linux_old1/drivers/gpu/drm/i915/i915_gem.c

5465 lines
138 KiB
C

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drmP.h>
#include <drm/drm_vma_manager.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_vgpu.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
#define RQ_BUG_ON(expr)
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable);
static bool cpu_cache_is_coherent(struct drm_device *dev,
enum i915_cache_level level)
{
return HAS_LLC(dev) || level != I915_CACHE_NONE;
}
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
return true;
return obj->pin_display;
}
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static int
i915_gem_wait_for_error(struct i915_gpu_error *error)
{
int ret;
#define EXIT_COND (!i915_reset_in_progress(error) || \
i915_terminally_wedged(error))
if (EXIT_COND)
return 0;
/*
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
* userspace. If it takes that long something really bad is going on and
* we should simply try to bail out and fail as gracefully as possible.
*/
ret = wait_event_interruptible_timeout(error->reset_queue,
EXIT_COND,
10*HZ);
if (ret == 0) {
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
return -EIO;
} else if (ret < 0) {
return ret;
}
#undef EXIT_COND
return 0;
}
int i915_mutex_lock_interruptible(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
WARN_ON(i915_verify_lists(dev));
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
struct drm_i915_gem_object *obj;
size_t pinned;
pinned = 0;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
if (i915_gem_obj_is_pinned(obj))
pinned += i915_gem_obj_ggtt_size(obj);
mutex_unlock(&dev->struct_mutex);
args->aper_size = dev_priv->gtt.base.total;
args->aper_available_size = args->aper_size - pinned;
return 0;
}
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
{
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
char *vaddr = obj->phys_handle->vaddr;
struct sg_table *st;
struct scatterlist *sg;
int i;
if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
return -EINVAL;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
memcpy(vaddr, src, PAGE_SIZE);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(src);
page_cache_release(page);
vaddr += PAGE_SIZE;
}
i915_gem_chipset_flush(obj->base.dev);
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
if (sg_alloc_table(st, 1, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
sg = st->sgl;
sg->offset = 0;
sg->length = obj->base.size;
sg_dma_address(sg) = obj->phys_handle->busaddr;
sg_dma_len(sg) = obj->base.size;
obj->pages = st;
obj->has_dma_mapping = true;
return 0;
}
static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
int ret;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
WARN_ON(ret != -EIO);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
if (obj->dirty) {
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
char *vaddr = obj->phys_handle->vaddr;
int i;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *dst;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
continue;
dst = kmap_atomic(page);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
memcpy(dst, vaddr, PAGE_SIZE);
kunmap_atomic(dst);
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
page_cache_release(page);
vaddr += PAGE_SIZE;
}
obj->dirty = 0;
}
sg_free_table(obj->pages);
kfree(obj->pages);
obj->has_dma_mapping = false;
}
static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
drm_pci_free(obj->base.dev, obj->phys_handle);
}
static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
.get_pages = i915_gem_object_get_pages_phys,
.put_pages = i915_gem_object_put_pages_phys,
.release = i915_gem_object_release_phys,
};
static int
drop_pages(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma, *next;
int ret;
drm_gem_object_reference(&obj->base);
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
if (i915_vma_unbind(vma))
break;
ret = i915_gem_object_put_pages(obj);
drm_gem_object_unreference(&obj->base);
return ret;
}
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
int align)
{
drm_dma_handle_t *phys;
int ret;
if (obj->phys_handle) {
if ((unsigned long)obj->phys_handle->vaddr & (align -1))
return -EBUSY;
return 0;
}
if (obj->madv != I915_MADV_WILLNEED)
return -EFAULT;
if (obj->base.filp == NULL)
return -EINVAL;
ret = drop_pages(obj);
if (ret)
return ret;
/* create a new object */
phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
if (!phys)
return -ENOMEM;
obj->phys_handle = phys;
obj->ops = &i915_gem_phys_ops;
return i915_gem_object_get_pages(obj);
}
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_device *dev = obj->base.dev;
void *vaddr = obj->phys_handle->vaddr + args->offset;
char __user *user_data = to_user_ptr(args->data_ptr);
int ret = 0;
/* We manually control the domain here and pretend that it
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
*/
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten) {
ret = -EFAULT;
goto out;
}
}
drm_clflush_virt_range(vaddr, args->size);
i915_gem_chipset_flush(dev);
out:
intel_fb_obj_flush(obj, false);
return ret;
}
void *i915_gem_object_alloc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
}
void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
kmem_cache_free(dev_priv->objects, obj);
}
static int
i915_gem_create(struct drm_file *file,
struct drm_device *dev,
uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
if (size == 0)
return -EINVAL;
/* Allocate the new object */
obj = i915_gem_alloc_object(dev, size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file, &obj->base, &handle);
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference_unlocked(&obj->base);
if (ret)
return ret;
*handle_p = handle;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
const char *gpu_vaddr, int gpu_offset,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_to_user(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static inline int
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
const char __user *cpu_vaddr,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
/*
* Pins the specified object's pages and synchronizes the object with
* GPU accesses. Sets needs_clflush to non-zero if the caller should
* flush the object from the CPU cache.
*/
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
int *needs_clflush)
{
int ret;
*needs_clflush = 0;
if (!obj->base.filp)
return -EINVAL;
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens. */
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
obj->cache_level);
ret = i915_gem_object_wait_rendering(obj, true);
if (ret)
return ret;
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
return ret;
}
/* Per-page copy function for the shmem pread fastpath.
* Flushes invalid cachelines before reading the target if
* needs_clflush is set. */
static int
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_to_user_inatomic(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
bool swizzled)
{
if (unlikely(swizzled)) {
unsigned long start = (unsigned long) addr;
unsigned long end = (unsigned long) addr + length;
/* For swizzling simply ensure that we always flush both
* channels. Lame, but simple and it works. Swizzled
* pwrite/pread is far from a hotpath - current userspace
* doesn't use it at all. */
start = round_down(start, 128);
end = round_up(end, 128);
drm_clflush_virt_range((void *)start, end - start);
} else {
drm_clflush_virt_range(addr, length);
}
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_to_user_swizzled(user_data,
vaddr, shmem_page_offset,
page_length);
else
ret = __copy_to_user(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap(page);
return ret ? - EFAULT : 0;
}
static int
i915_gem_shmem_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
char __user *user_data;
ssize_t remain;
loff_t offset;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int prefaulted = 0;
int needs_clflush = 0;
struct sg_page_iter sg_iter;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
if (ret)
return ret;
offset = args->offset;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
if (ret == 0)
goto next_page;
mutex_unlock(&dev->struct_mutex);
if (likely(!i915.prefault_disable) && !prefaulted) {
ret = fault_in_multipages_writeable(user_data, remain);
/* Userspace is tricking us, but we've already clobbered
* its pages with the prefault and promised to write the
* data up to the first fault. Hence ignore any errors
* and just continue. */
(void)ret;
prefaulted = 1;
}
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
mutex_lock(&dev->struct_mutex);
if (ret)
goto out;
next_page:
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = i915_gem_shmem_pread(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
void __iomem *vaddr_atomic;
void *vaddr;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (void __force*)vaddr_atomic + page_offset;
unwritten = __copy_from_user_inatomic_nocache(vaddr,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length, ret;
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
if (ret)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
intel_fb_obj_invalidate(obj, ORIGIN_GTT);
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = offset & PAGE_MASK;
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->gtt.mappable, page_base,
page_offset, user_data, page_length)) {
ret = -EFAULT;
goto out_flush;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out_flush:
intel_fb_obj_flush(obj, false);
out_unpin:
i915_gem_object_ggtt_unpin(obj);
out:
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set. */
static int
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
user_data, page_length);
if (needs_clflush_after)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
user_data,
page_length);
else
ret = __copy_from_user(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain;
loff_t offset;
char __user *user_data;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
int needs_clflush_after = 0;
int needs_clflush_before = 0;
struct sg_page_iter sg_iter;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
/* If we're not in the cpu write domain, set ourself into the gtt
* write domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway. */
needs_clflush_after = cpu_write_needs_clflush(obj);
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
}
/* Same trick applies to invalidate partially written cachelines read
* before writing. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
needs_clflush_before =
!cpu_cache_is_coherent(dev, obj->cache_level);
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
i915_gem_object_pin_pages(obj);
offset = args->offset;
obj->dirty = 1;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
int partial_cacheline_write;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch. */
partial_cacheline_write = needs_clflush_before &&
((shmem_page_offset | page_length)
& (boot_cpu_data.x86_clflush_size - 1));
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
mutex_unlock(&dev->struct_mutex);
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
mutex_lock(&dev->struct_mutex);
if (ret)
goto out;
next_page:
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
if (hit_slowpath) {
/*
* Fixup: Flush cpu caches in case we didn't flush the dirty
* cachelines in-line while writing and the object moved
* out of the cpu write domain while we've dropped the lock.
*/
if (!needs_clflush_after &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
if (i915_gem_clflush_object(obj, obj->pin_display))
i915_gem_chipset_flush(dev);
}
}
if (needs_clflush_after)
i915_gem_chipset_flush(dev);
intel_fb_obj_flush(obj, false);
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
if (likely(!i915.prefault_disable)) {
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
args->size);
if (ret)
return -EFAULT;
}
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto put_rpm;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj->tiling_mode == I915_TILING_NONE &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
cpu_write_needs_clflush(obj)) {
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case. */
}
if (ret == -EFAULT || ret == -ENOSPC) {
if (obj->phys_handle)
ret = i915_gem_phys_pwrite(obj, args, file);
else
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
put_rpm:
intel_runtime_pm_put(dev_priv);
return ret;
}
int
i915_gem_check_wedge(struct i915_gpu_error *error,
bool interruptible)
{
if (i915_reset_in_progress(error)) {
/* Non-interruptible callers can't handle -EAGAIN, hence return
* -EIO unconditionally for these. */
if (!interruptible)
return -EIO;
/* Recovery complete, but the reset failed ... */
if (i915_terminally_wedged(error))
return -EIO;
/*
* Check if GPU Reset is in progress - we need intel_ring_begin
* to work properly to reinit the hw state while the gpu is
* still marked as reset-in-progress. Handle this with a flag.
