linux_old1/drivers/net/wimax/i2400m/driver.c

771 lines
22 KiB
C

/*
* Intel Wireless WiMAX Connection 2400m
* Generic probe/disconnect, reset and message passing
*
*
* Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*
* See i2400m.h for driver documentation. This contains helpers for
* the driver model glue [_setup()/_release()], handling device resets
* [_dev_reset_handle()], and the backends for the WiMAX stack ops
* reset [_op_reset()] and message from user [_op_msg_from_user()].
*
* ROADMAP:
*
* i2400m_op_msg_from_user()
* i2400m_msg_to_dev()
* wimax_msg_to_user_send()
*
* i2400m_op_reset()
* i240m->bus_reset()
*
* i2400m_dev_reset_handle()
* __i2400m_dev_reset_handle()
* __i2400m_dev_stop()
* __i2400m_dev_start()
*
* i2400m_setup()
* i2400m_bootrom_init()
* register_netdev()
* i2400m_dev_start()
* __i2400m_dev_start()
* i2400m_dev_bootstrap()
* i2400m_tx_setup()
* i2400m->bus_dev_start()
* i2400m_firmware_check()
* i2400m_check_mac_addr()
* wimax_dev_add()
*
* i2400m_release()
* wimax_dev_rm()
* i2400m_dev_stop()
* __i2400m_dev_stop()
* i2400m_dev_shutdown()
* i2400m->bus_dev_stop()
* i2400m_tx_release()
* unregister_netdev()
*/
#include "i2400m.h"
#include <linux/wimax/i2400m.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#define D_SUBMODULE driver
#include "debug-levels.h"
int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
MODULE_PARM_DESC(idle_mode_disabled,
"If true, the device will not enable idle mode negotiation "
"with the base station (when connected) to save power.");
int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
MODULE_PARM_DESC(rx_reorder_disabled,
"If true, RX reordering will be disabled.");
/**
* i2400m_queue_work - schedule work on a i2400m's queue
*
* @i2400m: device descriptor
*
* @fn: function to run to execute work. It gets passed a 'struct
* work_struct' that is wrapped in a 'struct i2400m_work'. Once
* done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
* (2) kfree(i2400m_work).
*
* @gfp_flags: GFP flags for memory allocation.
*
* @pl: pointer to a payload buffer that you want to pass to the _work
* function. Use this to pack (for example) a struct with extra
* arguments.
*
* @pl_size: size of the payload buffer.
*
* We do this quite often, so this just saves typing; allocate a
* wrapper for a i2400m, get a ref to it, pack arguments and launch
* the work.
*
* A usual workflow is:
*
* struct my_work_args {
* void *something;
* int whatever;
* };
* ...
*
* struct my_work_args my_args = {
* .something = FOO,
* .whaetever = BLAH
* };
* i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
* &args, sizeof(args))
*
* And now the work function can unpack the arguments and call the
* real function (or do the job itself):
*
* static
* void my_work_fn((struct work_struct *ws)
* {
* struct i2400m_work *iw =
* container_of(ws, struct i2400m_work, ws);
* struct my_work_args *my_args = (void *) iw->pl;
*
* my_work(iw->i2400m, my_args->something, my_args->whatevert);
* }
*/
int i2400m_queue_work(struct i2400m *i2400m,
void (*fn)(struct work_struct *), gfp_t gfp_flags,
const void *pl, size_t pl_size)
{
int result;
struct i2400m_work *iw;
BUG_ON(i2400m->work_queue == NULL);
result = -ENOMEM;
iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
if (iw == NULL)
goto error_kzalloc;
iw->i2400m = i2400m_get(i2400m);
memcpy(iw->pl, pl, pl_size);
INIT_WORK(&iw->ws, fn);
result = queue_work(i2400m->work_queue, &iw->ws);
error_kzalloc:
return result;
}
EXPORT_SYMBOL_GPL(i2400m_queue_work);
/*
* Schedule i2400m's specific work on the system's queue.
