linux_old1/drivers/mmc/core/core.c

2836 lines
68 KiB
C

/*
* linux/drivers/mmc/core/core.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/suspend.h>
#include <linux/fault-inject.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include "core.h"
#include "bus.h"
#include "host.h"
#include "sdio_bus.h"
#include "mmc_ops.h"
#include "sd_ops.h"
#include "sdio_ops.h"
/* If the device is not responding */
#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
/*
* Background operations can take a long time, depending on the housekeeping
* operations the card has to perform.
*/
#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
static struct workqueue_struct *workqueue;
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
/*
* Enabling software CRCs on the data blocks can be a significant (30%)
* performance cost, and for other reasons may not always be desired.
* So we allow it it to be disabled.
*/
bool use_spi_crc = 1;
module_param(use_spi_crc, bool, 0);
/*
* We normally treat cards as removed during suspend if they are not
* known to be on a non-removable bus, to avoid the risk of writing
* back data to a different card after resume. Allow this to be
* overridden if necessary.
*/
#ifdef CONFIG_MMC_UNSAFE_RESUME
bool mmc_assume_removable;
#else
bool mmc_assume_removable = 1;
#endif
EXPORT_SYMBOL(mmc_assume_removable);
module_param_named(removable, mmc_assume_removable, bool, 0644);
MODULE_PARM_DESC(
removable,
"MMC/SD cards are removable and may be removed during suspend");
/*
* Internal function. Schedule delayed work in the MMC work queue.
*/
static int mmc_schedule_delayed_work(struct delayed_work *work,
unsigned long delay)
{
return queue_delayed_work(workqueue, work, delay);
}
/*
* Internal function. Flush all scheduled work from the MMC work queue.
*/
static void mmc_flush_scheduled_work(void)
{
flush_workqueue(workqueue);
}
#ifdef CONFIG_FAIL_MMC_REQUEST
/*
* Internal function. Inject random data errors.
* If mmc_data is NULL no errors are injected.
*/
static void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
static const int data_errors[] = {
-ETIMEDOUT,
-EILSEQ,
-EIO,
};
if (!data)
return;
if (cmd->error || data->error ||
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
return;
data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
}
#else /* CONFIG_FAIL_MMC_REQUEST */
static inline void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
}
#endif /* CONFIG_FAIL_MMC_REQUEST */
/**
* mmc_request_done - finish processing an MMC request
* @host: MMC host which completed request
* @mrq: MMC request which request
*
* MMC drivers should call this function when they have completed
* their processing of a request.
*/
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
int err = cmd->error;
if (err && cmd->retries && mmc_host_is_spi(host)) {
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
cmd->retries = 0;
}
if (err && cmd->retries && !mmc_card_removed(host->card)) {
/*
* Request starter must handle retries - see
* mmc_wait_for_req_done().
*/
if (mrq->done)
mrq->done(mrq);
} else {
mmc_should_fail_request(host, mrq);
led_trigger_event(host->led, LED_OFF);
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), cmd->opcode, err,
cmd->resp[0], cmd->resp[1],
cmd->resp[2], cmd->resp[3]);
if (mrq->data) {
pr_debug("%s: %d bytes transferred: %d\n",
mmc_hostname(host),
mrq->data->bytes_xfered, mrq->data->error);
}
if (mrq->stop) {
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->error,
mrq->stop->resp[0], mrq->stop->resp[1],
mrq->stop->resp[2], mrq->stop->resp[3]);
}
if (mrq->done)
mrq->done(mrq);
mmc_host_clk_release(host);
}
}
EXPORT_SYMBOL(mmc_request_done);
static void
mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
#ifdef CONFIG_MMC_DEBUG
unsigned int i, sz;
struct scatterlist *sg;
#endif
if (mrq->sbc) {
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->arg, mrq->sbc->flags);
}
pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->cmd->opcode,
mrq->cmd->arg, mrq->cmd->flags);
if (mrq->data) {
pr_debug("%s: blksz %d blocks %d flags %08x "
"tsac %d ms nsac %d\n",
mmc_hostname(host), mrq->data->blksz,
mrq->data->blocks, mrq->data->flags,
mrq->data->timeout_ns / 1000000,
mrq->data->timeout_clks);
}
if (mrq->stop) {
pr_debug("%s: CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->arg, mrq->stop->flags);
}
WARN_ON(!host->claimed);
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
if (mrq->data) {
BUG_ON(mrq->data->blksz > host->max_blk_size);
BUG_ON(mrq->data->blocks > host->max_blk_count);
BUG_ON(mrq->data->blocks * mrq->data->blksz >
host->max_req_size);
#ifdef CONFIG_MMC_DEBUG
sz = 0;
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
sz += sg->length;
BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
#endif
mrq->cmd->data = mrq->data;
mrq->data->error = 0;
mrq->data->mrq = mrq;
if (mrq->stop) {
mrq->data->stop = mrq->stop;
mrq->stop->error = 0;
mrq->stop->mrq = mrq;
}
}
mmc_host_clk_hold(host);
led_trigger_event(host->led, LED_FULL);
host->ops->request(host, mrq);
}
/**
* mmc_start_bkops - start BKOPS for supported cards
* @card: MMC card to start BKOPS
* @form_exception: A flag to indicate if this function was
* called due to an exception raised by the card
*
* Start background operations whenever requested.
* When the urgent BKOPS bit is set in a R1 command response
* then background operations should be started immediately.
