936 lines
27 KiB
C
936 lines
27 KiB
C
|
|
/* JEDEC Flash Interface.
|
|
* This is an older type of interface for self programming flash. It is
|
|
* commonly use in older AMD chips and is obsolete compared with CFI.
|
|
* It is called JEDEC because the JEDEC association distributes the ID codes
|
|
* for the chips.
|
|
*
|
|
* See the AMD flash databook for information on how to operate the interface.
|
|
*
|
|
* This code does not support anything wider than 8 bit flash chips, I am
|
|
* not going to guess how to send commands to them, plus I expect they will
|
|
* all speak CFI..
|
|
*
|
|
* $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/jedec.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/compatmac.h>
|
|
|
|
static struct mtd_info *jedec_probe(struct map_info *);
|
|
static int jedec_probe8(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv);
|
|
static int jedec_probe16(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv);
|
|
static int jedec_probe32(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv);
|
|
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
|
unsigned long len);
|
|
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
|
|
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
|
size_t *retlen, const u_char *buf);
|
|
|
|
static unsigned long my_bank_size;
|
|
|
|
/* Listing of parts and sizes. We need this table to learn the sector
|
|
size of the chip and the total length */
|
|
static const struct JEDECTable JEDEC_table[] = {
|
|
{
|
|
.jedec = 0x013D,
|
|
.name = "AMD Am29F017D",
|
|
.size = 2*1024*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{
|
|
.jedec = 0x01AD,
|
|
.name = "AMD Am29F016",
|
|
.size = 2*1024*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{
|
|
.jedec = 0x01D5,
|
|
.name = "AMD Am29F080",
|
|
.size = 1*1024*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{
|
|
.jedec = 0x01A4,
|
|
.name = "AMD Am29F040",
|
|
.size = 512*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{
|
|
.jedec = 0x20E3,
|
|
.name = "AMD Am29W040B",
|
|
.size = 512*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{
|
|
.jedec = 0xC2AD,
|
|
.name = "Macronix MX29F016",
|
|
.size = 2*1024*1024,
|
|
.sectorsize = 64*1024,
|
|
.capabilities = MTD_CAP_NORFLASH
|
|
},
|
|
{ .jedec = 0x0 }
|
|
};
|
|
|
|
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
|
|
static void jedec_sync(struct mtd_info *mtd) {};
|
|
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf);
|
|
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf);
|
|
|
|
static struct mtd_info *jedec_probe(struct map_info *map);
|
|
|
|
|
|
|
|
static struct mtd_chip_driver jedec_chipdrv = {
|
|
.probe = jedec_probe,
|
|
.name = "jedec",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
/* Probe entry point */
|
|
|
|
static struct mtd_info *jedec_probe(struct map_info *map)
|
|
{
|
|
struct mtd_info *MTD;
|
|
struct jedec_private *priv;
|
|
unsigned long Base;
|
|
unsigned long SectorSize;
|
|
unsigned count;
|
|
unsigned I,Uniq;
|
|
char Part[200];
|
|
memset(&priv,0,sizeof(priv));
|
|
|
|
MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
|
|
if (!MTD)
|
|
return NULL;
|
|
|
|
priv = (struct jedec_private *)&MTD[1];
|
|
|
|
my_bank_size = map->size;
|
|
|
|
if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
|
|
{
|
|
printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
|
|
for (Base = 0; Base < map->size; Base += my_bank_size)
|
|
{
|
|
// Perhaps zero could designate all tests?