*
* Used for a few cases where we really need it; otherwise, identical
* to i2400m_queue_work().
*
* Returns < 0 errno code on error, 1 if ok.
*
* If it returns zero, something really bad happened, as it means the
* works struct was already queued, but we have just allocated it, so
* it should not happen.
*/
int i2400m_schedule_work(struct i2400m *i2400m,
void (*fn)(struct work_struct *), gfp_t gfp_flags)
{
int result;
struct i2400m_work *iw;
BUG_ON(i2400m->work_queue == NULL);
result = -ENOMEM;
iw = kzalloc(sizeof(*iw), gfp_flags);
if (iw == NULL)
goto error_kzalloc;
iw->i2400m = i2400m_get(i2400m);
INIT_WORK(&iw->ws, fn);
result = schedule_work(&iw->ws);
if (result == 0)
result = -ENXIO;
error_kzalloc:
return result;
}
/*
* WiMAX stack operation: relay a message from user space
*
* @wimax_dev: device descriptor
* @pipe_name: named pipe the message is for
* @msg_buf: pointer to the message bytes
* @msg_len: length of the buffer
* @genl_info: passed by the generic netlink layer
*
* The WiMAX stack will call this function when a message was received
* from user space.
*
* For the i2400m, this is an L3L4 message, as specified in
* include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
* i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
* coded in Little Endian.
*
* This function just verifies that the header declaration and the
* payload are consistent and then deals with it, either forwarding it
* to the device or procesing it locally.
*
* In the i2400m, messages are basically commands that will carry an
* ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
* user space. The rx.c code might intercept the response and use it
* to update the driver's state, but then it will pass it on so it can
* be relayed back to user space.
*
* Note that asynchronous events from the device are processed and
* sent to user space in rx.c.
*/
static
int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
const char *pipe_name,
const void *msg_buf, size_t msg_len,
const struct genl_info *genl_info)
{
int result;
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
"msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
msg_buf, msg_len, genl_info);
ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
result = PTR_ERR(ack_skb);
if (IS_ERR(ack_skb))
goto error_msg_to_dev;
if (unlikely(i2400m->trace_msg_from_user))
wimax_msg(&i2400m->wimax_dev, "trace",
msg_buf, msg_len, GFP_KERNEL);
result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
error_msg_to_dev:
d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
genl_info, result);
return result;
}
/*
* Context to wait for a reset to finalize
*/
struct i2400m_reset_ctx {
struct completion completion;
int result;
};
/*
* WiMAX stack operation: reset a device
*
* @wimax_dev: device descriptor
*
* See the documentation for wimax_reset() and wimax_dev->op_reset for
* the requirements of this function. The WiMAX stack guarantees
* serialization on calls to this function.
*
* Do a warm reset on the device; if it fails, resort to a cold reset
* and return -ENODEV. On successful warm reset, we need to block
* until it is complete.
*
* The bus-driver implementation of reset takes care of falling back
* to cold reset if warm fails.