*/
if (!error->reload_in_reset)
return -EAGAIN;
}
return 0;
}
/*
* Compare arbitrary request against outstanding lazy request. Emit on match.
*/
int
i915_gem_check_olr(struct drm_i915_gem_request *req)
{
WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
if (req == req->ring->outstanding_lazy_request)
i915_add_request(req->ring);
return 0;
}
static void fake_irq(unsigned long data)
{
wake_up_process((struct task_struct *)data);
}
static bool missed_irq(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
{
return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}
static int __i915_spin_request(struct drm_i915_gem_request *req)
{
unsigned long timeout;
if (i915_gem_request_get_ring(req)->irq_refcount)
return -EBUSY;
timeout = jiffies + 1;
while (!need_resched()) {
if (i915_gem_request_completed(req, true))
return 0;
if (time_after_eq(jiffies, timeout))
break;
cpu_relax_lowlatency();
}
if (i915_gem_request_completed(req, false))
return 0;
return -EAGAIN;
}
/**
* __i915_wait_request - wait until execution of request has finished
* @req: duh!
* @reset_counter: reset sequence associated with the given request
* @interruptible: do an interruptible wait (normally yes)
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
*
* Note: It is of utmost importance that the passed in seqno and reset_counter
* values have been read by the caller in an smp safe manner. Where read-side
* locks are involved, it is sufficient to read the reset_counter before
* unlocking the lock that protects the seqno. For lockless tricks, the
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
* inserted.
*
* Returns 0 if the request was found within the alloted time. Else returns the
* errno with remaining time filled in timeout argument.
*/
int __i915_wait_request(struct drm_i915_gem_request *req,
unsigned reset_counter,
bool interruptible,
s64 *timeout,
struct intel_rps_client *rps)
{
struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const bool irq_test_in_progress =
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
DEFINE_WAIT(wait);
unsigned long timeout_expire;
s64 before, now;
int ret;
WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
if (list_empty(&req->list))
return 0;
if (i915_gem_request_completed(req, true))
return 0;
timeout_expire = timeout ?
jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
if (INTEL_INFO(dev_priv)->gen >= 6)
gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
/* Record current time in case interrupted by signal, or wedged */
trace_i915_gem_request_wait_begin(req);
before = ktime_get_raw_ns();
/* Optimistic spin for the next jiffie before touching IRQs */
ret = __i915_spin_request(req);
if (ret == 0)
goto out;
if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
ret = -ENODEV;
goto out;
}
for (;;) {
struct timer_list timer;
prepare_to_wait(&ring->irq_queue, &wait,
interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
/* We need to check whether any gpu reset happened in between
* the caller grabbing the seqno and now ... */
if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
/* ... but upgrade the -EAGAIN to an -EIO if the gpu
* is truely gone. */
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
if (ret == 0)
ret = -EAGAIN;
break;
}
if (i915_gem_request_completed(req, false)) {
ret = 0;
break;
}
if (interruptible && signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
if (timeout && time_after_eq(jiffies, timeout_expire)) {
ret = -ETIME;
break;
}
timer.function = NULL;
if (timeout || missed_irq(dev_priv, ring)) {
unsigned long expire;
setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
mod_timer(&timer, expire);
}
io_schedule();
if (timer.function) {
del_singleshot_timer_sync(&timer);
destroy_timer_on_stack(&timer);
}
}
if (!irq_test_in_progress)
ring->irq_put(ring);
finish_wait(&ring->irq_queue, &wait);
out:
now = ktime_get_raw_ns();
trace_i915_gem_request_wait_end(req);
if (timeout) {
s64 tres = *timeout - (now - before);
*timeout = tres < 0 ? 0 : tres;
/*
* Apparently ktime isn't accurate enough and occasionally has a
* bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
* things up to make the test happy. We allow up to 1 jiffy.
*
* This is a regrssion from the timespec->ktime conversion.
*/
if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
*timeout = 0;
}
return ret;
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
list_del(&request->client_list);
request->file_priv = NULL;
spin_unlock(&file_priv->mm.lock);
}
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
trace_i915_gem_request_retire(request);
/* We know the GPU must have read the request to have
* sent us the seqno + interrupt, so use the position
* of tail of the request to update the last known position
* of the GPU head.
*
* Note this requires that we are always called in request
* completion order.
*/
request->ringbuf->last_retired_head = request->postfix;
list_del_init(&request->list);
i915_gem_request_remove_from_client(request);
put_pid(request->pid);
i915_gem_request_unreference(request);
}
static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->ring;
struct drm_i915_gem_request *tmp;
lockdep_assert_held(&engine->dev->struct_mutex);
if (list_empty(&req->list))
return;
do {
tmp = list_first_entry(&engine->request_list,
typeof(*tmp), list);
i915_gem_request_retire(tmp);
} while (tmp != req);
WARN_ON(i915_verify_lists(engine->dev));
}
/**
* Waits for a request to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
int
i915_wait_request(struct drm_i915_gem_request *req)
{
struct drm_device *dev;
struct drm_i915_private *dev_priv;
bool interruptible;
int ret;
BUG_ON(req == NULL);
dev = req->ring->dev;
dev_priv = dev->dev_private;
interruptible = dev_priv->mm.interruptible;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
if (ret)
return ret;
ret = i915_gem_check_olr(req);
if (ret)
return ret;
ret = __i915_wait_request(req,
atomic_read(&dev_priv->gpu_error.reset_counter),
interruptible, NULL, NULL);
if (ret)
return ret;
__i915_gem_request_retire__upto(req);
return 0;
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly)
{
int ret, i;
if (!obj->active)
return 0;
if (readonly) {
if (obj->last_write_req != NULL) {
ret = i915_wait_request(obj->last_write_req);
if (ret)
return ret;
i = obj->last_write_req->ring->id;
if (obj->last_read_req[i] == obj->last_write_req)
i915_gem_object_retire__read(obj, i);
else
i915_gem_object_retire__write(obj);
}
} else {
for (i = 0; i < I915_NUM_RINGS; i++) {
if (obj->last_read_req[i] == NULL)
continue;
ret = i915_wait_request(obj->last_read_req[i]);
if (ret)
return ret;
i915_gem_object_retire__read(obj, i);
}
RQ_BUG_ON(obj->active);
}
return 0;
}
static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
struct drm_i915_gem_request *req)
{
int ring = req->ring->id;
if (obj->last_read_req[ring] == req)
i915_gem_object_retire__read(obj, ring);
else if (obj->last_write_req == req)
i915_gem_object_retire__write(obj);
__i915_gem_request_retire__upto(req);
}
/* A nonblocking variant of the above wait. This is a highly dangerous routine
* as the object state may change during this call.
*/
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
struct intel_rps_client *rps,
bool readonly)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_request *requests[I915_NUM_RINGS];
unsigned reset_counter;
int ret, i, n = 0;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(!dev_priv->mm.interruptible);
if (!obj->active)
return 0;
ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
if (ret)
return ret;
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
if (readonly) {
struct drm_i915_gem_request *req;
req = obj->last_write_req;
if (req == NULL)
return 0;
ret = i915_gem_check_olr(req);
if (ret)
goto err;
requests[n++] = i915_gem_request_reference(req);
} else {
for (i = 0; i < I915_NUM_RINGS; i++) {
struct drm_i915_gem_request *req;
req = obj->last_read_req[i];
if (req == NULL)
continue;
ret = i915_gem_check_olr(req);
if (ret)
goto err;
requests[n++] = i915_gem_request_reference(req);
}
}
mutex_unlock(&dev->struct_mutex);
for (i = 0; ret == 0 && i < n; i++)
ret = __i915_wait_request(requests[i], reset_counter, true,
NULL, rps);
mutex_lock(&dev->struct_mutex);
err:
for (i = 0; i < n; i++) {
if (ret == 0)
i915_gem_object_retire_request(obj, requests[i]);
i915_gem_request_unreference(requests[i]);
}
return ret;
}
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
struct drm_i915_file_private *fpriv = file->driver_priv;
return &fpriv->rps;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & I915_GEM_GPU_DOMAINS)
return -EINVAL;
if (read_domains & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
ret = i915_gem_object_wait_rendering__nonblocking(obj,
to_rps_client(file),
!write_domain);
if (ret)
goto unref;
if (read_domains & I915_GEM_DOMAIN_GTT)
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
else
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
unref:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Pinned buffers may be scanout, so flush the cache */
if (obj->pin_display)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*
* IMPORTANT:
*
* DRM driver writers who look a this function as an example for how to do GEM
* mmap support, please don't implement mmap support like here. The modern way
* to implement DRM mmap support is with an mmap offset ioctl (like
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
* That way debug tooling like valgrind will understand what's going on, hiding
* the mmap call in a driver private ioctl will break that. The i915 driver only
* does cpu mmaps this way because we didn't know better.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
unsigned long addr;
if (args->flags & ~(I915_MMAP_WC))
return -EINVAL;
if (args->flags & I915_MMAP_WC && !cpu_has_pat)
return -ENODEV;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->filp) {
drm_gem_object_unreference_unlocked(obj);
return -EINVAL;
}
addr = vm_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
if (args->flags & I915_MMAP_WC) {
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
down_write(&mm->mmap_sem);
vma = find_vma(mm, addr);
if (vma)
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
else
addr = -ENOMEM;
up_write(&mm->mmap_sem);
}
drm_gem_object_unreference_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
/**
* i915_gem_fault - fault a page into the GTT
* vma: VMA in question
* vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*/
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_ggtt_view view = i915_ggtt_view_normal;
pgoff_t page_offset;
unsigned long pfn;
int ret = 0;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
intel_runtime_pm_get(dev_priv);
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto out;
trace_i915_gem_object_fault(obj, page_offset, true, write);
/* Try to flush the object off the GPU first without holding the lock.