|
|
if (map->buswidth == 0)
|
|
map->buswidth = 1;
|
|
|
|
if (map->buswidth == 1){
|
|
if (jedec_probe8(map,Base,priv) == 0) {
|
|
printk("did recognize jedec chip\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (map->buswidth == 2)
|
|
jedec_probe16(map,Base,priv);
|
|
if (map->buswidth == 4)
|
|
jedec_probe32(map,Base,priv);
|
|
}
|
|
|
|
// Get the biggest sector size
|
|
SectorSize = 0;
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
// printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
|
|
// printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
|
|
if (priv->chips[I].sectorsize > SectorSize)
|
|
SectorSize = priv->chips[I].sectorsize;
|
|
}
|
|
|
|
// Quickly ensure that the other sector sizes are factors of the largest
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
|
|
{
|
|
printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Generate a part name that includes the number of different chips and
|
|
other configuration information */
|
|
count = 1;
|
|
strlcpy(Part,map->name,sizeof(Part)-10);
|
|
strcat(Part," ");
|
|
Uniq = 0;
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
const struct JEDECTable *JEDEC;
|
|
|
|
if (priv->chips[I+1].jedec == priv->chips[I].jedec)
|
|
{
|
|
count++;
|
|
continue;
|
|
}
|
|
|
|
// Locate the chip in the jedec table
|
|
JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
|
|
if (JEDEC == 0)
|
|
{
|
|
printk("mtd: Internal Error, JEDEC not set\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
|
|
if (Uniq != 0)
|
|
strcat(Part,",");
|
|
Uniq++;
|
|
|
|
if (count != 1)
|
|
sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
|
|
else
|
|
sprintf(Part+strlen(Part),"%s",JEDEC->name);
|
|
if (strlen(Part) > sizeof(Part)*2/3)
|
|
break;
|
|
count = 1;
|
|
}
|
|
|
|
/* Determine if the chips are organized in a linear fashion, or if there
|
|
are empty banks. Note, the last bank does not count here, only the
|
|
first banks are important. Holes on non-bank boundaries can not exist
|
|
due to the way the detection algorithm works. */
|
|
if (priv->size < my_bank_size)
|
|
my_bank_size = priv->size;
|
|
priv->is_banked = 0;
|
|
//printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
|
|
//printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
|
|
if (!priv->size) {
|
|
printk("priv->size is zero\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
if (priv->size/my_bank_size) {
|
|
if (priv->size/my_bank_size == 1) {
|
|
priv->size = my_bank_size;
|
|
}
|
|
else {
|
|
for (I = 0; I != priv->size/my_bank_size - 1; I++)
|
|
{
|
|
if (priv->bank_fill[I] != my_bank_size)
|
|
priv->is_banked = 1;
|
|
|
|
/* This even could be eliminated, but new de-optimized read/write
|
|
functions have to be written */
|
|
printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
|
|
if (priv->bank_fill[I] != priv->bank_fill[0])
|
|
{
|
|
printk("mtd: Failed. Cannot handle unsymmetric banking\n");
|
|
kfree(MTD);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (priv->is_banked == 1)
|
|
strcat(Part,", banked");
|
|
|
|
// printk("Part: '%s'\n",Part);
|
|
|
|
memset(MTD,0,sizeof(*MTD));
|
|
// strlcpy(MTD->name,Part,sizeof(MTD->name));
|
|
MTD->name = map->name;
|
|
MTD->type = MTD_NORFLASH;
|
|
MTD->flags = MTD_CAP_NORFLASH;
|
|
MTD->writesize = 1;
|
|
MTD->erasesize = SectorSize*(map->buswidth);
|
|
// printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
|
|
MTD->size = priv->size;
|
|
// printk("MTD->size is %x\n",(unsigned int)MTD->size);
|
|
//MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
|
|
MTD->erase = flash_erase;
|
|
if (priv->is_banked == 1)
|
|
MTD->read = jedec_read_banked;
|
|
else
|
|
MTD->read = jedec_read;
|
|
MTD->write = flash_write;
|
|
MTD->sync = jedec_sync;
|
|
MTD->priv = map;
|
|
map->fldrv_priv = priv;
|
|
map->fldrv = &jedec_chipdrv;
|
|
__module_get(THIS_MODULE);
|
|
return MTD;
|
|
}
|
|
|
|
/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
|
|
static int checkparity(u_char C)
|
|
{
|
|
u_char parity = 0;
|
|
while (C != 0)
|
|
{
|
|
parity ^= C & 1;