*/
void mmc_start_bkops(struct mmc_card *card, bool from_exception)
{
int err;
int timeout;
bool use_busy_signal;
BUG_ON(!card);
if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
return;
err = mmc_read_bkops_status(card);
if (err) {
pr_err("%s: Failed to read bkops status: %d\n",
mmc_hostname(card->host), err);
return;
}
if (!card->ext_csd.raw_bkops_status)
return;
if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
from_exception)
return;
mmc_claim_host(card->host);
if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
timeout = MMC_BKOPS_MAX_TIMEOUT;
use_busy_signal = true;
} else {
timeout = 0;
use_busy_signal = false;
}
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
if (err) {
pr_warn("%s: Error %d starting bkops\n",
mmc_hostname(card->host), err);
goto out;
}
/*
* For urgent bkops status (LEVEL_2 and more)
* bkops executed synchronously, otherwise
* the operation is in progress
*/
if (!use_busy_signal)
mmc_card_set_doing_bkops(card);
out:
mmc_release_host(card->host);
}
EXPORT_SYMBOL(mmc_start_bkops);
/*
* mmc_wait_data_done() - done callback for data request
* @mrq: done data request
*
* Wakes up mmc context, passed as a callback to host controller driver
*/
static void mmc_wait_data_done(struct mmc_request *mrq)
{
mrq->host->context_info.is_done_rcv = true;
wake_up_interruptible(&mrq->host->context_info.wait);
}
static void mmc_wait_done(struct mmc_request *mrq)
{
complete(&mrq->completion);
}
/*
*__mmc_start_data_req() - starts data request
* @host: MMC host to start the request
* @mrq: data request to start
*
* Sets the done callback to be called when request is completed by the card.
* Starts data mmc request execution
*/
static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
{
mrq->done = mmc_wait_data_done;
mrq->host = host;
if (mmc_card_removed(host->card)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_wait_data_done(mrq);
return -ENOMEDIUM;
}
mmc_start_request(host, mrq);
return 0;
}
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
init_completion(&mrq->completion);
mrq->done = mmc_wait_done;
if (mmc_card_removed(host->card)) {
mrq->cmd->error = -ENOMEDIUM;
complete(&mrq->completion);
return -ENOMEDIUM;
}
mmc_start_request(host, mrq);
return 0;
}
/*
* mmc_wait_for_data_req_done() - wait for request completed
* @host: MMC host to prepare the command.
* @mrq: MMC request to wait for
*
* Blocks MMC context till host controller will ack end of data request
* execution or new request notification arrives from the block layer.
* Handles command retries.
*
* Returns enum mmc_blk_status after checking errors.
*/
static int mmc_wait_for_data_req_done(struct mmc_host *host,
struct mmc_request *mrq,
struct mmc_async_req *next_req)
{
struct mmc_command *cmd;
struct mmc_context_info *context_info = &host->context_info;
int err;
unsigned long flags;
while (1) {
wait_event_interruptible(context_info->wait,
(context_info->is_done_rcv ||
context_info->is_new_req));
spin_lock_irqsave(&context_info->lock, flags);
context_info->is_waiting_last_req = false;
spin_unlock_irqrestore(&context_info->lock, flags);
if (context_info->is_done_rcv) {
context_info->is_done_rcv = false;
context_info->is_new_req = false;
cmd = mrq->cmd;
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card)) {
err = host->areq->err_check(host->card,
host->areq);
break; /* return err */
} else {
pr_info("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host),
cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
host->ops->request(host, mrq);
continue; /* wait for done/new event again */
}
} else if (context_info->is_new_req) {
context_info->is_new_req = false;
if (!next_req) {
err = MMC_BLK_NEW_REQUEST;
break; /* return err */
}
}
}
return err;
}
static void mmc_wait_for_req_done(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd;
while (1) {
wait_for_completion(&mrq->completion);
cmd = mrq->cmd;
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card))
break;
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host), cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
host->ops->request(host, mrq);
}
}
/**
* mmc_pre_req - Prepare for a new request
* @host: MMC host to prepare command
* @mrq: MMC request to prepare for
* @is_first_req: true if there is no previous started request
* that may run in parellel to this call, otherwise false
*
* mmc_pre_req() is called in prior to mmc_start_req() to let
* host prepare for the new request. Preparation of a request may be
* performed while another request is running on the host.
*/
static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
bool is_first_req)
{
if (host->ops->pre_req) {
mmc_host_clk_hold(host);
host->ops->pre_req(host, mrq, is_first_req);
mmc_host_clk_release(host);
}
}
/**
* mmc_post_req - Post process a completed request
* @host: MMC host to post process command
* @mrq: MMC request to post process for
* @err: Error, if non zero, clean up any resources made in pre_req
*
* Let the host post process a completed request. Post processing of
* a request may be performed while another reuqest is running.
*/
static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
int err)
{
if (host->ops->post_req) {
mmc_host_clk_hold(host);
host->ops->post_req(host, mrq, err);
mmc_host_clk_release(host);
}
}
/**
* mmc_start_req - start a non-blocking request
* @host: MMC host to start command
* @areq: async request to start
* @error: out parameter returns 0 for success, otherwise non zero
*
* Start a new MMC custom command request for a host.
* If there is on ongoing async request wait for completion
* of that request and start the new one and return.
* Does not wait for the new request to complete.
*
* Returns the completed request, NULL in case of none completed.
* Wait for the an ongoing request (previoulsy started) to complete and
* return the completed request. If there is no ongoing request, NULL
* is returned without waiting. NULL is not an error condition.
*/
struct mmc_async_req *mmc_start_req(struct mmc_host *host,
struct mmc_async_req *areq, int *error)
{
int err = 0;
int start_err = 0;
struct mmc_async_req *data = host->areq;
/* Prepare a new request */
if (areq)
mmc_pre_req(host, areq->mrq, !host->areq);
if (host->areq) {
err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
if (err == MMC_BLK_NEW_REQUEST) {
if (error)
*error = err;
/*
* The previous request was not completed,
* nothing to return
*/
return NULL;
}
/*
* Check BKOPS urgency for each R1 response
*/
if (host->card && mmc_card_mmc(host->card) &&
((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
(mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
(host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
mmc_start_bkops(host->card, true);
}
if (!err && areq)
start_err = __mmc_start_data_req(host, areq->mrq);
if (host->areq)
mmc_post_req(host, host->areq->mrq, 0);
/* Cancel a prepared request if it was not started. */
if ((err || start_err) && areq)
mmc_post_req(host, areq->mrq, -EINVAL);
if (err)
host->areq = NULL;
else
host->areq = areq;
if (error)
*error = err;
return data;
}
EXPORT_SYMBOL(mmc_start_req);
/**
* mmc_wait_for_req - start a request and wait for completion
* @host: MMC host to start command
* @mrq: MMC request to start
*
* Start a new MMC custom command request for a host, and wait
* for the command to complete. Does not attempt to parse the
* response.