* Upon reacquiring the lock, we will perform our sanity checks and then
* repeat the flush holding the lock in the normal manner to catch cases
* where we are gazumped.
*/
ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
if (ret)
goto unlock;
/* Access to snoopable pages through the GTT is incoherent. */
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ret = -EFAULT;
goto unlock;
}
/* Use a partial view if the object is bigger than the aperture. */
if (obj->base.size >= dev_priv->gtt.mappable_end &&
obj->tiling_mode == I915_TILING_NONE) {
static const unsigned int chunk_size = 256; // 1 MiB
memset(&view, 0, sizeof(view));
view.type = I915_GGTT_VIEW_PARTIAL;
view.params.partial.offset = rounddown(page_offset, chunk_size);
view.params.partial.size =
min_t(unsigned int,
chunk_size,
(vma->vm_end - vma->vm_start)/PAGE_SIZE -
view.params.partial.offset);
}
/* Now pin it into the GTT if needed */
ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
if (ret)
goto unlock;
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto unpin;
ret = i915_gem_object_get_fence(obj);
if (ret)
goto unpin;
/* Finally, remap it using the new GTT offset */
pfn = dev_priv->gtt.mappable_base +
i915_gem_obj_ggtt_offset_view(obj, &view);
pfn >>= PAGE_SHIFT;
if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
/* Overriding existing pages in partial view does not cause
* us any trouble as TLBs are still valid because the fault
* is due to userspace losing part of the mapping or never
* having accessed it before (at this partials' range).
*/
unsigned long base = vma->vm_start +
(view.params.partial.offset << PAGE_SHIFT);
unsigned int i;
for (i = 0; i < view.params.partial.size; i++) {
ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
if (ret)
break;
}
obj->fault_mappable = true;
} else {
if (!obj->fault_mappable) {
unsigned long size = min_t(unsigned long,
vma->vm_end - vma->vm_start,
obj->base.size);
int i;
for (i = 0; i < size >> PAGE_SHIFT; i++) {
ret = vm_insert_pfn(vma,
(unsigned long)vma->vm_start + i * PAGE_SIZE,
pfn + i);
if (ret)
break;
}
obj->fault_mappable = true;
} else
ret = vm_insert_pfn(vma,
(unsigned long)vmf->virtual_address,
pfn + page_offset);
}
unpin:
i915_gem_object_ggtt_unpin_view(obj, &view);
unlock:
mutex_unlock(&dev->struct_mutex);
out:
switch (ret) {
case -EIO:
/*
* We eat errors when the gpu is terminally wedged to avoid
* userspace unduly crashing (gl has no provisions for mmaps to
* fail). But any other -EIO isn't ours (e.g. swap in failure)
* and so needs to be reported.
*/
if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
ret = VM_FAULT_SIGBUS;
break;
}
case -EAGAIN:
/*
* EAGAIN means the gpu is hung and we'll wait for the error
* handler to reset everything when re-faulting in
* i915_mutex_lock_interruptible.
*/
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
ret = VM_FAULT_NOPAGE;
break;
case -ENOMEM:
ret = VM_FAULT_OOM;
break;
case -ENOSPC:
case -EFAULT:
ret = VM_FAULT_SIGBUS;
break;
default:
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
ret = VM_FAULT_SIGBUS;
break;
}
intel_runtime_pm_put(dev_priv);
return ret;
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
if (!obj->fault_mappable)
return;
drm_vma_node_unmap(&obj->base.vma_node,
obj->base.dev->anon_inode->i_mapping);
obj->fault_mappable = false;
}
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
i915_gem_release_mmap(obj);
}
uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
{
uint32_t gtt_size;
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return size;
/* Previous chips need a power-of-two fence region when tiling */
if (INTEL_INFO(dev)->gen == 3)
gtt_size = 1024*1024;
else
gtt_size = 512*1024;
while (gtt_size < size)
gtt_size <<= 1;
return gtt_size;
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
int tiling_mode, bool fenced)
{
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
if (drm_vma_node_has_offset(&obj->base.vma_node))
return 0;
dev_priv->mm.shrinker_no_lock_stealing = true;
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
goto out;
/* Badly fragmented mmap space? The only way we can recover
* space is by destroying unwanted objects. We can't randomly release
* mmap_offsets as userspace expects them to be persistent for the
* lifetime of the objects. The closest we can is to release the
* offsets on purgeable objects by truncating it and marking it purged,
* which prevents userspace from ever using that object again.
*/
i915_gem_shrink(dev_priv,
obj->base.size >> PAGE_SHIFT,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_PURGEABLE);
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
goto out;
i915_gem_shrink_all(dev_priv);
ret = drm_gem_create_mmap_offset(&obj->base);
out:
dev_priv->mm.shrinker_no_lock_stealing = false;
return ret;
}
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
drm_gem_free_mmap_offset(&obj->base);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
uint32_t handle,
uint64_t *offset)
{
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
ret = -EFAULT;
goto out;
}
ret = i915_gem_object_create_mmap_offset(obj);
if (ret)
goto out;
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
i915_gem_object_free_mmap_offset(obj);
if (obj->base.filp == NULL)
return;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
obj->madv = __I915_MADV_PURGED;
}
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
{
struct address_space *mapping;
switch (obj->madv) {
case I915_MADV_DONTNEED:
i915_gem_object_truncate(obj);
case __I915_MADV_PURGED:
return;
}
if (obj->base.filp == NULL)
return;
mapping = file_inode(obj->base.filp)->i_mapping,
invalidate_mapping_pages(mapping, 0, (loff_t)-1);
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int ret;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
WARN_ON(ret != -EIO);
i915_gem_clflush_object(obj, true);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
if (obj->dirty)
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
page_cache_release(page);
}
obj->dirty = 0;
sg_free_table(obj->pages);
kfree(obj->pages);
}
int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
const struct drm_i915_gem_object_ops *ops = obj->ops;
if (obj->pages == NULL)
return 0;
if (obj->pages_pin_count)
return -EBUSY;
BUG_ON(i915_gem_obj_bound_any(obj));
/* ->put_pages might need to allocate memory for the bit17 swizzle
* array, hence protect them from being reaped by removing them from gtt
* lists early. */
list_del(&obj->global_list);
ops->put_pages(obj);
obj->pages = NULL;
i915_gem_object_invalidate(obj);
return 0;
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int page_count, i;
struct address_space *mapping;
struct sg_table *st;
struct scatterlist *sg;
struct sg_page_iter sg_iter;
struct page *page;
unsigned long last_pfn = 0; /* suppress gcc warning */
gfp_t gfp;
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
page_count = obj->base.size / PAGE_SIZE;
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping = file_inode(obj->base.filp)->i_mapping;
gfp = mapping_gfp_mask(mapping);
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
gfp &= ~(__GFP_IO | __GFP_WAIT);
sg = st->sgl;
st->nents = 0;
for (i = 0; i < page_count; i++) {
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page)) {
i915_gem_shrink(dev_priv,
page_count,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_PURGEABLE);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
}
if (IS_ERR(page)) {
/* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*/
i915_gem_shrink_all(dev_priv);
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
goto err_pages;
}
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
sg = sg_next(sg);
continue;
}
#endif
if (!i || page_to_pfn(page) != last_pfn + 1) {
if (i)
sg = sg_next(sg);
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
} else {
sg->length += PAGE_SIZE;
}
last_pfn = page_to_pfn(page);
/* Check that the i965g/gm workaround works. */
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
}
#ifdef CONFIG_SWIOTLB
if (!swiotlb_nr_tbl())
#endif
sg_mark_end(sg);
obj->pages = st;
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj);
if (obj->tiling_mode != I915_TILING_NONE &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
i915_gem_object_pin_pages(obj);
return 0;
err_pages:
sg_mark_end(sg);
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
page_cache_release(sg_page_iter_page(&sg_iter));
sg_free_table(st);
kfree(st);
/* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
if (PTR_ERR(page) == -ENOSPC)
return -ENOMEM;
else
return PTR_ERR(page);
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_get_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_put_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
const struct drm_i915_gem_object_ops *ops = obj->ops;
int ret;
if (obj->pages)
return 0;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_DEBUG("Attempting to obtain a purgeable object\n");
return -EFAULT;
}
BUG_ON(obj->pages_pin_count);
ret = ops->get_pages(obj);
if (ret)
return ret;
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
obj->get_page.sg = obj->pages->sgl;
obj->get_page.last = 0;
return 0;
}
void i915_vma_move_to_active(struct i915_vma *vma,
struct intel_engine_cs *ring)
{
struct drm_i915_gem_object *obj = vma->obj;
/* Add a reference if we're newly entering the active list. */
if (obj->active == 0)
drm_gem_object_reference(&obj->base);
obj->active |= intel_ring_flag(ring);
list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
i915_gem_request_assign(&obj->last_read_req[ring->id],
intel_ring_get_request(ring));
list_move_tail(&vma->mm_list, &vma->vm->active_list);
}
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
{
RQ_BUG_ON(obj->last_write_req == NULL);
RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
i915_gem_request_assign(&obj->last_write_req, NULL);
intel_fb_obj_flush(obj, true);
}
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
{
struct i915_vma *vma;
RQ_BUG_ON(obj->last_read_req[ring] == NULL);
RQ_BUG_ON(!(obj->active & (1 << ring)));
list_del_init(&obj->ring_list[ring]);
i915_gem_request_assign(&obj->last_read_req[ring], NULL);
if (obj->last_write_req && obj->last_write_req->ring->id == ring)
i915_gem_object_retire__write(obj);
obj->active &= ~(1 << ring);
if (obj->active)
return;
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (!list_empty(&vma->mm_list))
list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
}
i915_gem_request_assign(&obj->last_fenced_req, NULL);
drm_gem_object_unreference(&obj->base);
}
static int
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i, j;
/* Carefully retire all requests without writing to the rings */
for_each_ring(ring, dev_priv, i) {
ret = intel_ring_idle(ring);
if (ret)
return ret;
}
i915_gem_retire_requests(dev);
/* Finally reset hw state */
for_each_ring(ring, dev_priv, i) {
intel_ring_init_seqno(ring, seqno);
for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
ring->semaphore.sync_seqno[j] = 0;
}
return 0;
}
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (seqno == 0)
return -EINVAL;
/* HWS page needs to be set less than what we
* will inject to ring
*/
ret = i915_gem_init_seqno(dev, seqno - 1);
if (ret)
return ret;
/* Carefully set the last_seqno value so that wrap
* detection still works
*/
dev_priv->next_seqno = seqno;
dev_priv->last_seqno = seqno - 1;
if (dev_priv->last_seqno == 0)
dev_priv->last_seqno--;
return 0;
}
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* reserve 0 for non-seqno */
if (dev_priv->next_seqno == 0) {
int ret = i915_gem_init_seqno(dev, 0);
if (ret)
return ret;
dev_priv->next_seqno = 1;
}
*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
return 0;
}
/*
* NB: This function is not allowed to fail. Doing so would mean the the
* request is not being tracked for completion but the work itself is
* going to happen on the hardware. This would be a Bad Thing(tm).