*/
static
int i2400m_op_reset(struct wimax_dev *wimax_dev)
{
int result;
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
struct device *dev = i2400m_dev(i2400m);
struct i2400m_reset_ctx ctx = {
.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
.result = 0,
};
d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
mutex_lock(&i2400m->init_mutex);
i2400m->reset_ctx = &ctx;
mutex_unlock(&i2400m->init_mutex);
result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
if (result < 0)
goto out;
result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
if (result == 0)
result = -ETIMEDOUT;
else if (result > 0)
result = ctx.result;
/* if result < 0, pass it on */
mutex_lock(&i2400m->init_mutex);
i2400m->reset_ctx = NULL;
mutex_unlock(&i2400m->init_mutex);
out:
d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
return result;
}
/*
* Check the MAC address we got from boot mode is ok
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*/
static
int i2400m_check_mac_addr(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *skb;
const struct i2400m_tlv_detailed_device_info *ddi;
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
const unsigned char zeromac[ETH_ALEN] = { 0 };
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
skb = i2400m_get_device_info(i2400m);
if (IS_ERR(skb)) {
result = PTR_ERR(skb);
dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
result);
goto error;
}
/* Extract MAC addresss */
ddi = (void *) skb->data;
BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
d_printf(2, dev, "GET DEVICE INFO: mac addr "
"%02x:%02x:%02x:%02x:%02x:%02x\n",
ddi->mac_address[0], ddi->mac_address[1],
ddi->mac_address[2], ddi->mac_address[3],
ddi->mac_address[4], ddi->mac_address[5]);
if (!memcmp(net_dev->perm_addr, ddi->mac_address,
sizeof(ddi->mac_address)))
goto ok;
dev_warn(dev, "warning: device reports a different MAC address "
"to that of boot mode's\n");
dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
ddi->mac_address[0], ddi->mac_address[1],
ddi->mac_address[2], ddi->mac_address[3],
ddi->mac_address[4], ddi->mac_address[5]);
dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
net_dev->perm_addr[0], net_dev->perm_addr[1],
net_dev->perm_addr[2], net_dev->perm_addr[3],
net_dev->perm_addr[4], net_dev->perm_addr[5]);
if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
dev_err(dev, "device reports an invalid MAC address, "
"not updating\n");
else {
dev_warn(dev, "updating MAC address\n");
net_dev->addr_len = ETH_ALEN;
memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
}
ok:
result = 0;
kfree_skb(skb);
error:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
/**
* __i2400m_dev_start - Bring up driver communication with the device
*
* @i2400m: device descriptor
* @flags: boot mode flags
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Uploads firmware and brings up all the resources needed to be able
* to communicate with the device.
*
* TX needs to be setup before the bus-specific code (otherwise on
* shutdown, the bus-tx code could try to access it).
*/
static
int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
{
int result;
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct net_device *net_dev = wimax_dev->net_dev;
struct device *dev = i2400m_dev(i2400m);
int times = 3;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
retry:
result = i2400m_dev_bootstrap(i2400m, flags);
if (result < 0) {
dev_err(dev, "cannot bootstrap device: %d\n", result);
goto error_bootstrap;
}
result = i2400m_tx_setup(i2400m);
if (result < 0)
goto error_tx_setup;
result = i2400m_rx_setup(i2400m);
if (result < 0)
goto error_rx_setup;
result = i2400m->bus_dev_start(i2400m);
if (result < 0)
goto error_bus_dev_start;
i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
if (i2400m->work_queue == NULL) {
result = -ENOMEM;
dev_err(dev, "cannot create workqueue\n");
goto error_create_workqueue;
}
result = i2400m_firmware_check(i2400m); /* fw versions ok? */
if (result < 0)
goto error_fw_check;
/* At this point is ok to send commands to the device */
result = i2400m_check_mac_addr(i2400m);
if (result < 0)
goto error_check_mac_addr;
i2400m->ready = 1;
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
result = i2400m_dev_initialize(i2400m);
if (result < 0)
goto error_dev_initialize;
/* At this point, reports will come for the device and set it
* to the right state if it is different than UNINITIALIZED */
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
net_dev, i2400m, result);
return result;
error_dev_initialize:
error_check_mac_addr:
error_fw_check:
destroy_workqueue(i2400m->work_queue);
error_create_workqueue:
i2400m->bus_dev_stop(i2400m);
error_bus_dev_start:
i2400m_rx_release(i2400m);
error_rx_setup:
i2400m_tx_release(i2400m);
error_tx_setup:
error_bootstrap:
if (result == -ERESTARTSYS && times-- > 0) {
flags = I2400M_BRI_SOFT;
goto retry;
}
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
net_dev, i2400m, result);
return result;
}
static
int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
int result;
mutex_lock(&i2400m->init_mutex); /* Well, start the device */
result = __i2400m_dev_start(i2400m, bm_flags);
if (result >= 0)
i2400m->updown = 1;
mutex_unlock(&i2400m->init_mutex);
return result;
}
/**
* i2400m_dev_stop - Tear down driver communication with the device
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Releases all the resources allocated to communicate with the device.