*/
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
__mmc_start_req(host, mrq);
mmc_wait_for_req_done(host, mrq);
}
EXPORT_SYMBOL(mmc_wait_for_req);
/**
* mmc_interrupt_hpi - Issue for High priority Interrupt
* @card: the MMC card associated with the HPI transfer
*
* Issued High Priority Interrupt, and check for card status
* until out-of prg-state.
*/
int mmc_interrupt_hpi(struct mmc_card *card)
{
int err;
u32 status;
unsigned long prg_wait;
BUG_ON(!card);
if (!card->ext_csd.hpi_en) {
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
return 1;
}
mmc_claim_host(card->host);
err = mmc_send_status(card, &status);
if (err) {
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
goto out;
}
switch (R1_CURRENT_STATE(status)) {
case R1_STATE_IDLE:
case R1_STATE_READY:
case R1_STATE_STBY:
case R1_STATE_TRAN:
/*
* In idle and transfer states, HPI is not needed and the caller
* can issue the next intended command immediately
*/
goto out;
case R1_STATE_PRG:
break;
default:
/* In all other states, it's illegal to issue HPI */
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
mmc_hostname(card->host), R1_CURRENT_STATE(status));
err = -EINVAL;
goto out;
}
err = mmc_send_hpi_cmd(card, &status);
if (err)
goto out;
prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
do {
err = mmc_send_status(card, &status);
if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
break;
if (time_after(jiffies, prg_wait))
err = -ETIMEDOUT;
} while (!err);
out:
mmc_release_host(card->host);
return err;
}
EXPORT_SYMBOL(mmc_interrupt_hpi);
/**
* mmc_wait_for_cmd - start a command and wait for completion
* @host: MMC host to start command
* @cmd: MMC command to start
* @retries: maximum number of retries
*
* Start a new MMC command for a host, and wait for the command
* to complete. Return any error that occurred while the command
* was executing. Do not attempt to parse the response.
*/
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
struct mmc_request mrq = {NULL};
WARN_ON(!host->claimed);
memset(cmd->resp, 0, sizeof(cmd->resp));
cmd->retries = retries;
mrq.cmd = cmd;
cmd->data = NULL;
mmc_wait_for_req(host, &mrq);
return cmd->error;
}
EXPORT_SYMBOL(mmc_wait_for_cmd);
/**
* mmc_stop_bkops - stop ongoing BKOPS
* @card: MMC card to check BKOPS
*
* Send HPI command to stop ongoing background operations to
* allow rapid servicing of foreground operations, e.g. read/
* writes. Wait until the card comes out of the programming state
* to avoid errors in servicing read/write requests.
*/
int mmc_stop_bkops(struct mmc_card *card)
{
int err = 0;
BUG_ON(!card);
err = mmc_interrupt_hpi(card);
/*
* If err is EINVAL, we can't issue an HPI.
* It should complete the BKOPS.
*/
if (!err || (err == -EINVAL)) {
mmc_card_clr_doing_bkops(card);
err = 0;
}
return err;
}
EXPORT_SYMBOL(mmc_stop_bkops);
int mmc_read_bkops_status(struct mmc_card *card)
{
int err;
u8 *ext_csd;
/*
* In future work, we should consider storing the entire ext_csd.
*/
ext_csd = kmalloc(512, GFP_KERNEL);
if (!ext_csd) {
pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
mmc_hostname(card->host));
return -ENOMEM;
}
mmc_claim_host(card->host);
err = mmc_send_ext_csd(card, ext_csd);
mmc_release_host(card->host);
if (err)
goto out;
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
out:
kfree(ext_csd);
return err;
}
EXPORT_SYMBOL(mmc_read_bkops_status);
/**
* mmc_set_data_timeout - set the timeout for a data command
* @data: data phase for command
* @card: the MMC card associated with the data transfer
*
* Computes the data timeout parameters according to the
* correct algorithm given the card type.
*/
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
{
unsigned int mult;
/*
* SDIO cards only define an upper 1 s limit on access.
*/
if (mmc_card_sdio(card)) {
data->timeout_ns = 1000000000;
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = mmc_card_sd(card) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & MMC_DATA_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->csd.tacc_ns * mult;
data->timeout_clks = card->csd.tacc_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (mmc_card_sd(card)) {
unsigned int timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
if (mmc_host_clk_rate(card->host))
timeout_us += data->timeout_clks * 1000 /
(mmc_host_clk_rate(card->host) / 1000);
if (data->flags & MMC_DATA_WRITE)
/*
* The MMC spec "It is strongly recommended
* for hosts to implement more than 500ms
* timeout value even if the card indicates
* the 250ms maximum busy length." Even the
* previous value of 300ms is known to be
* insufficient for some cards.
*/
limit_us = 3000000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
data->timeout_ns = limit_us * 1000;
data->timeout_clks = 0;
}
}
/*
* Some cards require longer data read timeout than indicated in CSD.
* Address this by setting the read timeout to a "reasonably high"
* value. For the cards tested, 300ms has proven enough. If necessary,
* this value can be increased if other problematic cards require this.
*/
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
data->timeout_ns = 300000000;
data->timeout_clks = 0;
}
/*
* Some cards need very high timeouts if driven in SPI mode.
* The worst observed timeout was 900ms after writing a
* continuous stream of data until the internal logic
* overflowed.
*/
if (mmc_host_is_spi(card->host)) {
if (data->flags & MMC_DATA_WRITE) {
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
} else {
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
}
EXPORT_SYMBOL(mmc_set_data_timeout);
/**
* mmc_align_data_size - pads a transfer size to a more optimal value
* @card: the MMC card associated with the data transfer
* @sz: original transfer size
*
* Pads the original data size with a number of extra bytes in
* order to avoid controller bugs and/or performance hits
* (e.g. some controllers revert to PIO for certain sizes).
*
* Returns the improved size, which might be unmodified.
*
* Note that this function is only relevant when issuing a
* single scatter gather entry.
*/
unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
{
/*
* FIXME: We don't have a system for the controller to tell
* the core about its problems yet, so for now we just 32-bit
* align the size.