*/
void __i915_add_request(struct intel_engine_cs *ring,
struct drm_file *file,
struct drm_i915_gem_object *obj,
bool flush_caches)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_gem_request *request;
struct intel_ringbuffer *ringbuf;
u32 request_start;
int ret;
request = ring->outstanding_lazy_request;
if (WARN_ON(request == NULL))
return;
if (i915.enable_execlists) {
ringbuf = request->ctx->engine[ring->id].ringbuf;
} else
ringbuf = ring->buffer;
/*
* To ensure that this call will not fail, space for its emissions
* should already have been reserved in the ring buffer. Let the ring
* know that it is time to use that space up.
*/
intel_ring_reserved_space_use(ringbuf);
request_start = intel_ring_get_tail(ringbuf);
/*
* Emit any outstanding flushes - execbuf can fail to emit the flush
* after having emitted the batchbuffer command. Hence we need to fix
* things up similar to emitting the lazy request. The difference here
* is that the flush _must_ happen before the next request, no matter
* what.
*/
if (flush_caches) {
if (i915.enable_execlists)
ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
else
ret = intel_ring_flush_all_caches(ring);
/* Not allowed to fail! */
WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
}
/* Record the position of the start of the request so that
* should we detect the updated seqno part-way through the
* GPU processing the request, we never over-estimate the
* position of the head.
*/
request->postfix = intel_ring_get_tail(ringbuf);
if (i915.enable_execlists)
ret = ring->emit_request(ringbuf, request);
else {
ret = ring->add_request(ring);
request->tail = intel_ring_get_tail(ringbuf);
}
/* Not allowed to fail! */
WARN(ret, "emit|add_request failed: %d!\n", ret);
request->head = request_start;
/* Whilst this request exists, batch_obj will be on the
* active_list, and so will hold the active reference. Only when this
* request is retired will the the batch_obj be moved onto the
* inactive_list and lose its active reference. Hence we do not need
* to explicitly hold another reference here.
*/
request->batch_obj = obj;
request->emitted_jiffies = jiffies;
list_add_tail(&request->list, &ring->request_list);
request->file_priv = NULL;
if (file) {
struct drm_i915_file_private *file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
request->pid = get_pid(task_pid(current));
}
trace_i915_gem_request_add(request);
ring->outstanding_lazy_request = NULL;
i915_queue_hangcheck(ring->dev);
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
intel_mark_busy(dev_priv->dev);
/* Sanity check that the reserved size was large enough. */
intel_ring_reserved_space_end(ringbuf);
}
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
const struct intel_context *ctx)
{
unsigned long elapsed;
elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
if (ctx->hang_stats.banned)
return true;
if (ctx->hang_stats.ban_period_seconds &&
elapsed <= ctx->hang_stats.ban_period_seconds) {
if (!i915_gem_context_is_default(ctx)) {
DRM_DEBUG("context hanging too fast, banning!\n");
return true;
} else if (i915_stop_ring_allow_ban(dev_priv)) {
if (i915_stop_ring_allow_warn(dev_priv))
DRM_ERROR("gpu hanging too fast, banning!\n");
return true;
}
}
return false;
}
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
struct intel_context *ctx,
const bool guilty)
{
struct i915_ctx_hang_stats *hs;
if (WARN_ON(!ctx))
return;
hs = &ctx->hang_stats;
if (guilty) {
hs->banned = i915_context_is_banned(dev_priv, ctx);
hs->batch_active++;
hs->guilty_ts = get_seconds();
} else {
hs->batch_pending++;
}
}
void i915_gem_request_free(struct kref *req_ref)
{
struct drm_i915_gem_request *req = container_of(req_ref,
typeof(*req), ref);
struct intel_context *ctx = req->ctx;
if (ctx) {
if (i915.enable_execlists) {
struct intel_engine_cs *ring = req->ring;
if (ctx != ring->default_context)
intel_lr_context_unpin(ring, ctx);
}
i915_gem_context_unreference(ctx);
}
kmem_cache_free(req->i915->requests, req);
}
int i915_gem_request_alloc(struct intel_engine_cs *ring,
struct intel_context *ctx,
struct drm_i915_gem_request **req_out)
{
struct drm_i915_private *dev_priv = to_i915(ring->dev);
struct drm_i915_gem_request *req;
int ret;
if (!req_out)
return -EINVAL;
if ((*req_out = ring->outstanding_lazy_request) != NULL)
return 0;
req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
if (req == NULL)
return -ENOMEM;
ret = i915_gem_get_seqno(ring->dev, &req->seqno);
if (ret)
goto err;
kref_init(&req->ref);
req->i915 = dev_priv;
req->ring = ring;
req->ctx = ctx;
i915_gem_context_reference(req->ctx);
if (i915.enable_execlists)
ret = intel_logical_ring_alloc_request_extras(req);
else
ret = intel_ring_alloc_request_extras(req);
if (ret) {
i915_gem_context_unreference(req->ctx);
goto err;
}
/*
* Reserve space in the ring buffer for all the commands required to
* eventually emit this request. This is to guarantee that the
* i915_add_request() call can't fail. Note that the reserve may need
* to be redone if the request is not actually submitted straight
* away, e.g. because a GPU scheduler has deferred it.
*
* Note further that this call merely notes the reserve request. A
* subsequent call to *_ring_begin() is required to actually ensure
* that the reservation is available. Without the begin, if the
* request creator immediately submitted the request without adding
* any commands to it then there might not actually be sufficient
* room for the submission commands. Unfortunately, the current
* *_ring_begin() implementations potentially call back here to
* i915_gem_request_alloc(). Thus calling _begin() here would lead to
* infinite recursion! Until that back call path is removed, it is
* necessary to do a manual _begin() outside.
*/
intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
*req_out = ring->outstanding_lazy_request = req;
return 0;
err:
kmem_cache_free(dev_priv->requests, req);
return ret;
}
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
intel_ring_reserved_space_cancel(req->ringbuf);
i915_gem_request_unreference(req);
}
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *ring)
{
struct drm_i915_gem_request *request;
list_for_each_entry(request, &ring->request_list, list) {
if (i915_gem_request_completed(request, false))
continue;
return request;
}
return NULL;
}
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
{
struct drm_i915_gem_request *request;
bool ring_hung;
request = i915_gem_find_active_request(ring);
if (request == NULL)
return;
ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
i915_set_reset_status(dev_priv, request->ctx, ring_hung);
list_for_each_entry_continue(request, &ring->request_list, list)
i915_set_reset_status(dev_priv, request->ctx, false);
}
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
{
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list[ring->id]);
i915_gem_object_retire__read(obj, ring->id);
}
/*
* Clear the execlists queue up before freeing the requests, as those
* are the ones that keep the context and ringbuffer backing objects
* pinned in place.
*/
while (!list_empty(&ring->execlist_queue)) {
struct drm_i915_gem_request *submit_req;
submit_req = list_first_entry(&ring->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
list_del(&submit_req->execlist_link);
if (submit_req->ctx != ring->default_context)
intel_lr_context_unpin(ring, submit_req->ctx);
i915_gem_request_unreference(submit_req);
}
/*
* We must free the requests after all the corresponding objects have
* been moved off active lists. Which is the same order as the normal
* retire_requests function does. This is important if object hold
* implicit references on things like e.g. ppgtt address spaces through
* the request.
*/
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
i915_gem_request_retire(request);
}
/* This may not have been flushed before the reset, so clean it now */
i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
}
void i915_gem_restore_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
/*
* Commit delayed tiling changes if we have an object still
* attached to the fence, otherwise just clear the fence.
*/
if (reg->obj) {
i915_gem_object_update_fence(reg->obj, reg,
reg->obj->tiling_mode);
} else {
i915_gem_write_fence(dev, i, NULL);
}
}
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
/*
* Before we free the objects from the requests, we need to inspect
* them for finding the guilty party. As the requests only borrow
* their reference to the objects, the inspection must be done first.
*/
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_status(dev_priv, ring);
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_cleanup(dev_priv, ring);
i915_gem_context_reset(dev);
i915_gem_restore_fences(dev);
WARN_ON(i915_verify_lists(dev));
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
{
WARN_ON(i915_verify_lists(ring->dev));
/* Retire requests first as we use it above for the early return.
* If we retire requests last, we may use a later seqno and so clear
* the requests lists without clearing the active list, leading to
* confusion.
*/
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_gem_request_completed(request, true))
break;
i915_gem_request_retire(request);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate,
* before we free the context associated with the requests.
