC-3550\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
ASC_DBG(1, "wide board ASC-38C0800\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
} else {
ASC_DBG(1, "wide board ASC-38C1600\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
}
boardp->asc_n_io_port = pci_resource_len(pdev, 1);
boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
if (!boardp->ioremap_addr) {
shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
"returned NULL\n",
(long)pci_resource_start(pdev, 1),
boardp->asc_n_io_port);
ret = -ENODEV;
goto err_shost;
}
adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
/*
* Even though it isn't used to access wide boards, other
* than for the debug line below, save I/O Port address so
* that it can be reported.
*/
boardp->ioport = iop;
ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
(ushort)inp(iop + 1), (ushort)inpw(iop));
#endif /* CONFIG_PCI */
}
#ifdef CONFIG_PROC_FS
/*
* Allocate buffer for printing information from
* /proc/scsi/advansys/[0...].
*/
boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
if (!boardp->prtbuf) {
shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
ASC_PRTBUF_SIZE);
ret = -ENOMEM;
goto err_unmap;
}
#endif /* CONFIG_PROC_FS */
if (ASC_NARROW_BOARD(boardp)) {
/*
* Set the board bus type and PCI IRQ before
* calling AscInitGetConfig().
*/
switch (asc_dvc_varp->bus_type) {
#ifdef CONFIG_ISA
case ASC_IS_ISA:
shost->unchecked_isa_dma = TRUE;
share_irq = 0;
break;
case ASC_IS_VL:
shost->unchecked_isa_dma = FALSE;
share_irq = 0;
break;
case ASC_IS_EISA:
shost->unchecked_isa_dma = FALSE;
share_irq = IRQF_SHARED;
break;
#endif /* CONFIG_ISA */
#ifdef CONFIG_PCI
case ASC_IS_PCI:
shost->unchecked_isa_dma = FALSE;
share_irq = IRQF_SHARED;
break;
#endif /* CONFIG_PCI */
default:
shost_printk(KERN_ERR, shost, "unknown adapter type: "
"%d\n", asc_dvc_varp->bus_type);
shost->unchecked_isa_dma = TRUE;
share_irq = 0;
break;
}
/*
* NOTE: AscInitGetConfig() may change the board's
* bus_type value. The bus_type value should no
* longer be used. If the bus_type field must be
* referenced only use the bit-wise AND operator "&".
*/
ASC_DBG(2, "AscInitGetConfig()\n");
ret = AscInitGetConfig(shost) ? -ENODEV : 0;
} else {
#ifdef CONFIG_PCI
/*
* For Wide boards set PCI information before calling
* AdvInitGetConfig().
*/
shost->unchecked_isa_dma = FALSE;
share_irq = IRQF_SHARED;
ASC_DBG(2, "AdvInitGetConfig()\n");
ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
#endif /* CONFIG_PCI */
}
if (ret)
goto err_free_proc;
/*
* Save the EEPROM configuration so that it can be displayed
* from /proc/scsi/advansys/[0...].
*/
if (ASC_NARROW_BOARD(boardp)) {
ASCEEP_CONFIG *ep;
/*
* Set the adapter's target id bit in the 'init_tidmask' field.
*/
boardp->init_tidmask |=
ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
/*
* Save EEPROM settings for the board.
*/
ep = &boardp->eep_config.asc_eep;
ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
ep->start_motor = asc_dvc_varp->start_motor;
ep->cntl = asc_dvc_varp->dvc_cntl;
ep->no_scam = asc_dvc_varp->no_scam;
ep->max_total_qng = asc_dvc_varp->max_total_qng;
ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
/* 'max_tag_qng' is set to the same value for every device. */
ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
/*
* Modify board configuration.
*/
ASC_DBG(2, "AscInitSetConfig()\n");
ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
if (ret)
goto err_free_proc;
} else {
ADVEEP_3550_CONFIG *ep_3550;
ADVEEP_38C0800_CONFIG *ep_38C0800;
ADVEEP_38C1600_CONFIG *ep_38C1600;
/*
* Save Wide EEP Configuration Information.