|
|
C >>= 1;
|
|
}
|
|
|
|
return parity == 1;
|
|
}
|
|
|
|
|
|
/* Take an array of JEDEC numbers that represent interleved flash chips
|
|
and process them. Check to make sure they are good JEDEC numbers, look
|
|
them up and then add them to the chip list */
|
|
static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
|
|
unsigned long base,struct jedec_private *priv)
|
|
{
|
|
unsigned I,J;
|
|
unsigned long Size;
|
|
unsigned long SectorSize;
|
|
const struct JEDECTable *JEDEC;
|
|
|
|
// Test #2 JEDEC numbers exhibit odd parity
|
|
for (I = 0; I != Count; I++)
|
|
{
|
|
if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
|
|
return 0;
|
|
}
|
|
|
|
// Finally, just make sure all the chip sizes are the same
|
|
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
|
|
|
if (JEDEC == 0)
|
|
{
|
|
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
|
return 0;
|
|
}
|
|
|
|
Size = JEDEC->size;
|
|
SectorSize = JEDEC->sectorsize;
|
|
for (I = 0; I != Count; I++)
|
|
{
|
|
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
|
if (JEDEC == 0)
|
|
{
|
|
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
|
return 0;
|
|
}
|
|
|
|
if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
|
|
{
|
|
printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Load the Chips
|
|
for (I = 0; I != MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
if (priv->chips[I].jedec == 0)
|
|
break;
|
|
}
|
|
|
|
if (I + Count > MAX_JEDEC_CHIPS)
|
|
{
|
|
printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
|
|
return 0;
|
|
}
|
|
|
|
// Add them to the table
|
|
for (J = 0; J != Count; J++)
|
|
{
|
|
unsigned long Bank;
|
|
|
|
JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
|
|
priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
|
|
priv->chips[I].size = JEDEC->size;
|
|
priv->chips[I].sectorsize = JEDEC->sectorsize;
|
|
priv->chips[I].base = base + J;
|
|
priv->chips[I].datashift = J*8;
|
|
priv->chips[I].capabilities = JEDEC->capabilities;
|
|
priv->chips[I].offset = priv->size + J;
|
|
|
|
// log2 n :|
|
|
priv->chips[I].addrshift = 0;
|
|
for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
|
|
|
|
// Determine how filled this bank is.
|
|
Bank = base & (~(my_bank_size-1));
|
|
if (priv->bank_fill[Bank/my_bank_size] < base +
|
|
(JEDEC->size << priv->chips[I].addrshift) - Bank)
|
|
priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
|
|
I++;
|
|
}
|
|
|
|
priv->size += priv->chips[I-1].size*Count;
|
|
|
|
return priv->chips[I-1].size;
|
|
}
|
|
|
|
/* Lookup the chip information from the JEDEC ID table. */
|
|
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
|
|
{
|
|
__u16 Id = (mfr << 8) | id;
|
|
unsigned long I = 0;
|
|
for (I = 0; JEDEC_table[I].jedec != 0; I++)
|
|
if (JEDEC_table[I].jedec == Id)
|
|
return JEDEC_table + I;
|
|
return NULL;
|
|
}
|
|
|
|
// Look for flash using an 8 bit bus interface
|
|
static int jedec_probe8(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv)
|
|
{
|
|
#define flread(x) map_read8(map,base+x)
|
|
#define flwrite(v,x) map_write8(map,v,base+x)
|
|
|
|
const unsigned long AutoSel1 = 0xAA;
|
|
const unsigned long AutoSel2 = 0x55;
|
|
const unsigned long AutoSel3 = 0x90;
|
|
const unsigned long Reset = 0xF0;
|
|
__u32 OldVal;
|
|
__u8 Mfg[1];
|
|
__u8 Id[1];
|
|
unsigned I;
|
|
unsigned long Size;
|
|
|
|
// Wait for any write/erase operation to settle
|
|
OldVal = flread(base);
|
|
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
|
OldVal = flread(base);
|
|
|
|
// Reset the chip
|
|
flwrite(Reset,0x555);
|
|
|
|
// Send the sequence
|
|
flwrite(AutoSel1,0x555);
|
|
flwrite(AutoSel2,0x2AA);
|
|
flwrite(AutoSel3,0x555);
|
|
|
|
// Get the JEDEC numbers
|
|
Mfg[0] = flread(0);
|
|
Id[0] = flread(1);
|
|
// printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
|
|
|
|
Size = handle_jedecs(map,Mfg,Id,1,base,priv);
|
|
// printk("handle_jedecs Size is %x\n",(unsigned int)Size);
|
|
if (Size == 0)
|
|
{
|
|
flwrite(Reset,0x555);
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Reset.