*/
sz = ((sz + 3) / 4) * 4;
return sz;
}
EXPORT_SYMBOL(mmc_align_data_size);
/**
* __mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
* @abort: whether or not the operation should be aborted
*
* Claim a host for a set of operations. If @abort is non null and
* dereference a non-zero value then this will return prematurely with
* that non-zero value without acquiring the lock. Returns zero
* with the lock held otherwise.
*/
int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int stop;
might_sleep();
add_wait_queue(&host->wq, &wait);
spin_lock_irqsave(&host->lock, flags);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
stop = abort ? atomic_read(abort) : 0;
if (stop || !host->claimed || host->claimer == current)
break;
spin_unlock_irqrestore(&host->lock, flags);
schedule();
spin_lock_irqsave(&host->lock, flags);
}
set_current_state(TASK_RUNNING);
if (!stop) {
host->claimed = 1;
host->claimer = current;
host->claim_cnt += 1;
} else
wake_up(&host->wq);
spin_unlock_irqrestore(&host->lock, flags);
remove_wait_queue(&host->wq, &wait);
if (host->ops->enable && !stop && host->claim_cnt == 1)
host->ops->enable(host);
return stop;
}
EXPORT_SYMBOL(__mmc_claim_host);
/**
* mmc_try_claim_host - try exclusively to claim a host
* @host: mmc host to claim
*
* Returns %1 if the host is claimed, %0 otherwise.
*/
int mmc_try_claim_host(struct mmc_host *host)
{
int claimed_host = 0;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (!host->claimed || host->claimer == current) {
host->claimed = 1;
host->claimer = current;
host->claim_cnt += 1;
claimed_host = 1;
}
spin_unlock_irqrestore(&host->lock, flags);
if (host->ops->enable && claimed_host && host->claim_cnt == 1)
host->ops->enable(host);
return claimed_host;
}
EXPORT_SYMBOL(mmc_try_claim_host);
/**
* mmc_release_host - release a host
* @host: mmc host to release
*
* Release a MMC host, allowing others to claim the host
* for their operations.
*/
void mmc_release_host(struct mmc_host *host)
{
unsigned long flags;
WARN_ON(!host->claimed);
if (host->ops->disable && host->claim_cnt == 1)
host->ops->disable(host);
spin_lock_irqsave(&host->lock, flags);
if (--host->claim_cnt) {
/* Release for nested claim */
spin_unlock_irqrestore(&host->lock, flags);
} else {
host->claimed = 0;
host->claimer = NULL;
spin_unlock_irqrestore(&host->lock, flags);
wake_up(&host->wq);
}
}
EXPORT_SYMBOL(mmc_release_host);
/*
* Internal function that does the actual ios call to the host driver,
* optionally printing some debug output.
*/
static inline void mmc_set_ios(struct mmc_host *host)
{
struct mmc_ios *ios = &host->ios;
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u timing %u\n",
mmc_hostname(host), ios->clock, ios->bus_mode,
ios->power_mode, ios->chip_select, ios->vdd,
ios->bus_width, ios->timing);
if (ios->clock > 0)
mmc_set_ungated(host);
host->ops->set_ios(host, ios);
}
/*
* Control chip select pin on a host.
*/
void mmc_set_chip_select(struct mmc_host *host, int mode)
{
mmc_host_clk_hold(host);
host->ios.chip_select = mode;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
WARN_ON(hz < host->f_min);
if (hz > host->f_max)
hz = host->f_max;
host->ios.clock = hz;
mmc_set_ios(host);
}
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
mmc_host_clk_hold(host);
__mmc_set_clock(host, hz);
mmc_host_clk_release(host);
}
#ifdef CONFIG_MMC_CLKGATE
/*
* This gates the clock by setting it to 0 Hz.
*/
void mmc_gate_clock(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_old = host->ios.clock;
host->ios.clock = 0;
host->clk_gated = true;
spin_unlock_irqrestore(&host->clk_lock, flags);
mmc_set_ios(host);
}
/*
* This restores the clock from gating by using the cached
* clock value.
*/
void mmc_ungate_clock(struct mmc_host *host)
{
/*
* We should previously have gated the clock, so the clock shall
* be 0 here! The clock may however be 0 during initialization,
* when some request operations are performed before setting
* the frequency. When ungate is requested in that situation
* we just ignore the call.
*/
if (host->clk_old) {
BUG_ON(host->ios.clock);
/* This call will also set host->clk_gated to false */
__mmc_set_clock(host, host->clk_old);
}
}
void mmc_set_ungated(struct mmc_host *host)
{
unsigned long flags;
/*
* We've been given a new frequency while the clock is gated,
* so make sure we regard this as ungating it.
*/
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_gated = false;
spin_unlock_irqrestore(&host->clk_lock, flags);
}
#else
void mmc_set_ungated(struct mmc_host *host)
{
}
#endif
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
{
mmc_host_clk_hold(host);
host->ios.bus_mode = mode;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Change data bus width of a host.
*/
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
{
mmc_host_clk_hold(host);
host->ios.bus_width = width;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/**
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
* @vdd: voltage (mV)
* @low_bits: prefer low bits in boundary cases
*
* This function returns the OCR bit number according to the provided @vdd
* value. If conversion is not possible a negative errno value returned.
*
* Depending on the @low_bits flag the function prefers low or high OCR bits
* on boundary voltages. For example,
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
*
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
*/
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
const int max_bit = ilog2(MMC_VDD_35_36);
int bit;
if (vdd < 1650 || vdd > 3600)
return -EINVAL;
if (vdd >= 1650 && vdd <= 1950)
return ilog2(MMC_VDD_165_195);
if (low_bits)
vdd -= 1;
/* Base 2000 mV, step 100 mV, bit's base 8. */
bit = (vdd - 2000) / 100 + 8;
if (bit > max_bit)
return max_bit;
return bit;
}
/**
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
* @vdd_min: minimum voltage value (mV)
* @vdd_max: maximum voltage value (mV)
*
* This function returns the OCR mask bits according to the provided @vdd_min
* and @vdd_max values. If conversion is not possible the function returns 0.
*
* Notes wrt boundary cases:
* This function sets the OCR bits for all boundary voltages, for example
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
* MMC_VDD_34_35 mask.