*/
static
void __i2400m_dev_stop(struct i2400m *i2400m)
{
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
i2400m_dev_shutdown(i2400m);
i2400m->ready = 0;
destroy_workqueue(i2400m->work_queue);
i2400m->bus_dev_stop(i2400m);
i2400m_rx_release(i2400m);
i2400m_tx_release(i2400m);
wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
}
/*
* Watch out -- we only need to stop if there is a need for it. The
* device could have reset itself and failed to come up again (see
* _i2400m_dev_reset_handle()).
*/
static
void i2400m_dev_stop(struct i2400m *i2400m)
{
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
}
mutex_unlock(&i2400m->init_mutex);
}
/*
* The device has rebooted; fix up the device and the driver
*
* Tear down the driver communication with the device, reload the
* firmware and reinitialize the communication with the device.
*
* If someone calls a reset when the device's firmware is down, in
* theory we won't see it because we are not listening. However, just
* in case, leave the code to handle it.
*
* If there is a reset context, use it; this means someone is waiting
* for us to tell him when the reset operation is complete and the
* device is ready to rock again.
*
* NOTE: if we are in the process of bringing up or down the
* communication with the device [running i2400m_dev_start() or
* _stop()], don't do anything, let it fail and handle it.
*
* This function is ran always in a thread context
*/
static
void __i2400m_dev_reset_handle(struct work_struct *ws)
{
int result;
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
struct i2400m *i2400m = iw->i2400m;
struct device *dev = i2400m_dev(i2400m);
enum wimax_st wimax_state;
struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
result = 0;
if (mutex_trylock(&i2400m->init_mutex) == 0) {
/* We are still in i2400m_dev_start() [let it fail] or
* i2400m_dev_stop() [we are shutting down anyway, so
* ignore it] or we are resetting somewhere else. */
dev_err(dev, "device rebooted\n");
i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
complete(&i2400m->msg_completion);
goto out;
}
wimax_state = wimax_state_get(&i2400m->wimax_dev);
if (wimax_state < WIMAX_ST_UNINITIALIZED) {
dev_info(dev, "device rebooted: it is down, ignoring\n");
goto out_unlock; /* ifconfig up/down wasn't called */
}
dev_err(dev, "device rebooted: reinitializing driver\n");
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
result = __i2400m_dev_start(i2400m,
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
if (result < 0) {
dev_err(dev, "device reboot: cannot start the device: %d\n",
result);
result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
if (result >= 0)
result = -ENODEV;
} else
i2400m->updown = 1;
out_unlock:
if (i2400m->reset_ctx) {
ctx->result = result;
complete(&ctx->completion);
}
mutex_unlock(&i2400m->init_mutex);
out:
i2400m_put(i2400m);
kfree(iw);
d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
return;
}
/**
* i2400m_dev_reset_handle - Handle a device's reset in a thread context
*
* Schedule a device reset handling out on a thread context, so it
* is safe to call from atomic context. We can't use the i2400m's
* queue as we are going to destroy it and reinitialize it as part of
* the driver bringup/bringup process.
*
* See __i2400m_dev_reset_handle() for details; that takes care of
* reinitializing the driver to handle the reset, calling into the
* bus-specific functions ops as needed.
*/
int i2400m_dev_reset_handle(struct i2400m *i2400m)
{
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
GFP_ATOMIC);
}
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
/**
* i2400m_setup - bus-generic setup function for the i2400m device
*
* @i2400m: device descriptor (bus-specific parts have been initialized)
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Initializes the bus-generic parts of the i2400m driver; the
* bus-specific parts have been initialized, function pointers filled
* out by the bus-specific probe function.