|
|
flwrite(Reset,0x555);
|
|
|
|
return 1;
|
|
|
|
#undef flread
|
|
#undef flwrite
|
|
}
|
|
|
|
// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
|
|
static int jedec_probe16(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
|
|
static int jedec_probe32(struct map_info *map,unsigned long base,
|
|
struct jedec_private *priv)
|
|
{
|
|
#define flread(x) map_read32(map,base+((x)<<2))
|
|
#define flwrite(v,x) map_write32(map,v,base+((x)<<2))
|
|
|
|
const unsigned long AutoSel1 = 0xAAAAAAAA;
|
|
const unsigned long AutoSel2 = 0x55555555;
|
|
const unsigned long AutoSel3 = 0x90909090;
|
|
const unsigned long Reset = 0xF0F0F0F0;
|
|
__u32 OldVal;
|
|
__u8 Mfg[4];
|
|
__u8 Id[4];
|
|
unsigned I;
|
|
unsigned long Size;
|
|
|
|
// Wait for any write/erase operation to settle
|
|
OldVal = flread(base);
|
|
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
|
OldVal = flread(base);
|
|
|
|
// Reset the chip
|
|
flwrite(Reset,0x555);
|
|
|
|
// Send the sequence
|
|
flwrite(AutoSel1,0x555);
|
|
flwrite(AutoSel2,0x2AA);
|
|
flwrite(AutoSel3,0x555);
|
|
|
|
// Test #1, JEDEC numbers are readable from 0x??00/0x??01
|
|
if (flread(0) != flread(0x100) ||
|
|
flread(1) != flread(0x101))
|
|
{
|
|
flwrite(Reset,0x555);
|
|
return 0;
|
|
}
|
|
|
|
// Split up the JEDEC numbers
|
|
OldVal = flread(0);
|
|
for (I = 0; I != 4; I++)
|
|
Mfg[I] = (OldVal >> (I*8));
|
|
OldVal = flread(1);
|
|
for (I = 0; I != 4; I++)
|
|
Id[I] = (OldVal >> (I*8));
|
|
|
|
Size = handle_jedecs(map,Mfg,Id,4,base,priv);
|
|
if (Size == 0)
|
|
{
|
|
flwrite(Reset,0x555);
|
|
return 0;
|
|
}
|
|
|
|
/* Check if there is address wrap around within a single bank, if this
|
|
returns JEDEC numbers then we assume that it is wrap around. Notice
|
|
we call this routine with the JEDEC return still enabled, if two or
|
|
more flashes have a truncated address space the probe test will still
|
|
work */
|
|
if (base + (Size<<2)+0x555 < map->size &&
|
|
base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
|
|
{
|
|
if (flread(base+Size) != flread(base+Size + 0x100) ||
|
|
flread(base+Size + 1) != flread(base+Size + 0x101))
|
|
{
|
|
jedec_probe32(map,base+Size,priv);
|
|
}
|
|
}
|
|
|
|
// Reset.