*/
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
u32 mask = 0;
if (vdd_max < vdd_min)
return 0;
/* Prefer high bits for the boundary vdd_max values. */
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
if (vdd_max < 0)
return 0;
/* Prefer low bits for the boundary vdd_min values. */
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
if (vdd_min < 0)
return 0;
/* Fill the mask, from max bit to min bit. */
while (vdd_max >= vdd_min)
mask |= 1 << vdd_max--;
return mask;
}
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
#ifdef CONFIG_REGULATOR
/**
* mmc_regulator_get_ocrmask - return mask of supported voltages
* @supply: regulator to use
*
* This returns either a negative errno, or a mask of voltages that
* can be provided to MMC/SD/SDIO devices using the specified voltage
* regulator. This would normally be called before registering the
* MMC host adapter.
*/
int mmc_regulator_get_ocrmask(struct regulator *supply)
{
int result = 0;
int count;
int i;
count = regulator_count_voltages(supply);
if (count < 0)
return count;
for (i = 0; i < count; i++) {
int vdd_uV;
int vdd_mV;
vdd_uV = regulator_list_voltage(supply, i);
if (vdd_uV <= 0)
continue;
vdd_mV = vdd_uV / 1000;
result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
}
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
/**
* mmc_regulator_set_ocr - set regulator to match host->ios voltage
* @mmc: the host to regulate
* @supply: regulator to use
* @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
*
* Returns zero on success, else negative errno.
*
* MMC host drivers may use this to enable or disable a regulator using
* a particular supply voltage. This would normally be called from the
* set_ios() method.
*/
int mmc_regulator_set_ocr(struct mmc_host *mmc,
struct regulator *supply,
unsigned short vdd_bit)
{
int result = 0;
int min_uV, max_uV;
if (vdd_bit) {
int tmp;
int voltage;
/*
* REVISIT mmc_vddrange_to_ocrmask() may have set some
* bits this regulator doesn't quite support ... don't
* be too picky, most cards and regulators are OK with
* a 0.1V range goof (it's a small error percentage).
*/
tmp = vdd_bit - ilog2(MMC_VDD_165_195);
if (tmp == 0) {
min_uV = 1650 * 1000;
max_uV = 1950 * 1000;
} else {
min_uV = 1900 * 1000 + tmp * 100 * 1000;
max_uV = min_uV + 100 * 1000;
}
/*
* If we're using a fixed/static regulator, don't call
* regulator_set_voltage; it would fail.
*/
voltage = regulator_get_voltage(supply);
if (!regulator_can_change_voltage(supply))
min_uV = max_uV = voltage;
if (voltage < 0)
result = voltage;
else if (voltage < min_uV || voltage > max_uV)
result = regulator_set_voltage(supply, min_uV, max_uV);
else
result = 0;
if (result == 0 && !mmc->regulator_enabled) {
result = regulator_enable(supply);
if (!result)
mmc->regulator_enabled = true;
}
} else if (mmc->regulator_enabled) {
result = regulator_disable(supply);
if (result == 0)
mmc->regulator_enabled = false;
}
if (result)
dev_err(mmc_dev(mmc),
"could not set regulator OCR (%d)\n", result);
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
int mmc_regulator_get_supply(struct mmc_host *mmc)
{
struct device *dev = mmc_dev(mmc);
struct regulator *supply;
int ret;
supply = devm_regulator_get(dev, "vmmc");
mmc->supply.vmmc = supply;
mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
if (IS_ERR(supply))
return PTR_ERR(supply);
ret = mmc_regulator_get_ocrmask(supply);
if (ret > 0)
mmc->ocr_avail = ret;
else
dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
return 0;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
#endif /* CONFIG_REGULATOR */
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
int bit;
ocr &= host->ocr_avail;
bit = ffs(ocr);
if (bit) {
bit -= 1;
ocr &= 3 << bit;
mmc_host_clk_hold(host);
host->ios.vdd = bit;
mmc_set_ios(host);
mmc_host_clk_release(host);
} else {
pr_warning("%s: host doesn't support card's voltages\n",
mmc_hostname(host));
ocr = 0;
}
return ocr;
}
int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
int err = 0;
int old_signal_voltage = host->ios.signal_voltage;
host->ios.signal_voltage = signal_voltage;
if (host->ops->start_signal_voltage_switch) {
mmc_host_clk_hold(host);
err = host->ops->start_signal_voltage_switch(host, &host->ios);
mmc_host_clk_release(host);
}
if (err)
host->ios.signal_voltage = old_signal_voltage;
return err;
}
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
struct mmc_command cmd = {0};
int err = 0;
u32 clock;
BUG_ON(!host);
/*
* Send CMD11 only if the request is to switch the card to
* 1.8V signalling.
*/
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return __mmc_set_signal_voltage(host, signal_voltage);
/*
* If we cannot switch voltages, return failure so the caller
* can continue without UHS mode
*/
if (!host->ops->start_signal_voltage_switch)
return -EPERM;
if (!host->ops->card_busy)
pr_warning("%s: cannot verify signal voltage switch\n",
mmc_hostname(host));
cmd.opcode = SD_SWITCH_VOLTAGE;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
return err;
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
return -EIO;
mmc_host_clk_hold(host);
/*
* The card should drive cmd and dat[0:3] low immediately
* after the response of cmd11, but wait 1 ms to be sure
*/
mmc_delay(1);
if (host->ops->card_busy && !host->ops->card_busy(host)) {
err = -EAGAIN;
goto power_cycle;
}
/*
* During a signal voltage level switch, the clock must be gated
* for 5 ms according to the SD spec
*/
clock = host->ios.clock;
host->ios.clock = 0;
mmc_set_ios(host);
if (__mmc_set_signal_voltage(host, signal_voltage)) {
/*
* Voltages may not have been switched, but we've already
* sent CMD11, so a power cycle is required anyway
*/
err = -EAGAIN;
goto power_cycle;
}
/* Keep clock gated for at least 5 ms */
mmc_delay(5);
host->ios.clock = clock;
mmc_set_ios(host);
/* Wait for at least 1 ms according to spec */
mmc_delay(1);
/*
* Failure to switch is indicated by the card holding
* dat[0:3] low
*/
if (host->ops->card_busy && host->ops->card_busy(host))
err = -EAGAIN;
power_cycle:
if (err) {
pr_debug("%s: Signal voltage switch failed, "
"power cycling card\n", mmc_hostname(host));
mmc_power_cycle(host);
}
mmc_host_clk_release(host);
return err;
}
/*
* Select timing parameters for host.