*/
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list[ring->id]);
if (!list_empty(&obj->last_read_req[ring->id]->list))
break;
i915_gem_object_retire__read(obj, ring->id);
}
if (unlikely(ring->trace_irq_req &&
i915_gem_request_completed(ring->trace_irq_req, true))) {
ring->irq_put(ring);
i915_gem_request_assign(&ring->trace_irq_req, NULL);
}
WARN_ON(i915_verify_lists(ring->dev));
}
bool
i915_gem_retire_requests(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
bool idle = true;
int i;
for_each_ring(ring, dev_priv, i) {
i915_gem_retire_requests_ring(ring);
idle &= list_empty(&ring->request_list);
if (i915.enable_execlists) {
unsigned long flags;
spin_lock_irqsave(&ring->execlist_lock, flags);
idle &= list_empty(&ring->execlist_queue);
spin_unlock_irqrestore(&ring->execlist_lock, flags);
intel_execlists_retire_requests(ring);
}
}
if (idle)
mod_delayed_work(dev_priv->wq,
&dev_priv->mm.idle_work,
msecs_to_jiffies(100));
return idle;
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), mm.retire_work.work);
struct drm_device *dev = dev_priv->dev;
bool idle;
/* Come back later if the device is busy... */
idle = false;
if (mutex_trylock(&dev->struct_mutex)) {
idle = i915_gem_retire_requests(dev);
mutex_unlock(&dev->struct_mutex);
}
if (!idle)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
}
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), mm.idle_work.work);
struct drm_device *dev = dev_priv->dev;
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i)
if (!list_empty(&ring->request_list))
return;
intel_mark_idle(dev);
if (mutex_trylock(&dev->struct_mutex)) {
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_batch_pool_fini(&ring->batch_pool);
mutex_unlock(&dev->struct_mutex);
}
}
/**
* Ensures that an object will eventually get non-busy by flushing any required
* write domains, emitting any outstanding lazy request and retiring and
* completed requests.
*/
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
int ret, i;
if (!obj->active)
return 0;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct drm_i915_gem_request *req;
req = obj->last_read_req[i];
if (req == NULL)
continue;
if (list_empty(&req->list))
goto retire;
ret = i915_gem_check_olr(req);
if (ret)
return ret;
if (i915_gem_request_completed(req, true)) {
__i915_gem_request_retire__upto(req);
retire:
i915_gem_object_retire__read(obj, i);
}
}
return 0;
}
/**
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
* @DRM_IOCTL_ARGS: standard ioctl arguments
*
* Returns 0 if successful, else an error is returned with the remaining time in
* the timeout parameter.
* -ETIME: object is still busy after timeout
* -ERESTARTSYS: signal interrupted the wait
* -ENONENT: object doesn't exist
* Also possible, but rare:
* -EAGAIN: GPU wedged
* -ENOMEM: damn
* -ENODEV: Internal IRQ fail
* -E?: The add request failed
*
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
* non-zero timeout parameter the wait ioctl will wait for the given number of
* nanoseconds on an object becoming unbusy. Since the wait itself does so
* without holding struct_mutex the object may become re-busied before this
* function completes. A similar but shorter * race condition exists in the busy
* ioctl
*/
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_wait *args = data;
struct drm_i915_gem_object *obj;
struct drm_i915_gem_request *req[I915_NUM_RINGS];
unsigned reset_counter;
int i, n = 0;
int ret;
if (args->flags != 0)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
if (&obj->base == NULL) {
mutex_unlock(&dev->struct_mutex);
return -ENOENT;
}
/* Need to make sure the object gets inactive eventually. */
ret = i915_gem_object_flush_active(obj);
if (ret)
goto out;
if (!obj->active)
goto out;
/* Do this after OLR check to make sure we make forward progress polling
* on this IOCTL with a timeout == 0 (like busy ioctl)
*/
if (args->timeout_ns == 0) {
ret = -ETIME;
goto out;
}
drm_gem_object_unreference(&obj->base);
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
for (i = 0; i < I915_NUM_RINGS; i++) {
if (obj->last_read_req[i] == NULL)
continue;
req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
}
mutex_unlock(&dev->struct_mutex);
for (i = 0; i < n; i++) {
if (ret == 0)
ret = __i915_wait_request(req[i], reset_counter, true,
args->timeout_ns > 0 ? &args->timeout_ns : NULL,
file->driver_priv);
i915_gem_request_unreference__unlocked(req[i]);
}
return ret;
out:
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_engine_cs *to,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *from;
int ret;
from = i915_gem_request_get_ring(req);
if (to == from)
return 0;
if (i915_gem_request_completed(req, true))
return 0;
ret = i915_gem_check_olr(req);
if (ret)
return ret;
if (!i915_semaphore_is_enabled(obj->base.dev)) {
struct drm_i915_private *i915 = to_i915(obj->base.dev);
ret = __i915_wait_request(req,
atomic_read(&i915->gpu_error.reset_counter),
i915->mm.interruptible,
NULL,
&i915->rps.semaphores);
if (ret)
return ret;
i915_gem_object_retire_request(obj, req);
} else {
int idx = intel_ring_sync_index(from, to);
u32 seqno = i915_gem_request_get_seqno(req);
if (seqno <= from->semaphore.sync_seqno[idx])
return 0;
trace_i915_gem_ring_sync_to(from, to, req);
ret = to->semaphore.sync_to(to, from, seqno);
if (ret)
return ret;
/* We use last_read_req because sync_to()
* might have just caused seqno wrap under
* the radar.
*/
from->semaphore.sync_seqno[idx] =
i915_gem_request_get_seqno(obj->last_read_req[from->id]);
}
return 0;
}
/**
* i915_gem_object_sync - sync an object to a ring.
*
* @obj: object which may be in use on another ring.
* @to: ring we wish to use the object on. May be NULL.
*
* This code is meant to abstract object synchronization with the GPU.
* Calling with NULL implies synchronizing the object with the CPU
* rather than a particular GPU ring. Conceptually we serialise writes
* between engines inside the GPU. We only allow on engine to write
* into a buffer at any time, but multiple readers. To ensure each has
* a coherent view of memory, we must:
*
* - If there is an outstanding write request to the object, the new
* request must wait for it to complete (either CPU or in hw, requests
* on the same ring will be naturally ordered).
*
* - If we are a write request (pending_write_domain is set), the new
* request must wait for outstanding read requests to complete.
*
* Returns 0 if successful, else propagates up the lower layer error.
*/
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_engine_cs *to)
{
const bool readonly = obj->base.pending_write_domain == 0;
struct drm_i915_gem_request *req[I915_NUM_RINGS];
int ret, i, n;
if (!obj->active)
return 0;
if (to == NULL)
return i915_gem_object_wait_rendering(obj, readonly);
n = 0;
if (readonly) {
if (obj->last_write_req)
req[n++] = obj->last_write_req;
} else {
for (i = 0; i < I915_NUM_RINGS; i++)
if (obj->last_read_req[i])
req[n++] = obj->last_read_req[i];
}
for (i = 0; i < n; i++) {
ret = __i915_gem_object_sync(obj, to, req[i]);
if (ret)
return ret;
}
return 0;
}
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
u32 old_write_domain, old_read_domains;
/* Force a pagefault for domain tracking on next user access */
i915_gem_release_mmap(obj);
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
return;
/* Wait for any direct GTT access to complete */
mb();
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
}
int i915_vma_unbind(struct i915_vma *vma)
{
struct drm_i915_gem_object *obj = vma->obj;
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
if (list_empty(&vma->vma_link))
return 0;
if (!drm_mm_node_allocated(&vma->node)) {
i915_gem_vma_destroy(vma);
return 0;
}
if (vma->pin_count)
return -EBUSY;
BUG_ON(obj->pages == NULL);
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
/* Continue on if we fail due to EIO, the GPU is hung so we
* should be safe and we need to cleanup or else we might
* cause memory corruption through use-after-free.
*/
if (i915_is_ggtt(vma->vm) &&
vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
i915_gem_object_finish_gtt(obj);
/* release the fence reg _after_ flushing */
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
}
trace_i915_vma_unbind(vma);
vma->vm->unbind_vma(vma);
vma->bound = 0;
list_del_init(&vma->mm_list);
if (i915_is_ggtt(vma->vm)) {
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
obj->map_and_fenceable = false;
} else if (vma->ggtt_view.pages) {
sg_free_table(vma->ggtt_view.pages);
kfree(vma->ggtt_view.pages);
vma->ggtt_view.pages = NULL;
}
}
drm_mm_remove_node(&vma->node);
i915_gem_vma_destroy(vma);
/* Since the unbound list is global, only move to that list if
* no more VMAs exist. */
if (list_empty(&obj->vma_list)) {
i915_gem_gtt_finish_object(obj);
list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
}
/* And finally now the object is completely decoupled from this vma,
* we can drop its hold on the backing storage and allow it to be
* reaped by the shrinker.
*/
i915_gem_object_unpin_pages(obj);
return 0;
}
int i915_gpu_idle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i;
/* Flush everything onto the inactive list. */
for_each_ring(ring, dev_priv, i) {
if (!i915.enable_execlists) {
struct drm_i915_gem_request *req;
ret = i915_gem_request_alloc(ring, ring->default_context, &req);
if (ret)
return ret;
ret = i915_switch_context(req);
if (ret) {
i915_gem_request_cancel(req);
return ret;
}
i915_add_request_no_flush(req->ring);
}
WARN_ON(ring->outstanding_lazy_request);
ret = intel_ring_idle(ring);
if (ret)
return ret;
}
WARN_ON(i915_verify_lists(dev));
return 0;
}
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fence_reg;
int fence_pitch_shift;
if (INTEL_INFO(dev)->gen >= 6) {
fence_reg = FENCE_REG_SANDYBRIDGE_0;
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
} else {
fence_reg = FENCE_REG_965_0;
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
}
fence_reg += reg * 8;
/* To w/a incoherency with non-atomic 64-bit register updates,
* we split the 64-bit update into two 32-bit writes. In order
* for a partial fence not to be evaluated between writes, we
* precede the update with write to turn off the fence register,
* and only enable the fence as the last step.