*/
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
ep_3550 = &boardp->eep_config.adv_3550_eep;
ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_3550->termination = adv_dvc_varp->cfg->termination;
ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
ep_3550->ultra_able = adv_dvc_varp->ultra_able;
ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
ep_3550->start_motor = adv_dvc_varp->start_motor;
ep_3550->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_3550->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_3550->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_3550->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
ep_38C0800->adapter_scsi_id =
adv_dvc_varp->chip_scsi_id;
ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_38C0800->termination_lvd =
adv_dvc_varp->cfg->termination;
ep_38C0800->disc_enable =
adv_dvc_varp->cfg->disc_enable;
ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C0800->start_motor = adv_dvc_varp->start_motor;
ep_38C0800->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_38C0800->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_38C0800->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_38C0800->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
} else {
ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
ep_38C1600->adapter_scsi_id =
adv_dvc_varp->chip_scsi_id;
ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_38C1600->termination_lvd =
adv_dvc_varp->cfg->termination;
ep_38C1600->disc_enable =
adv_dvc_varp->cfg->disc_enable;
ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C1600->start_motor = adv_dvc_varp->start_motor;
ep_38C1600->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_38C1600->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_38C1600->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_38C1600->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
}
/*
* Set the adapter's target id bit in the 'init_tidmask' field.
*/
boardp->init_tidmask |=
ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
}
/*
* Channels are numbered beginning with 0. For AdvanSys one host
* structure supports one channel. Multi-channel boards have a
* separate host structure for each channel.
*/
shost->max_channel = 0;
if (ASC_NARROW_BOARD(boardp)) {
shost->max_id = ASC_MAX_TID + 1;
shost->max_lun = ASC_MAX_LUN + 1;
shost->max_cmd_len = ASC_MAX_CDB_LEN;
shost->io_port = asc_dvc_varp->iop_base;
boardp->asc_n_io_port = ASC_IOADR_GAP;
shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
/* Set maximum number of queues the adapter can handle. */
shost->can_queue = asc_dvc_varp->max_total_qng;
} else {
shost->max_id = ADV_MAX_TID + 1;
shost->max_lun = ADV_MAX_LUN + 1;
shost->max_cmd_len = ADV_MAX_CDB_LEN;
/*
* Save the I/O Port address and length even though
* I/O ports are not used to access Wide boards.
* Instead the Wide boards are accessed with
* PCI Memory Mapped I/O.
*/
shost->io_port = iop;
shost->this_id = adv_dvc_varp->chip_scsi_id;
/* Set maximum number of queues the adapter can handle. */
shost->can_queue = adv_dvc_varp->max_host_qng;
}
/*
* Following v1.3.89, 'cmd_per_lun' is no longer needed
* and should be set to zero.
*
* But because of a bug introduced in v1.3.89 if the driver is
* compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
* SCSI function 'allocate_device' will panic. To allow the driver
* to work as a module in these kernels set 'cmd_per_lun' to 1.
*
* Note: This is wrong. cmd_per_lun should be set to the depth
* you want on untagged devices always.
#ifdef MODULE
*/
shost->cmd_per_lun = 1;
/* #else
shost->cmd_per_lun = 0;
#endif */
/*
* Set the maximum number of scatter-gather elements the
* adapter can handle.
*/
if (ASC_NARROW_BOARD(boardp)) {
/*
* Allow two commands with 'sg_tablesize' scatter-gather
* elements to be executed simultaneously. This value is
* the theoretical hardware limit. It may be decreased
* below.
*/
shost->sg_tablesize =
(((asc_dvc_varp->max_total_qng - 2) / 2) *
ASC_SG_LIST_PER_Q) + 1;
} else {
shost->sg_tablesize = ADV_MAX_SG_LIST;
}
/*
* The value of 'sg_tablesize' can not exceed the SCSI
* mid-level driver definition of SG_ALL. SG_ALL also
* must not be exceeded, because it is used to define the
* size of the scatter-gather table in 'struct asc_sg_head'.