|
|
flwrite(0xF0F0F0F0,0x555);
|
|
|
|
return 1;
|
|
|
|
#undef flread
|
|
#undef flwrite
|
|
}
|
|
|
|
/* Linear read. */
|
|
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
|
|
map_copy_from(map, buf, from, len);
|
|
*retlen = len;
|
|
return 0;
|
|
}
|
|
|
|
/* Banked read. Take special care to jump past the holes in the bank
|
|
mapping. This version assumes symetry in the holes.. */
|
|
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct jedec_private *priv = map->fldrv_priv;
|
|
|
|
*retlen = 0;
|
|
while (len > 0)
|
|
{
|
|
// Determine what bank and offset into that bank the first byte is
|
|
unsigned long bank = from & (~(priv->bank_fill[0]-1));
|
|
unsigned long offset = from & (priv->bank_fill[0]-1);
|
|
unsigned long get = len;
|
|
if (priv->bank_fill[0] - offset < len)
|
|
get = priv->bank_fill[0] - offset;
|
|
|
|
bank /= priv->bank_fill[0];
|
|
map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
|
|
|
|
len -= get;
|
|
*retlen += get;
|
|
from += get;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Pass the flags value that the flash return before it re-entered read
|
|
mode. */
|
|
static void jedec_flash_failed(unsigned char code)
|
|
{
|
|
/* Bit 5 being high indicates that there was an internal device
|
|
failure, erasure time limits exceeded or something */
|
|
if ((code & (1 << 5)) != 0)
|
|
{
|
|
printk("mtd: Internal Flash failure\n");
|
|
return;
|
|
}
|
|
printk("mtd: Programming didn't take\n");
|
|
}
|
|
|
|
/* This uses the erasure function described in the AMD Flash Handbook,
|
|
it will work for flashes with a fixed sector size only. Flashes with
|
|
a selection of sector sizes (ie the AMD Am29F800B) will need a different
|
|
routine. This routine tries to parallize erasing multiple chips/sectors
|
|
where possible */
|
|
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
// Does IO to the currently selected chip
|
|
#define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
|
|
#define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
|
|
|
|
unsigned long Time = 0;
|
|
unsigned long NoTime = 0;
|
|
unsigned long start = instr->addr, len = instr->len;
|
|
unsigned int I;
|
|
struct map_info *map = mtd->priv;
|
|
struct jedec_private *priv = map->fldrv_priv;
|
|
|
|
// Verify the arguments..
|
|
if (start + len > mtd->size ||
|
|
(start % mtd->erasesize) != 0 ||
|
|
(len % mtd->erasesize) != 0 ||
|
|
(len/mtd->erasesize) == 0)
|
|
return -EINVAL;
|
|
|
|
jedec_flash_chip_scan(priv,start,len);
|
|
|
|
// Start the erase sequence on each chip
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
unsigned long off;
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
|
|
|
if (chip->length == 0)
|
|
continue;
|
|
|
|
if (chip->start + chip->length > chip->size)
|
|
{
|
|
printk("DIE\n");
|
|
return -EIO;
|
|
}
|
|
|
|
flwrite(0xF0,chip->start + 0x555);
|
|
flwrite(0xAA,chip->start + 0x555);
|
|
flwrite(0x55,chip->start + 0x2AA);
|
|
flwrite(0x80,chip->start + 0x555);
|
|
flwrite(0xAA,chip->start + 0x555);
|
|
flwrite(0x55,chip->start + 0x2AA);
|
|
|
|
/* Once we start selecting the erase sectors the delay between each
|
|
command must not exceed 50us or it will immediately start erasing
|
|
and ignore the other sectors */
|
|
for (off = 0; off < len; off += chip->sectorsize)
|
|
{
|
|
// Check to make sure we didn't timeout
|
|
flwrite(0x30,chip->start + off);
|
|
if (off == 0)
|
|
continue;
|
|
if ((flread(chip->start + off) & (1 << 3)) != 0)
|
|
{
|
|
printk("mtd: Ack! We timed out the erase timer!\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We could split this into a timer routine and return early, performing
|
|
background erasure.. Maybe later if the need warrents */
|
|
|
|
/* Poll the flash for erasure completion, specs say this can take as long
|
|
as 480 seconds to do all the sectors (for a 2 meg flash).