*
* As well, this registers the WiMAX and net device nodes. Once this
* function returns, the device is operative and has to be ready to
* receive and send network traffic and WiMAX control operations.
*/
int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
int result = -ENODEV;
struct device *dev = i2400m_dev(i2400m);
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
snprintf(wimax_dev->name, sizeof(wimax_dev->name),
"i2400m-%s:%s", dev->bus->name, dev_name(dev));
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_cmd_buf == NULL) {
dev_err(dev, "cannot allocate USB command buffer\n");
goto error_bm_cmd_kzalloc;
}
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_ack_buf == NULL) {
dev_err(dev, "cannot allocate USB ack buffer\n");
goto error_bm_ack_buf_kzalloc;
}
result = i2400m_bootrom_init(i2400m, bm_flags);
if (result < 0) {
dev_err(dev, "read mac addr: bootrom init "
"failed: %d\n", result);
goto error_bootrom_init;
}
result = i2400m_read_mac_addr(i2400m);
if (result < 0)
goto error_read_mac_addr;
result = register_netdev(net_dev); /* Okey dokey, bring it up */
if (result < 0) {
dev_err(dev, "cannot register i2400m network device: %d\n",
result);
goto error_register_netdev;
}
netif_carrier_off(net_dev);
result = i2400m_dev_start(i2400m, bm_flags);
if (result < 0)
goto error_dev_start;
i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
i2400m->wimax_dev.op_reset = i2400m_op_reset;
result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
if (result < 0)
goto error_wimax_dev_add;
/* User space needs to do some init stuff */
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
/* Now setup all that requires a registered net and wimax device. */
result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
if (result < 0) {
dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
goto error_sysfs_setup;
}
result = i2400m_debugfs_add(i2400m);
if (result < 0) {
dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
goto error_debugfs_setup;
}
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
error_debugfs_setup:
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
error_sysfs_setup:
wimax_dev_rm(&i2400m->wimax_dev);
error_wimax_dev_add:
i2400m_dev_stop(i2400m);
error_dev_start:
unregister_netdev(net_dev);
error_register_netdev:
error_read_mac_addr:
error_bootrom_init:
kfree(i2400m->bm_ack_buf);
error_bm_ack_buf_kzalloc:
kfree(i2400m->bm_cmd_buf);
error_bm_cmd_kzalloc:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_setup);
/**
* i2400m_release - release the bus-generic driver resources
*
* Sends a disconnect message and undoes any setup done by i2400m_setup()
*/
void i2400m_release(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
netif_stop_queue(i2400m->wimax_dev.net_dev);
i2400m_debugfs_rm(i2400m);
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
wimax_dev_rm(&i2400m->wimax_dev);
i2400m_dev_stop(i2400m);
unregister_netdev(i2400m->wimax_dev.net_dev);
kfree(i2400m->bm_ack_buf);
kfree(i2400m->bm_cmd_buf);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
EXPORT_SYMBOL_GPL(i2400m_release);
/*
* Debug levels control; see debug.h
*/
struct d_level D_LEVEL[] = {
D_SUBMODULE_DEFINE(control),
D_SUBMODULE_DEFINE(driver),
D_SUBMODULE_DEFINE(debugfs),
D_SUBMODULE_DEFINE(fw),
D_SUBMODULE_DEFINE(netdev),
D_SUBMODULE_DEFINE(rfkill),
D_SUBMODULE_DEFINE(rx),
D_SUBMODULE_DEFINE(tx),
};
size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
static
int __init i2400m_driver_init(void)
{
return 0;
}
module_init(i2400m_driver_init);
static
void __exit i2400m_driver_exit(void)
{
/* for scheds i2400m_dev_reset_handle() */
flush_scheduled_work();
return;
}
module_exit(i2400m_driver_exit);
MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
MODULE_LICENSE("GPL");