*/
if (shost->sg_tablesize > SG_ALL) {
shost->sg_tablesize = SG_ALL;
}
ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
/* BIOS start address. */
if (ASC_NARROW_BOARD(boardp)) {
shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
asc_dvc_varp->bus_type);
} else {
/*
* Fill-in BIOS board variables. The Wide BIOS saves
* information in LRAM that is used by the driver.
*/
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_SIGNATURE, boardp->bios_signature);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_VERSION, boardp->bios_version);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_CODESEG, boardp->bios_codeseg);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_CODELEN, boardp->bios_codelen);
ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
boardp->bios_signature, boardp->bios_version);
ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
boardp->bios_codeseg, boardp->bios_codelen);
/*
* If the BIOS saved a valid signature, then fill in
* the BIOS code segment base address.
*/
if (boardp->bios_signature == 0x55AA) {
/*
* Convert x86 realmode code segment to a linear
* address by shifting left 4.
*/
shost->base = ((ulong)boardp->bios_codeseg << 4);
} else {
shost->base = 0;
}
}
/*
* Register Board Resources - I/O Port, DMA, IRQ
*/
/* Register DMA Channel for Narrow boards. */
shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
#ifdef CONFIG_ISA
if (ASC_NARROW_BOARD(boardp)) {
/* Register DMA channel for ISA bus. */
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
ret = request_dma(shost->dma_channel, DRV_NAME);
if (ret) {
shost_printk(KERN_ERR, shost, "request_dma() "
"%d failed %d\n",
shost->dma_channel, ret);
goto err_free_proc;
}
AscEnableIsaDma(shost->dma_channel);
}
}
#endif /* CONFIG_ISA */
/* Register IRQ Number. */
ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
DRV_NAME, shost);
if (ret) {
if (ret == -EBUSY) {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"already in use\n", boardp->irq);
} else if (ret == -EINVAL) {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"not valid\n", boardp->irq);
} else {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"failed with %d\n", boardp->irq, ret);
}
goto err_free_dma;
}
/*
* Initialize board RISC chip and enable interrupts.
*/
if (ASC_NARROW_BOARD(boardp)) {
ASC_DBG(2, "AscInitAsc1000Driver()\n");
asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
if (!asc_dvc_varp->overrun_buf) {
ret = -ENOMEM;
goto err_free_wide_mem;
}
warn_code = AscInitAsc1000Driver(asc_dvc_varp);
if (warn_code || asc_dvc_varp->err_code) {
shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
"warn 0x%x, error 0x%x\n",
asc_dvc_varp->init_state, warn_code,
asc_dvc_varp->err_code);
if (asc_dvc_varp->err_code) {
ret = -ENODEV;
kfree(asc_dvc_varp->overrun_buf);
}
}
} else {
if (advansys_wide_init_chip(shost))
ret = -ENODEV;
}
if (ret)
goto err_free_wide_mem;
ASC_DBG_PRT_SCSI_HOST(2, shost);
ret = scsi_add_host(shost, boardp->dev);
if (ret)
goto err_free_wide_mem;
scsi_scan_host(shost);
return 0;
err_free_wide_mem:
advansys_wide_free_mem(boardp);
free_irq(boardp->irq, shost);
err_free_dma:
#ifdef CONFIG_ISA
if (shost->dma_channel != NO_ISA_DMA)
free_dma(shost->dma_channel);
#endif
err_free_proc:
kfree(boardp->prtbuf);
err_unmap:
if (boardp->ioremap_addr)
iounmap(boardp->ioremap_addr);
err_shost:
return ret;
}
/*
* advansys_release()
*
* Release resources allocated for a single AdvanSys adapter.