*
* For extra levels of paranoia, we make sure each step lands
* before applying the next step.
*/
I915_WRITE(fence_reg, 0);
POSTING_READ(fence_reg);
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint64_t val;
/* Adjust fence size to match tiled area */
if (obj->tiling_mode != I915_TILING_NONE) {
uint32_t row_size = obj->stride *
(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
size = (size / row_size) * row_size;
}
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
0xfffff000) << 32;
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE(fence_reg + 4, val >> 32);
POSTING_READ(fence_reg + 4);
I915_WRITE(fence_reg + 0, val);
POSTING_READ(fence_reg);
} else {
I915_WRITE(fence_reg + 4, 0);
POSTING_READ(fence_reg + 4);
}
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
int pitch_val;
int tile_width;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint32_t pitch_val;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
i915_gem_obj_ggtt_offset(obj), size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
mb();
WARN(obj && (!obj->stride || !obj->tiling_mode),
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
obj->stride, obj->tiling_mode);
if (IS_GEN2(dev))
i830_write_fence_reg(dev, reg, obj);
else if (IS_GEN3(dev))
i915_write_fence_reg(dev, reg, obj);
else if (INTEL_INFO(dev)->gen >= 4)
i965_write_fence_reg(dev, reg, obj);
/* And similarly be paranoid that no direct access to this region
* is reordered to before the fence is installed.
*/
if (i915_gem_object_needs_mb(obj))
mb();
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
obj->fence_dirty = false;
}
static int
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
{
if (obj->last_fenced_req) {
int ret = i915_wait_request(obj->last_fenced_req);
if (ret)
return ret;
i915_gem_request_assign(&obj->last_fenced_req, NULL);
}
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct drm_i915_fence_reg *fence;
int ret;
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
fence = &dev_priv->fence_regs[obj->fence_reg];
if (WARN_ON(fence->pin_count))
return -EBUSY;
i915_gem_object_fence_lost(obj);
i915_gem_object_update_fence(obj, fence, false);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
goto deadlock;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
deadlock:
/* Wait for completion of pending flips which consume fences */
if (intel_has_pending_fb_unpin(dev))
return ERR_PTR(-EAGAIN);
return ERR_PTR(-EDEADLK);
}
/**
* i915_gem_object_get_fence - set up fencing for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*
* For an untiled surface, this removes any existing fence.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
}
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
if (WARN_ON(!obj->map_and_fenceable))
return -EINVAL;
reg = i915_find_fence_reg(dev);
if (IS_ERR(reg))
return PTR_ERR(reg);
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_wait_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
return 0;
}
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
unsigned long cache_level)
{
struct drm_mm_node *gtt_space = &vma->node;
struct drm_mm_node *other;
/*
* On some machines we have to be careful when putting differing types
* of snoopable memory together to avoid the prefetcher crossing memory
* domains and dying. During vm initialisation, we decide whether or not
* these constraints apply and set the drm_mm.color_adjust
* appropriately.
*/
if (vma->vm->mm.color_adjust == NULL)
return true;
if (!drm_mm_node_allocated(gtt_space))
return true;
if (list_empty(&gtt_space->node_list))
return true;
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
if (other->allocated && !other->hole_follows && other->color != cache_level)
return false;
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
return false;
return true;
}
/**
* Finds free space in the GTT aperture and binds the object or a view of it
* there.
*/
static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *ggtt_view,
unsigned alignment,
uint64_t flags)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 size, fence_size, fence_alignment, unfenced_alignment;
unsigned long start =
flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
unsigned long end =
flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
struct i915_vma *vma;
int ret;
if (i915_is_ggtt(vm)) {
u32 view_size;
if (WARN_ON(!ggtt_view))
return ERR_PTR(-EINVAL);
view_size = i915_ggtt_view_size(obj, ggtt_view);
fence_size = i915_gem_get_gtt_size(dev,
view_size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev,
view_size,
obj->tiling_mode,
true);
unfenced_alignment = i915_gem_get_gtt_alignment(dev,
view_size,
obj->tiling_mode,
false);
size = flags & PIN_MAPPABLE ? fence_size : view_size;
} else {
fence_size = i915_gem_get_gtt_size(dev,
obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode,
true);
unfenced_alignment =
i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode,
false);
size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
}
if (alignment == 0)
alignment = flags & PIN_MAPPABLE ? fence_alignment :
unfenced_alignment;
if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
ggtt_view ? ggtt_view->type : 0,
alignment);
return ERR_PTR(-EINVAL);
}
/* If binding the object/GGTT view requires more space than the entire
* aperture has, reject it early before evicting everything in a vain
* attempt to find space.
*/
if (size > end) {
DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
ggtt_view ? ggtt_view->type : 0,
size,
flags & PIN_MAPPABLE ? "mappable" : "total",
end);
return ERR_PTR(-E2BIG);
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ERR_PTR(ret);
i915_gem_object_pin_pages(obj);
vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
i915_gem_obj_lookup_or_create_vma(obj, vm);
if (IS_ERR(vma))
goto err_unpin;
search_free:
ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
size, alignment,
obj->cache_level,
start, end,
DRM_MM_SEARCH_DEFAULT,
DRM_MM_CREATE_DEFAULT);
if (ret) {
ret = i915_gem_evict_something(dev, vm, size, alignment,
obj->cache_level,
start, end,
flags);
if (ret == 0)
goto search_free;
goto err_free_vma;
}
if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
ret = -EINVAL;
goto err_remove_node;
}
ret = i915_gem_gtt_prepare_object(obj);
if (ret)
goto err_remove_node;
trace_i915_vma_bind(vma, flags);
ret = i915_vma_bind(vma, obj->cache_level, flags);
if (ret)
goto err_finish_gtt;
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
list_add_tail(&vma->mm_list, &vm->inactive_list);
return vma;
err_finish_gtt:
i915_gem_gtt_finish_object(obj);
err_remove_node:
drm_mm_remove_node(&vma->node);
err_free_vma:
i915_gem_vma_destroy(vma);
vma = ERR_PTR(ret);
err_unpin:
i915_gem_object_unpin_pages(obj);
return vma;
}
bool
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
bool force)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return false;
/*
* Stolen memory is always coherent with the GPU as it is explicitly
* marked as wc by the system, or the system is cache-coherent.
*/
if (obj->stolen || obj->phys_handle)
return false;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
obj->cache_dirty = true;
return false;
}
trace_i915_gem_object_clflush(obj);
drm_clflush_sg(obj->pages);
obj->cache_dirty = false;
return true;
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*/
wmb();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
intel_fb_obj_flush(obj, false);
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
if (i915_gem_clflush_object(obj, obj->pin_display))
i915_gem_chipset_flush(obj->base.dev);
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
intel_fb_obj_flush(obj, false);
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
struct i915_vma *vma;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_flush_cpu_write_domain(obj);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* GTT domain upon first access.
*/
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
mb();
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
if (write)
intel_fb_obj_invalidate(obj, ORIGIN_GTT);
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
/* And bump the LRU for this access */
vma = i915_gem_obj_to_ggtt(obj);
if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
list_move_tail(&vma->mm_list,
&to_i915(obj->base.dev)->gtt.base.inactive_list);
return 0;
}
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev = obj->base.dev;
struct i915_vma *vma, *next;
int ret;
if (obj->cache_level == cache_level)
return 0;
if (i915_gem_obj_is_pinned(obj)) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return -EBUSY;
}
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
if (!i915_gem_valid_gtt_space(vma, cache_level)) {
ret = i915_vma_unbind(vma);
if (ret)
return ret;
}
}
if (i915_gem_obj_bound_any(obj)) {
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
i915_gem_object_finish_gtt(obj);
/* Before SandyBridge, you could not use tiling or fence
* registers with snooped memory, so relinquish any fences
* currently pointing to our region in the aperture.
*/
if (INTEL_INFO(dev)->gen < 6) {
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
}
list_for_each_entry(vma, &obj->vma_list, vma_link)
if (drm_mm_node_allocated(&vma->node)) {
ret = i915_vma_bind(vma, cache_level,
PIN_UPDATE);
if (ret)
return ret;
}
}
list_for_each_entry(vma, &obj->vma_list, vma_link)
vma->node.color = cache_level;
obj->cache_level = cache_level;
if (obj->cache_dirty &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
cpu_write_needs_clflush(obj)) {
if (i915_gem_clflush_object(obj, true))
i915_gem_chipset_flush(obj->base.dev);
}
return 0;
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL)
return -ENOENT;
switch (obj->cache_level) {
case I915_CACHE_LLC:
case I915_CACHE_L3_LLC:
args->caching = I915_CACHING_CACHED;
break;
case I915_CACHE_WT:
args->caching = I915_CACHING_DISPLAY;
break;
default:
args->caching = I915_CACHING_NONE;
break;
}
drm_gem_object_unreference_unlocked(&obj->base);
return 0;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
level = I915_CACHE_LLC;
break;
case I915_CACHING_DISPLAY:
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
ret = i915_gem_object_set_cache_level(obj, level);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc).
* Can be called from an uninterruptible phase (modesetting) and allows
* any flushes to be pipelined (for pageflips).
*/
int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
struct intel_engine_cs *pipelined,
const struct i915_ggtt_view *view)
{
u32 old_read_domains, old_write_domain;
int ret;
ret = i915_gem_object_sync(obj, pipelined);
if (ret)
return ret;
/* Mark the pin_display early so that we account for the
* display coherency whilst setting up the cache domains.
*/
obj->pin_display++;
/* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj,
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
if (ret)
goto err_unpin_display;
/* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers.
*/
ret = i915_gem_object_ggtt_pin(obj, view, alignment,
view->type == I915_GGTT_VIEW_NORMAL ?