*/
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
{
mmc_host_clk_hold(host);
host->ios.timing = timing;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Select appropriate driver type for host.
*/
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
{
mmc_host_clk_hold(host);
host->ios.drv_type = drv_type;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Apply power to the MMC stack. This is a two-stage process.
* First, we enable power to the card without the clock running.
* We then wait a bit for the power to stabilise. Finally,
* enable the bus drivers and clock to the card.
*
* We must _NOT_ enable the clock prior to power stablising.
*
* If a host does all the power sequencing itself, ignore the
* initial MMC_POWER_UP stage.
*/
static void mmc_power_up(struct mmc_host *host)
{
int bit;
if (host->ios.power_mode == MMC_POWER_ON)
return;
mmc_host_clk_hold(host);
/* If ocr is set, we use it */
if (host->ocr)
bit = ffs(host->ocr) - 1;
else
bit = fls(host->ocr_avail) - 1;
host->ios.vdd = bit;
if (mmc_host_is_spi(host))
host->ios.chip_select = MMC_CS_HIGH;
else
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
host->ios.power_mode = MMC_POWER_UP;
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
mmc_set_ios(host);
/* Set signal voltage to 3.3V */
__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmc_delay(10);
host->ios.clock = host->f_init;
host->ios.power_mode = MMC_POWER_ON;
mmc_set_ios(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmc_delay(10);
mmc_host_clk_release(host);
}
void mmc_power_off(struct mmc_host *host)
{
if (host->ios.power_mode == MMC_POWER_OFF)
return;
mmc_host_clk_hold(host);
host->ios.clock = 0;
host->ios.vdd = 0;
/*
* Reset ocr mask to be the highest possible voltage supported for
* this mmc host. This value will be used at next power up.
*/
host->ocr = 1 << (fls(host->ocr_avail) - 1);
if (!mmc_host_is_spi(host)) {
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
host->ios.chip_select = MMC_CS_DONTCARE;
}
host->ios.power_mode = MMC_POWER_OFF;
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
mmc_set_ios(host);
/*
* Some configurations, such as the 802.11 SDIO card in the OLPC
* XO-1.5, require a short delay after poweroff before the card
* can be successfully turned on again.
*/
mmc_delay(1);
mmc_host_clk_release(host);
}
void mmc_power_cycle(struct mmc_host *host)
{
mmc_power_off(host);
/* Wait at least 1 ms according to SD spec */
mmc_delay(1);
mmc_power_up(host);
}
/*
* Cleanup when the last reference to the bus operator is dropped.
*/
static void __mmc_release_bus(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(host->bus_refs);
BUG_ON(!host->bus_dead);
host->bus_ops = NULL;
}
/*
* Increase reference count of bus operator
*/
static inline void mmc_bus_get(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs++;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Decrease reference count of bus operator and free it if
* it is the last reference.
*/
static inline void mmc_bus_put(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs--;
if ((host->bus_refs == 0) && host->bus_ops)
__mmc_release_bus(host);
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Assign a mmc bus handler to a host. Only one bus handler may control a
* host at any given time.
*/
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
unsigned long flags;
BUG_ON(!host);
BUG_ON(!ops);
WARN_ON(!host->claimed);
spin_lock_irqsave(&host->lock, flags);
BUG_ON(host->bus_ops);
BUG_ON(host->bus_refs);
host->bus_ops = ops;
host->bus_refs = 1;
host->bus_dead = 0;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Remove the current bus handler from a host.
*/
void mmc_detach_bus(struct mmc_host *host)
{
unsigned long flags;
BUG_ON(!host);
WARN_ON(!host->claimed);
WARN_ON(!host->bus_ops);
spin_lock_irqsave(&host->lock, flags);
host->bus_dead = 1;
spin_unlock_irqrestore(&host->lock, flags);
mmc_bus_put(host);
}
/**
* mmc_detect_change - process change of state on a MMC socket
* @host: host which changed state.
* @delay: optional delay to wait before detection (jiffies)
*
* MMC drivers should call this when they detect a card has been
* inserted or removed. The MMC layer will confirm that any
* present card is still functional, and initialize any newly
* inserted.
*/
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->removed);
spin_unlock_irqrestore(&host->lock, flags);
#endif
host->detect_change = 1;
mmc_schedule_delayed_work(&host->detect, delay);
}
EXPORT_SYMBOL(mmc_detect_change);
void mmc_init_erase(struct mmc_card *card)
{
unsigned int sz;
if (is_power_of_2(card->erase_size))
card->erase_shift = ffs(card->erase_size) - 1;
else
card->erase_shift = 0;
/*
* It is possible to erase an arbitrarily large area of an SD or MMC
* card. That is not desirable because it can take a long time
* (minutes) potentially delaying more important I/O, and also the
* timeout calculations become increasingly hugely over-estimated.
* Consequently, 'pref_erase' is defined as a guide to limit erases
* to that size and alignment.
*
* For SD cards that define Allocation Unit size, limit erases to one
* Allocation Unit at a time. For MMC cards that define High Capacity
* Erase Size, whether it is switched on or not, limit to that size.
* Otherwise just have a stab at a good value. For modern cards it
* will end up being 4MiB. Note that if the value is too small, it
* can end up taking longer to erase.