*/
static int advansys_release(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DBG(1, "begin\n");
scsi_remove_host(shost);
free_irq(board->irq, shost);
#ifdef CONFIG_ISA
if (shost->dma_channel != NO_ISA_DMA) {
ASC_DBG(1, "free_dma()\n");
free_dma(shost->dma_channel);
}
#endif
if (ASC_NARROW_BOARD(board)) {
dma_unmap_single(board->dev,
board->dvc_var.asc_dvc_var.overrun_dma,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
kfree(board->dvc_var.asc_dvc_var.overrun_buf);
} else {
iounmap(board->ioremap_addr);
advansys_wide_free_mem(board);
}
kfree(board->prtbuf);
scsi_host_put(shost);
ASC_DBG(1, "end\n");
return 0;
}
#define ASC_IOADR_TABLE_MAX_IX 11
static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
0x0210, 0x0230, 0x0250, 0x0330
};
/*
* The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
* 00: 10
* 01: 11
* 10: 12
* 11: 15
*/
static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
{
unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
if (chip_irq == 13)
chip_irq = 15;
return chip_irq;
}
static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
{
int err = -ENODEV;
PortAddr iop_base = _asc_def_iop_base[id];
struct Scsi_Host *shost;
struct asc_board *board;
if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
return -ENODEV;
}
ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
if (!AscFindSignature(iop_base))
goto release_region;
if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
goto release_region;
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = advansys_isa_irq_no(iop_base);
board->dev = dev;
err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
if (err)
goto free_host;
dev_set_drvdata(dev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
release_region(iop_base, ASC_IOADR_GAP);
return err;
}
static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
{
int ioport = _asc_def_iop_base[id];
advansys_release(dev_get_drvdata(dev));
release_region(ioport, ASC_IOADR_GAP);
return 0;
}
static struct isa_driver advansys_isa_driver = {
.probe = advansys_isa_probe,
.remove = __devexit_p(advansys_isa_remove),
.driver = {
.owner = THIS_MODULE,
.name = DRV_NAME,
},
};
/*
* The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
* 000: invalid
* 001: 10
* 010: 11
* 011: 12
* 100: invalid
* 101: 14
* 110: 15
* 111: invalid
*/
static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
{
unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
return 0;
return chip_irq;
}
static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
{
int err = -ENODEV;
PortAddr iop_base = _asc_def_iop_base[id];
struct Scsi_Host *shost;
struct asc_board *board;
if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
return -ENODEV;
}
ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
if (!AscFindSignature(iop_base))
goto release_region;
/*
* I don't think this condition can actually happen, but the old
* driver did it, and the chances of finding a VLB setup in 2007
* to do testing with is slight to none.
*/
if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
goto release_region;
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = advansys_vlb_irq_no(iop_base);
board->dev = dev;
err = advansys_board_found(shost, iop_base, ASC_IS_VL);
if (err)
goto free_host;
dev_set_drvdata(dev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
release_region(iop_base, ASC_IOADR_GAP);
return -ENODEV;
}
static struct isa_driver advansys_vlb_driver = {
.probe = advansys_vlb_probe,
.remove = __devexit_p(advansys_isa_remove),
.driver = {
.owner = THIS_MODULE,
.name = "advansys_vlb",
},
};
static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
{ "ABP7401" },
{ "ABP7501" },
{ "" }
};
MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
/*
* EISA is a little more tricky than PCI; each EISA device may have two
* channels, and this driver is written to make each channel its own Scsi_Host
*/
struct eisa_scsi_data {
struct Scsi_Host *host[2];
};
/*
* The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
* 000: 10
* 001: 11
* 010: 12
* 011: invalid
* 100: 14
* 101: 15
* 110: invalid
* 111: invalid
*/
static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
{
unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
if ((chip_irq == 13) || (chip_irq > 15))
return 0;
return chip_irq;
}
static int __devinit advansys_eisa_probe(struct device *dev)
{
int i, ioport, irq = 0;
int err;
struct eisa_device *edev = to_eisa_device(dev);
struct eisa_scsi_data *data;
err = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto fail;
ioport = edev->base_addr + 0xc30;
err = -ENODEV;
for (i = 0; i < 2; i++, ioport += 0x20) {
struct asc_board *board;
struct Scsi_Host *shost;
if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
printk(KERN_WARNING "Region %x-%x busy\n", ioport,
ioport + ASC_IOADR_GAP - 1);
continue;
}
if (!AscFindSignature(ioport)) {
release_region(ioport, ASC_IOADR_GAP);
continue;
}
/*
* I don't know why we need to do this for EISA chips, but
* not for any others. It looks to be equivalent to
* AscGetChipCfgMsw, but I may have overlooked something,
* so I'm not converting it until I get an EISA board to
* test with.