PIN_MAPPABLE : 0);
if (ret)
goto err_unpin_display;
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
obj->base.write_domain = 0;
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
err_unpin_display:
obj->pin_display--;
return ret;
}
void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view)
{
if (WARN_ON(obj->pin_display == 0))
return;
i915_gem_object_ggtt_unpin_view(obj, view);
obj->pin_display--;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj, false);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (write)
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
struct drm_i915_gem_request *request, *target = NULL;
unsigned reset_counter;
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
if (ret)
return ret;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
target = request;
}
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
if (target)
i915_gem_request_reference(target);
spin_unlock(&file_priv->mm.lock);
if (target == NULL)
return 0;
ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
if (ret == 0)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
i915_gem_request_unreference__unlocked(target);
return ret;
}
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
struct drm_i915_gem_object *obj = vma->obj;
if (alignment &&
vma->node.start & (alignment - 1))
return true;
if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
return true;
if (flags & PIN_OFFSET_BIAS &&
vma->node.start < (flags & PIN_OFFSET_MASK))
return true;
return false;
}
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *ggtt_view,
uint32_t alignment,
uint64_t flags)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_vma *vma;
unsigned bound;
int ret;
if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
return -ENODEV;
if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
return -EINVAL;
if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
return -EINVAL;
if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
return -EINVAL;
vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
i915_gem_obj_to_vma(obj, vm);
if (IS_ERR(vma))
return PTR_ERR(vma);
if (vma) {
if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
return -EBUSY;
if (i915_vma_misplaced(vma, alignment, flags)) {
unsigned long offset;
offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
i915_gem_obj_offset(obj, vm);
WARN(vma->pin_count,
"bo is already pinned in %s with incorrect alignment:"
" offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
ggtt_view ? "ggtt" : "ppgtt",
offset,
alignment,
!!(flags & PIN_MAPPABLE),
obj->map_and_fenceable);
ret = i915_vma_unbind(vma);
if (ret)
return ret;
vma = NULL;
}
}
bound = vma ? vma->bound : 0;
if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
flags);
if (IS_ERR(vma))
return PTR_ERR(vma);
} else {
ret = i915_vma_bind(vma, obj->cache_level, flags);
if (ret)
return ret;
}
if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
(bound ^ vma->bound) & GLOBAL_BIND) {
bool mappable, fenceable;
u32 fence_size, fence_alignment;
fence_size = i915_gem_get_gtt_size(obj->base.dev,
obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
obj->base.size,
obj->tiling_mode,
true);
fenceable = (vma->node.size == fence_size &&
(vma->node.start & (fence_alignment - 1)) == 0);
mappable = (vma->node.start + fence_size <=
dev_priv->gtt.mappable_end);
obj->map_and_fenceable = mappable && fenceable;
WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
}
vma->pin_count++;
return 0;
}
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
uint32_t alignment,
uint64_t flags)
{
return i915_gem_object_do_pin(obj, vm,
i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
alignment, flags);
}
int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view,
uint32_t alignment,
uint64_t flags)
{
if (WARN_ONCE(!view, "no view specified"))
return -EINVAL;
return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
alignment, flags | PIN_GLOBAL);
}
void
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view)
{
struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
BUG_ON(!vma);
WARN_ON(vma->pin_count == 0);
WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
--vma->pin_count;
}
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
WARN_ON(!ggtt_vma ||
dev_priv->fence_regs[obj->fence_reg].pin_count >
ggtt_vma->pin_count);
dev_priv->fence_regs[obj->fence_reg].pin_count++;
return true;
} else
return false;
}
void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
dev_priv->fence_regs[obj->fence_reg].pin_count--;
}
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Count all active objects as busy, even if they are currently not used
* by the gpu. Users of this interface expect objects to eventually
* become non-busy without any further actions, therefore emit any
* necessary flushes here.
*/
ret = i915_gem_object_flush_active(obj);
if (ret)
goto unref;
BUILD_BUG_ON(I915_NUM_RINGS > 16);
args->busy = obj->active << 16;
if (obj->last_write_req)
args->busy |= obj->last_write_req->ring->id;
unref:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (i915_gem_obj_is_pinned(obj)) {
ret = -EINVAL;
goto out;
}
if (obj->pages &&
obj->tiling_mode != I915_TILING_NONE &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
if (obj->madv == I915_MADV_WILLNEED)
i915_gem_object_unpin_pages(obj);
if (args->madv == I915_MADV_WILLNEED)
i915_gem_object_pin_pages(obj);
}
if (obj->madv != __I915_MADV_PURGED)
obj->madv = args->madv;
/* if the object is no longer attached, discard its backing storage */
if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != __I915_MADV_PURGED;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
int i;
INIT_LIST_HEAD(&obj->global_list);
for (i = 0; i < I915_NUM_RINGS; i++)
INIT_LIST_HEAD(&obj->ring_list[i]);
INIT_LIST_HEAD(&obj->obj_exec_link);
INIT_LIST_HEAD(&obj->vma_list);
INIT_LIST_HEAD(&obj->batch_pool_link);
obj->ops = ops;
obj->fence_reg = I915_FENCE_REG_NONE;
obj->madv = I915_MADV_WILLNEED;
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
.get_pages = i915_gem_object_get_pages_gtt,
.put_pages = i915_gem_object_put_pages_gtt,
};
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size)
{
struct drm_i915_gem_object *obj;
struct address_space *mapping;
gfp_t mask;
obj = i915_gem_object_alloc(dev);
if (obj == NULL)
return NULL;
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
i915_gem_object_free(obj);
return NULL;
}
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = file_inode(obj->base.filp)->i_mapping;
mapping_set_gfp_mask(mapping, mask);
i915_gem_object_init(obj, &i915_gem_object_ops);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev)) {
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
obj->cache_level = I915_CACHE_LLC;
} else
obj->cache_level = I915_CACHE_NONE;
trace_i915_gem_object_create(obj);
return obj;
}
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
/* If we are the last user of the backing storage (be it shmemfs
* pages or stolen etc), we know that the pages are going to be
* immediately released. In this case, we can then skip copying
* back the contents from the GPU.
*/
if (obj->madv != I915_MADV_WILLNEED)
return false;
if (obj->base.filp == NULL)
return true;
/* At first glance, this looks racy, but then again so would be
* userspace racing mmap against close. However, the first external
* reference to the filp can only be obtained through the
* i915_gem_mmap_ioctl() which safeguards us against the user
* acquiring such a reference whilst we are in the middle of
* freeing the object.
*/
return atomic_long_read(&obj->base.filp->f_count) == 1;
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_vma *vma, *next;
intel_runtime_pm_get(dev_priv);
trace_i915_gem_object_destroy(obj);
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
int ret;
vma->pin_count = 0;
ret = i915_vma_unbind(vma);
if (WARN_ON(ret == -ERESTARTSYS)) {
bool was_interruptible;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
WARN_ON(i915_vma_unbind(vma));
dev_priv->mm.interruptible = was_interruptible;
}
}
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
* before progressing. */
if (obj->stolen)
i915_gem_object_unpin_pages(obj);
WARN_ON(obj->frontbuffer_bits);
if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
obj->tiling_mode != I915_TILING_NONE)
i915_gem_object_unpin_pages(obj);
if (WARN_ON(obj->pages_pin_count))
obj->pages_pin_count = 0;
if (discard_backing_storage(obj))
obj->madv = I915_MADV_DONTNEED;
i915_gem_object_put_pages(obj);
i915_gem_object_free_mmap_offset(obj);
BUG_ON(obj->pages);
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
if (obj->ops->release)
obj->ops->release(obj);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
kfree(obj->bit_17);
i915_gem_object_free(obj);
intel_runtime_pm_put(dev_priv);
}
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (i915_is_ggtt(vma->vm) &&
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
continue;
if (vma->vm == vm)
return vma;
}
return NULL;
}
struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view)
{
struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
struct i915_vma *vma;
if (WARN_ONCE(!view, "no view specified"))
return ERR_PTR(-EINVAL);
list_for_each_entry(vma, &obj->vma_list, vma_link)
if (vma->vm == ggtt &&
i915_ggtt_view_equal(&vma->ggtt_view, view))
return vma;
return NULL;
}
void i915_gem_vma_destroy(struct i915_vma *vma)
{
struct i915_address_space *vm = NULL;
WARN_ON(vma->node.allocated);
/* Keep the vma as a placeholder in the execbuffer reservation lists */
if (!list_empty(&vma->exec_list))
return;
vm = vma->vm;
if (!i915_is_ggtt(vm))
i915_ppgtt_put(i915_vm_to_ppgtt(vm));
list_del(&vma->vma_link);
kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
}
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i)
dev_priv->gt.stop_ring(ring);
}
int
i915_gem_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
mutex_lock(&dev->struct_mutex);
ret = i915_gpu_idle(dev);
if (ret)
goto err;
i915_gem_retire_requests(dev);
i915_gem_stop_ringbuffers(dev);
mutex_unlock(&dev->struct_mutex);
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
flush_delayed_work(&dev_priv->mm.idle_work);
/* Assert that we sucessfully flushed all the work and
* reset the GPU back to its idle, low power state.
*/
WARN_ON(dev_priv->mm.busy);
return 0;
err:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
int i, ret;
if (!HAS_L3_DPF(dev) || !remap_info)
return 0;
ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
if (ret)
return ret;
/*
* Note: We do not worry about the concurrent register cacheline hang
* here because no other code should access these registers other than
* at initialization time.