|
|
Erasure time is dependent on chip age, temp and wear.. */
|
|
|
|
/* This being a generic routine assumes a 32 bit bus. It does read32s
|
|
and bundles interleved chips into the same grouping. This will work
|
|
for all bus widths */
|
|
Time = 0;
|
|
NoTime = 0;
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
|
unsigned long off = 0;
|
|
unsigned todo[4] = {0,0,0,0};
|
|
unsigned todo_left = 0;
|
|
unsigned J;
|
|
|
|
if (chip->length == 0)
|
|
continue;
|
|
|
|
/* Find all chips in this data line, realistically this is all
|
|
or nothing up to the interleve count */
|
|
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
|
{
|
|
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
|
(chip->base & (~((1<<chip->addrshift)-1))))
|
|
{
|
|
todo_left++;
|
|
todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
|
|
}
|
|
}
|
|
|
|
/* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
|
|
(short)todo[2],(short)todo[3]);
|
|
*/
|
|
while (1)
|
|
{
|
|
__u32 Last[4];
|
|
unsigned long Count = 0;
|
|
|
|
/* During erase bit 7 is held low and bit 6 toggles, we watch this,
|
|
should it stop toggling or go high then the erase is completed,
|
|
or this is not really flash ;> */
|
|
switch (map->buswidth) {
|
|
case 1:
|
|
Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
case 2:
|
|
Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
case 3:
|
|
Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
}
|
|
Count = 3;
|
|
while (todo_left != 0)
|
|
{
|
|
for (J = 0; J != 4; J++)
|
|
{
|
|
__u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
|
|
__u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
|
|
__u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
|
|
if (todo[J] == 0)
|
|
continue;
|
|
|
|
if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
|
|
{
|
|
// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
|
|
continue;
|
|
}
|
|
|
|
if (Byte1 == Byte2)
|
|
{
|
|
jedec_flash_failed(Byte3);
|
|
return -EIO;
|
|
}
|
|
|
|
todo[J] = 0;
|
|
todo_left--;
|
|
}
|
|
|
|
/* if (NoTime == 0)
|
|
Time += HZ/10 - schedule_timeout(HZ/10);*/
|
|
NoTime = 0;
|
|
|
|
switch (map->buswidth) {
|
|
case 1:
|
|
Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
case 2:
|
|
Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
case 4:
|
|
Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
|
break;
|
|
}
|
|
Count++;
|
|
|
|
/* // Count time, max of 15s per sector (according to AMD)
|
|
if (Time > 15*len/mtd->erasesize*HZ)
|
|
{
|
|
printk("mtd: Flash Erase Timed out\n");
|
|
return -EIO;
|
|
} */
|
|
}
|
|
|
|
// Skip to the next chip if we used chip erase
|
|
if (chip->length == chip->size)
|
|
off = chip->size;
|
|
else
|
|
off += chip->sectorsize;
|
|
|
|
if (off >= chip->length)
|
|
break;
|
|
NoTime = 1;
|
|
}
|
|
|
|
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
|
{
|
|
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
|
(chip->base & (~((1<<chip->addrshift)-1))))
|
|
priv->chips[J].length = 0;
|
|
}
|
|
}
|
|
|
|
//printk("done\n");
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
return 0;
|
|
|
|
#undef flread
|
|
#undef flwrite
|
|
}
|
|
|
|
/* This is the simple flash writing function. It writes to every byte, in
|
|
sequence. It takes care of how to properly address the flash if
|
|
the flash is interleved. It can only be used if all the chips in the
|
|
array are identical!*/
|
|
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
/* Does IO to the currently selected chip. It takes the bank addressing
|
|
base (which is divisible by the chip size) adds the necessary lower bits
|
|
of addrshift (interleave index) and then adds the control register index. */
|
|
#define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
|
#define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
|
|
|
struct map_info *map = mtd->priv;
|
|
struct jedec_private *priv = map->fldrv_priv;
|
|
unsigned long base;
|
|
unsigned long off;
|
|
size_t save_len = len;
|
|
|
|
if (start + len > mtd->size)
|
|
return -EIO;
|
|
|
|
//printk("Here");
|
|
|
|
//printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
|
|
while (len != 0)
|
|
{
|
|
struct jedec_flash_chip *chip = priv->chips;
|
|
unsigned long bank;
|
|
unsigned long boffset;
|
|
|
|
// Compute the base of the flash.