*/
inw(ioport + 4);
if (!irq)
irq = advansys_eisa_irq_no(edev);
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = irq;
board->dev = dev;
err = advansys_board_found(shost, ioport, ASC_IS_EISA);
if (!err) {
data->host[i] = shost;
continue;
}
scsi_host_put(shost);
release_region:
release_region(ioport, ASC_IOADR_GAP);
break;
}
if (err)
goto free_data;
dev_set_drvdata(dev, data);
return 0;
free_data:
kfree(data->host[0]);
kfree(data->host[1]);
kfree(data);
fail:
return err;
}
static __devexit int advansys_eisa_remove(struct device *dev)
{
int i;
struct eisa_scsi_data *data = dev_get_drvdata(dev);
for (i = 0; i < 2; i++) {
int ioport;
struct Scsi_Host *shost = data->host[i];
if (!shost)
continue;
ioport = shost->io_port;
advansys_release(shost);
release_region(ioport, ASC_IOADR_GAP);
}
kfree(data);
return 0;
}
static struct eisa_driver advansys_eisa_driver = {
.id_table = advansys_eisa_table,
.driver = {
.name = DRV_NAME,
.probe = advansys_eisa_probe,
.remove = __devexit_p(advansys_eisa_remove),
}
};
/* PCI Devices supported by this driver */
static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{}
};
MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
static void __devinit advansys_set_latency(struct pci_dev *pdev)
{
if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
(pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
} else {
u8 latency;
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
if (latency < 0x20)
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
}
}
static int __devinit
advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err, ioport;
struct Scsi_Host *shost;
struct asc_board *board;
err = pci_enable_device(pdev);
if (err)
goto fail;
err = pci_request_regions(pdev, DRV_NAME);
if (err)
goto disable_device;
pci_set_master(pdev);
advansys_set_latency(pdev);
err = -ENODEV;
if (pci_resource_len(pdev, 0) == 0)
goto release_region;
ioport = pci_resource_start(pdev, 0);
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = pdev->irq;
board->dev = &pdev->dev;
if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
board->flags |= ASC_IS_WIDE_BOARD;
}
err = advansys_board_found(shost, ioport, ASC_IS_PCI);
if (err)
goto free_host;
pci_set_drvdata(pdev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
pci_release_regions(pdev);
disable_device:
pci_disable_device(pdev);
fail:
return err;
}
static void __devexit advansys_pci_remove(struct pci_dev *pdev)
{
advansys_release(pci_get_drvdata(pdev));
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver advansys_pci_driver = {
.name = DRV_NAME,
.id_table = advansys_pci_tbl,
.probe = advansys_pci_probe,
.remove = __devexit_p(advansys_pci_remove),
};
static int __init advansys_init(void)
{
int error;
error = isa_register_driver(&advansys_isa_driver,
ASC_IOADR_TABLE_MAX_IX);
if (error)
goto fail;
error = isa_register_driver(&advansys_vlb_driver,
ASC_IOADR_TABLE_MAX_IX);
if (error)
goto unregister_isa;
error = eisa_driver_register(&advansys_eisa_driver);
if (error)
goto unregister_vlb;
error = pci_register_driver(&advansys_pci_driver);
if (error)
goto unregister_eisa;
return 0;
unregister_eisa:
eisa_driver_unregister(&advansys_eisa_driver);
unregister_vlb:
isa_unregister_driver(&advansys_vlb_driver);
unregister_isa:
isa_unregister_driver(&advansys_isa_driver);
fail:
return error;
}
static void __exit advansys_exit(void)
{
pci_unregister_driver(&advansys_pci_driver);
eisa_driver_unregister(&advansys_eisa_driver);
isa_unregister_driver(&advansys_vlb_driver);
isa_unregister_driver(&advansys_isa_driver);
}
module_init(advansys_init);
module_exit(advansys_exit);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("advansys/mcode.bin");
MODULE_FIRMWARE("advansys/3550.bin");
MODULE_FIRMWARE("advansys/38C0800.bin");
MODULE_FIRMWARE("advansys/38C1600.bin");