*/
for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, reg_base + i);
intel_ring_emit(ring, remap_info[i/4]);
}
intel_ring_advance(ring);
return ret;
}
void i915_gem_init_swizzling(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN5(dev))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN6(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else if (IS_GEN7(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
else if (IS_GEN8(dev))
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
else
BUG();
}
static bool
intel_enable_blt(struct drm_device *dev)
{
if (!HAS_BLT(dev))
return false;
/* The blitter was dysfunctional on early prototypes */
if (IS_GEN6(dev) && dev->pdev->revision < 8) {
DRM_INFO("BLT not supported on this pre-production hardware;"
" graphics performance will be degraded.\n");
return false;
}
return true;
}
static void init_unused_ring(struct drm_device *dev, u32 base)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RING_CTL(base), 0);
I915_WRITE(RING_HEAD(base), 0);
I915_WRITE(RING_TAIL(base), 0);
I915_WRITE(RING_START(base), 0);
}
static void init_unused_rings(struct drm_device *dev)
{
if (IS_I830(dev)) {
init_unused_ring(dev, PRB1_BASE);
init_unused_ring(dev, SRB0_BASE);
init_unused_ring(dev, SRB1_BASE);
init_unused_ring(dev, SRB2_BASE);
init_unused_ring(dev, SRB3_BASE);
} else if (IS_GEN2(dev)) {
init_unused_ring(dev, SRB0_BASE);
init_unused_ring(dev, SRB1_BASE);
} else if (IS_GEN3(dev)) {
init_unused_ring(dev, PRB1_BASE);
init_unused_ring(dev, PRB2_BASE);
}
}
int i915_gem_init_rings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = intel_init_render_ring_buffer(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret)
goto cleanup_render_ring;
}
if (intel_enable_blt(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = intel_init_vebox_ring_buffer(dev);
if (ret)
goto cleanup_blt_ring;
}
if (HAS_BSD2(dev)) {
ret = intel_init_bsd2_ring_buffer(dev);
if (ret)
goto cleanup_vebox_ring;
}
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
if (ret)
goto cleanup_bsd2_ring;
return 0;
cleanup_bsd2_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
cleanup_blt_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
return ret;
}
int
i915_gem_init_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i, j;
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
return -EIO;
/* Double layer security blanket, see i915_gem_init() */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (dev_priv->ellc_size)
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
if (IS_HASWELL(dev))
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
if (HAS_PCH_NOP(dev)) {
if (IS_IVYBRIDGE(dev)) {
u32 temp = I915_READ(GEN7_MSG_CTL);
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
I915_WRITE(GEN7_MSG_CTL, temp);
} else if (INTEL_INFO(dev)->gen >= 7) {
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
}
}
i915_gem_init_swizzling(dev);
/*
* At least 830 can leave some of the unused rings
* "active" (ie. head != tail) after resume which
* will prevent c3 entry. Makes sure all unused rings
* are totally idle.
*/
init_unused_rings(dev);
BUG_ON(!dev_priv->ring[RCS].default_context);
ret = i915_ppgtt_init_hw(dev);
if (ret) {
DRM_ERROR("PPGTT enable HW failed %d\n", ret);
goto out;
}
/* Need to do basic initialisation of all rings first: */
for_each_ring(ring, dev_priv, i) {
ret = ring->init_hw(ring);
if (ret)
goto out;
}
/* Now it is safe to go back round and do everything else: */
for_each_ring(ring, dev_priv, i) {
struct drm_i915_gem_request *req;
WARN_ON(!ring->default_context);
ret = i915_gem_request_alloc(ring, ring->default_context, &req);
if (ret) {
i915_gem_cleanup_ringbuffer(dev);
goto out;
}
if (ring->id == RCS) {
for (j = 0; j < NUM_L3_SLICES(dev); j++)
i915_gem_l3_remap(ring, j);
}
ret = i915_ppgtt_init_ring(req);
if (ret && ret != -EIO) {
DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
i915_gem_request_cancel(req);
i915_gem_cleanup_ringbuffer(dev);
goto out;
}
ret = i915_gem_context_enable(req);
if (ret && ret != -EIO) {
DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
i915_gem_request_cancel(req);
i915_gem_cleanup_ringbuffer(dev);
goto out;
}
i915_add_request_no_flush(ring);
}
out:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
int i915_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
i915.enable_execlists = intel_sanitize_enable_execlists(dev,
i915.enable_execlists);
mutex_lock(&dev->struct_mutex);
if (IS_VALLEYVIEW(dev)) {
/* VLVA0 (potential hack), BIOS isn't actually waking us */
I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
VLV_GTLC_ALLOWWAKEACK), 10))
DRM_DEBUG_DRIVER("allow wake ack timed out\n");
}
if (!i915.enable_execlists) {
dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
dev_priv->gt.init_rings = i915_gem_init_rings;
dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
dev_priv->gt.stop_ring = intel_stop_ring_buffer;
} else {
dev_priv->gt.execbuf_submit = intel_execlists_submission;
dev_priv->gt.init_rings = intel_logical_rings_init;
dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
dev_priv->gt.stop_ring = intel_logical_ring_stop;
}
/* This is just a security blanket to placate dragons.
* On some systems, we very sporadically observe that the first TLBs
* used by the CS may be stale, despite us poking the TLB reset. If
* we hold the forcewake during initialisation these problems
* just magically go away.
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
ret = i915_gem_init_userptr(dev);
if (ret)
goto out_unlock;
i915_gem_init_global_gtt(dev);
ret = i915_gem_context_init(dev);
if (ret)
goto out_unlock;
ret = dev_priv->gt.init_rings(dev);
if (ret)
goto out_unlock;
ret = i915_gem_init_hw(dev);
if (ret == -EIO) {
/* Allow ring initialisation to fail by marking the GPU as
* wedged. But we only want to do this where the GPU is angry,
* for all other failure, such as an allocation failure, bail.
*/
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
ret = 0;
}
out_unlock:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
mutex_unlock(&dev->struct_mutex);
return ret;
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i)
dev_priv->gt.cleanup_ring(ring);
}
static void
init_ring_lists(struct intel_engine_cs *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
}
void i915_init_vm(struct drm_i915_private *dev_priv,
struct i915_address_space *vm)
{
if (!i915_is_ggtt(vm))
drm_mm_init(&vm->mm, vm->start, vm->total);
vm->dev = dev_priv->dev;
INIT_LIST_HEAD(&vm->active_list);
INIT_LIST_HEAD(&vm->inactive_list);
INIT_LIST_HEAD(&vm->global_link);
list_add_tail(&vm->global_link, &dev_priv->vm_list);
}
void
i915_gem_load(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
dev_priv->objects =
kmem_cache_create("i915_gem_object",
sizeof(struct drm_i915_gem_object), 0,
SLAB_HWCACHE_ALIGN,
NULL);
dev_priv->vmas =
kmem_cache_create("i915_gem_vma",
sizeof(struct i915_vma), 0,
SLAB_HWCACHE_ALIGN,
NULL);
dev_priv->requests =
kmem_cache_create("i915_gem_request",
sizeof(struct drm_i915_gem_request), 0,
SLAB_HWCACHE_ALIGN,
NULL);
INIT_LIST_HEAD(&dev_priv->vm_list);
i915_init_vm(dev_priv, &dev_priv->gtt.base);
INIT_LIST_HEAD(&dev_priv->context_list);
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->ring[i]);
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
i915_gem_idle_work_handler);
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
dev_priv->num_fence_regs = 32;
else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
if (intel_vgpu_active(dev))
dev_priv->num_fence_regs =
I915_READ(vgtif_reg(avail_rs.fence_num));
/* Initialize fence registers to zero */
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
i915_gem_restore_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;
i915_gem_shrinker_init(dev_priv);
mutex_init(&dev_priv->fb_tracking.lock);
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
while (!list_empty(&file_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
if (!list_empty(&file_priv->rps.link)) {
spin_lock(&to_i915(dev)->rps.client_lock);
list_del(&file_priv->rps.link);
spin_unlock(&to_i915(dev)->rps.client_lock);
}
}
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv;
int ret;
DRM_DEBUG_DRIVER("\n");
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
if (!file_priv)
return -ENOMEM;
file->driver_priv = file_priv;
file_priv->dev_priv = dev->dev_private;
file_priv->file = file;
INIT_LIST_HEAD(&file_priv->rps.link);
spin_lock_init(&file_priv->mm.lock);
INIT_LIST_HEAD(&file_priv->mm.request_list);
ret = i915_gem_context_open(dev, file);
if (ret)
kfree(file_priv);
return ret;
}
/**
* i915_gem_track_fb - update frontbuffer tracking
* old: current GEM buffer for the frontbuffer slots
* new: new GEM buffer for the frontbuffer slots
* frontbuffer_bits: bitmask of frontbuffer slots
*
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
* from @old and setting them in @new. Both @old and @new can be NULL.
*/
void i915_gem_track_fb(struct drm_i915_gem_object *old,
struct drm_i915_gem_object *new,
unsigned frontbuffer_bits)
{
if (old) {
WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
old->frontbuffer_bits &= ~frontbuffer_bits;
}
if (new) {
WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
new->frontbuffer_bits |= frontbuffer_bits;
}
}
/* All the new VM stuff */
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
struct i915_vma *vma;
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
list_for_each_entry(vma, &o->vma_list, vma_link) {
if (i915_is_ggtt(vma->vm) &&
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
continue;
if (vma->vm == vm)
return vma->node.start;
}
WARN(1, "%s vma for this object not found.\n",
i915_is_ggtt(vm) ? "global" : "ppgtt");
return -1;
}
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
const struct i915_ggtt_view *view)
{
struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link)
if (vma->vm == ggtt &&
i915_ggtt_view_equal(&vma->ggtt_view, view))
return vma->node.start;
WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
return -1;
}
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link) {
if (i915_is_ggtt(vma->vm) &&
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
continue;
if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
return true;
}
return false;
}
bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
const struct i915_ggtt_view *view)
{
struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link)
if (vma->vm == ggtt &&
i915_ggtt_view_equal(&vma->ggtt_view, view) &&
drm_mm_node_allocated(&vma->node))
return true;
return false;
}
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link)
if (drm_mm_node_allocated(&vma->node))
return true;
return false;
}
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
struct i915_vma *vma;
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
BUG_ON(list_empty(&o->vma_list));
list_for_each_entry(vma, &o->vma_list, vma_link) {
if (i915_is_ggtt(vma->vm) &&
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
continue;
if (vma->vm == vm)
return vma->node.size;
}
return 0;
}
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, vma_link)
if (vma->pin_count > 0)
return true;
return false;
}