|
|
off = ((unsigned long)start) % (chip->size << chip->addrshift);
|
|
base = start - off;
|
|
|
|
// Perform banked addressing translation.
|
|
bank = base & (~(priv->bank_fill[0]-1));
|
|
boffset = base & (priv->bank_fill[0]-1);
|
|
bank = (bank/priv->bank_fill[0])*my_bank_size;
|
|
base = bank + boffset;
|
|
|
|
// printk("Flasing %X %X %X\n",base,chip->size,len);
|
|
// printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
|
|
|
|
// Loop over this page
|
|
for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
|
|
{
|
|
unsigned char oldbyte = map_read8(map,base+off);
|
|
unsigned char Last[4];
|
|
unsigned long Count = 0;
|
|
|
|
if (oldbyte == *buf) {
|
|
// printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
|
|
continue;
|
|
}
|
|
if (((~oldbyte) & *buf) != 0)
|
|
printk("mtd: warn: Trying to set a 0 to a 1\n");
|
|
|
|
// Write
|
|
flwrite(0xAA,0x555);
|
|
flwrite(0x55,0x2AA);
|
|
flwrite(0xA0,0x555);
|
|
map_write8(map,*buf,base + off);
|
|
Last[0] = map_read8(map,base + off);
|
|
Last[1] = map_read8(map,base + off);
|
|
Last[2] = map_read8(map,base + off);
|
|
|
|
/* Wait for the flash to finish the operation. We store the last 4
|
|
status bytes that have been retrieved so we can determine why
|
|
it failed. The toggle bits keep toggling when there is a
|
|
failure */
|
|
for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
|
|
Count < 10000; Count++)
|
|
Last[Count % 4] = map_read8(map,base + off);
|
|
if (Last[(Count - 1) % 4] != *buf)
|
|
{
|
|
jedec_flash_failed(Last[(Count - 3) % 4]);
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
*retlen = save_len;
|
|
return 0;
|
|
}
|
|
|
|
/* This is used to enhance the speed of the erase routine,
|
|
when things are being done to multiple chips it is possible to
|
|
parallize the operations, particularly full memory erases of multi
|
|
chip memories benifit */
|
|
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
|
unsigned long len)
|
|
{
|
|
unsigned int I;
|
|
|
|
// Zero the records
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
priv->chips[I].start = priv->chips[I].length = 0;
|
|
|
|
// Intersect the region with each chip
|
|
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
|
{
|
|
struct jedec_flash_chip *chip = priv->chips + I;
|
|
unsigned long ByteStart;
|
|
unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
|
|
|
|
// End is before this chip or the start is after it
|
|
if (start+len < chip->offset ||
|
|
ChipEndByte - (1 << chip->addrshift) < start)
|
|
continue;
|
|
|
|
if (start < chip->offset)
|
|
{
|
|
ByteStart = chip->offset;
|
|
chip->start = 0;
|
|
}
|
|
else
|
|
{
|
|
chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
|
|
ByteStart = start;
|
|
}
|
|
|
|
if (start + len >= ChipEndByte)
|
|
chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
|
|
else
|
|
chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
|
|
}
|
|
}
|
|
|
|
int __init jedec_init(void)
|
|
{
|
|
register_mtd_chip_driver(&jedec_chipdrv);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit jedec_exit(void)
|
|
{
|
|
unregister_mtd_chip_driver(&jedec_chipdrv);
|
|
}
|
|
|
|
module_init(jedec_init);
|
|
module_exit(jedec_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
|
|
MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
|