*/
if (mmc_card_sd(card) && card->ssr.au) {
card->pref_erase = card->ssr.au;
card->erase_shift = ffs(card->ssr.au) - 1;
} else if (card->ext_csd.hc_erase_size) {
card->pref_erase = card->ext_csd.hc_erase_size;
} else {
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
if (sz < 128)
card->pref_erase = 512 * 1024 / 512;
else if (sz < 512)
card->pref_erase = 1024 * 1024 / 512;
else if (sz < 1024)
card->pref_erase = 2 * 1024 * 1024 / 512;
else
card->pref_erase = 4 * 1024 * 1024 / 512;
if (card->pref_erase < card->erase_size)
card->pref_erase = card->erase_size;
else {
sz = card->pref_erase % card->erase_size;
if (sz)
card->pref_erase += card->erase_size - sz;
}
}
}
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
unsigned int arg, unsigned int qty)
{
unsigned int erase_timeout;
if (arg == MMC_DISCARD_ARG ||
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
erase_timeout = card->ext_csd.trim_timeout;
} else if (card->ext_csd.erase_group_def & 1) {
/* High Capacity Erase Group Size uses HC timeouts */
if (arg == MMC_TRIM_ARG)
erase_timeout = card->ext_csd.trim_timeout;
else
erase_timeout = card->ext_csd.hc_erase_timeout;
} else {
/* CSD Erase Group Size uses write timeout */
unsigned int mult = (10 << card->csd.r2w_factor);
unsigned int timeout_clks = card->csd.tacc_clks * mult;
unsigned int timeout_us;
/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
if (card->csd.tacc_ns < 1000000)
timeout_us = (card->csd.tacc_ns * mult) / 1000;
else
timeout_us = (card->csd.tacc_ns / 1000) * mult;
/*
* ios.clock is only a target. The real clock rate might be
* less but not that much less, so fudge it by multiplying by 2.
*/
timeout_clks <<= 1;
timeout_us += (timeout_clks * 1000) /
(mmc_host_clk_rate(card->host) / 1000);
erase_timeout = timeout_us / 1000;
/*
* Theoretically, the calculation could underflow so round up
* to 1ms in that case.
*/
if (!erase_timeout)
erase_timeout = 1;
}
/* Multiplier for secure operations */
if (arg & MMC_SECURE_ARGS) {
if (arg == MMC_SECURE_ERASE_ARG)
erase_timeout *= card->ext_csd.sec_erase_mult;
else
erase_timeout *= card->ext_csd.sec_trim_mult;
}
erase_timeout *= qty;
/*
* Ensure at least a 1 second timeout for SPI as per
* 'mmc_set_data_timeout()'
*/
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
unsigned int erase_timeout;
if (card->ssr.erase_timeout) {
/* Erase timeout specified in SD Status Register (SSR) */
erase_timeout = card->ssr.erase_timeout * qty +
card->ssr.erase_offset;
} else {
/*
* Erase timeout not specified in SD Status Register (SSR) so
* use 250ms per write block.
*/
erase_timeout = 250 * qty;
}
/* Must not be less than 1 second */
if (erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
if (mmc_card_sd(card))
return mmc_sd_erase_timeout(card, arg, qty);
else
return mmc_mmc_erase_timeout(card, arg, qty);
}
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command cmd = {0};
unsigned int qty = 0;
unsigned long timeout;
int err;
/*
* qty is used to calculate the erase timeout which depends on how many
* erase groups (or allocation units in SD terminology) are affected.
* We count erasing part of an erase group as one erase group.
* For SD, the allocation units are always a power of 2. For MMC, the
* erase group size is almost certainly also power of 2, but it does not
* seem to insist on that in the JEDEC standard, so we fall back to
* division in that case. SD may not specify an allocation unit size,
* in which case the timeout is based on the number of write blocks.
*
* Note that the timeout for secure trim 2 will only be correct if the
* number of erase groups specified is the same as the total of all
* preceding secure trim 1 commands. Since the power may have been
* lost since the secure trim 1 commands occurred, it is generally
* impossible to calculate the secure trim 2 timeout correctly.
*/
if (card->erase_shift)
qty += ((to >> card->erase_shift) -
(from >> card->erase_shift)) + 1;
else if (mmc_card_sd(card))
qty += to - from + 1;
else
qty += ((to / card->erase_size) -
(from / card->erase_size)) + 1;
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = from;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group start error %d, "
"status %#x\n", err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = to;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group end error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_ERASE;
cmd.arg = arg;
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: erase error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
if (mmc_host_is_spi(card->host))
goto out;
timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
/* Do not retry else we can't see errors */
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err || (cmd.resp[0] & 0xFDF92000)) {
pr_err("error %d requesting status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
/* Timeout if the device never becomes ready for data and
* never leaves the program state.
*/
if (time_after(jiffies, timeout)) {
pr_err("%s: Card stuck in programming state! %s\n",
mmc_hostname(card->host), __func__);
err = -EIO;
goto out;
}
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
out:
return err;
}
/**
* mmc_erase - erase sectors.
* @card: card to erase
* @from: first sector to erase
* @nr: number of sectors to erase
* @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
*
* Caller must claim host before calling this function.
*/
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
if (!(card->host->caps & MMC_CAP_ERASE) ||
!(card->csd.cmdclass & CCC_ERASE))
return -EOPNOTSUPP;
if (!card->erase_size)
return -EOPNOTSUPP;
if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
return -EOPNOTSUPP;
if ((arg & MMC_SECURE_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
return -EOPNOTSUPP;
if ((arg & MMC_TRIM_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
return -EOPNOTSUPP;
if (arg == MMC_SECURE_ERASE_ARG) {
if (from % card->erase_size || nr % card->erase_size)
return -EINVAL;
}
if (arg == MMC_ERASE_ARG) {
rem = from % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from += rem;
if (nr > rem)
nr -= rem;
else
return 0;
}
rem = nr % card->erase_size;
if (rem)
nr -= rem;
}
if (nr == 0)
return 0;
to = from + nr;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
int mmc_can_erase(struct mmc_card *card)
{
if ((card->host->caps & MMC_CAP_ERASE) &&
(card->csd.cmdclass & CCC_ERASE) && card->erase_size)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_erase);
int mmc_can_trim(struct mmc_card *card)
{
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_trim);
int mmc_can_discard(struct mmc_card *card)
{
/*
* As there's no way to detect the discard support bit at v4.5
* use the s/w feature support filed.
*/
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_discard);
int mmc_can_sanitize(struct mmc_card *card)
{
if (!mmc_can_trim(card) && !mmc_can_erase(card))
return 0;
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_sanitize);
int mmc_can_secure_erase_trim(struct mmc_card *card)
{
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
unsigned int nr)
{
if (!card->erase_size)
return 0;
if (from % card->erase_size || nr % card->erase_size)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
unsigned int arg)
{
struct mmc_host *host = card->host;
unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
unsigned int last_timeout = 0;
if (card->erase_shift)
max_qty = UINT_MAX >> card->erase_shift;
else if (mmc_card_sd(card))
max_qty = UINT_MAX;
else
max_qty = UINT_MAX / card->erase_size;
/* Find the largest qty with an OK timeout */
do {
y = 0;
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
timeout = mmc_erase_timeout(card, arg, qty + x);
if (timeout > host->max_discard_to)
break;
if (timeout < last_timeout)
break;
last_timeout = timeout;
y = x;
}
qty += y;
} while (y);
if (!qty)
return 0;
if (qty == 1)
return 1;
/* Convert qty to sectors */
if (card->erase_shift)
max_discard = --qty << card->erase_shift;
else if (mmc_card_sd(card))
max_discard = qty;
else
max_discard = --qty * card->erase_size;
return max_discard;
}
unsigned int mmc_calc_max_discard(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_discard, max_trim;
if (!host->max_discard_to)
return UINT_MAX;
/*
* Without erase_group_def set, MMC erase timeout depends on clock
* frequence which can change. In that case, the best choice is
* just the preferred erase size.
*/
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
return card->pref_erase;
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
if (mmc_can_trim(card)) {
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
if (max_trim < max_discard)
max_discard = max_trim;
} else if (max_discard < card->erase_size) {
max_discard = 0;
}
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
mmc_hostname(host), max_discard, host->max_discard_to);
return max_discard;
}
EXPORT_SYMBOL(mmc_calc_max_discard);
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
{
struct mmc_command cmd = {0};
if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
return 0;
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = blocklen;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blocklen);
int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
bool is_rel_write)
{
struct mmc_command cmd = {0};
cmd.opcode = MMC_SET_BLOCK_COUNT;
cmd.arg = blockcount & 0x0000FFFF;
if (is_rel_write)
cmd.arg |= 1 << 31;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blockcount);
static void mmc_hw_reset_for_init(struct mmc_host *host)
{
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
return;
mmc_host_clk_hold(host);
host->ops->hw_reset(host);
mmc_host_clk_release(host);
}
int mmc_can_reset(struct mmc_card *card)
{
u8 rst_n_function;
if (!mmc_card_mmc(card))
return 0;
rst_n_function = card->ext_csd.rst_n_function;
if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_can_reset);
static int mmc_do_hw_reset(struct mmc_host *host, int check)
{
struct mmc_card *card = host->card;
if (!host->bus_ops->power_restore)
return -EOPNOTSUPP;
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
return -EOPNOTSUPP;
if (!card)
return -EINVAL;
if (!mmc_can_reset(card))
return -EOPNOTSUPP;
mmc_host_clk_hold(host);
mmc_set_clock(host, host->f_init);
host->ops->hw_reset(host);
/* If the reset has happened, then a status command will fail */
if (check) {
struct mmc_command cmd = {0};
int err;
cmd.opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(card->host))
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (!err) {
mmc_host_clk_release(host);
return -ENOSYS;
}
}
host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
if (mmc_host_is_spi(host)) {
host->ios.chip_select = MMC_CS_HIGH;
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
} else {
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
}
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
mmc_set_ios(host);
mmc_host_clk_release(host);
return host->bus_ops->power_restore(host);
}
int mmc_hw_reset(struct mmc_host *host)
{
return mmc_do_hw_reset(host, 0);
}
EXPORT_SYMBOL(mmc_hw_reset);
int mmc_hw_reset_check(struct mmc_host *host)
{
return mmc_do_hw_reset(host, 1);
}
EXPORT_SYMBOL(mmc_hw_reset_check);
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
{
host->f_init = freq;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: trying to init card at %u Hz\n",
mmc_hostname(host), __func__, host->f_init);
#endif
mmc_power_up(host);
/*
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
* do a hardware reset if possible.
*/
mmc_hw_reset_for_init(host);
/*
* sdio_reset sends CMD52 to reset card. Since we do not know
* if the card is being re-initialized, just send it. CMD52
* should be ignored by SD/eMMC cards.
*/
sdio_reset(host);
mmc_go_idle(host);
mmc_send_if_cond(host, host->ocr_avail);
/* Order's important: probe SDIO, then SD, then MMC */
if (!mmc_attach_sdio(host))
return 0;
if (!mmc_attach_sd(host))
return 0;
if (!mmc_attach_mmc(host))
return 0;
mmc_power_off(host);
return -EIO;
}
int _mmc_detect_card_removed(struct mmc_host *host)
{
int ret;
if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
return 0;
if (!host->card || mmc_card_removed(host->card))
return 1;
ret = host->bus_ops->alive(host);
/*
* Card detect status and alive check may be out of sync if card is
* removed slowly, when card detect switch changes while card/slot
* pads are still contacted in hardware (refer to "SD Card Mechanical
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
* detect work 200ms later for this case.
*/
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
mmc_detect_change(host, msecs_to_jiffies(200));
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
}
if (ret) {
mmc_card_set_removed(host->card);
pr_debug("%s: card remove detected\n", mmc_hostname(host));
}
return ret;
}
int mmc_detect_card_removed(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int ret;
WARN_ON(!host->claimed);
if (!card)
return 1;
ret = mmc_card_removed(card);
/*
* The card will be considered unchanged unless we have been asked to
* detect a change or host requires polling to provide card detection.
*/
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
!(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
return ret;
host->detect_change = 0;
if (!ret) {
ret = _mmc_detect_card_removed(host);
if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
/*
* Schedule a detect work as soon as possible to let a
* rescan handle the card removal.
*/
cancel_delayed_work(&host->detect);
mmc_detect_change(host, 0);
}
}
return ret;
}
EXPORT_SYMBOL(mmc_detect_card_removed);
void mmc_rescan(struct work_struct *work)
{
struct mmc_host *host =
container_of(work, struct mmc_host, detect.work);
int i;
if (host->rescan_disable)
return;
/* If there is a non-removable card registered, only scan once */
if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
return;
host->rescan_entered = 1;
mmc_bus_get(host);
/*
* if there is a _removable_ card registered, check whether it is
* still present
*/
if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
&& !(host->caps & MMC_CAP_NONREMOVABLE))
host->bus_ops->detect(host);
host->detect_change = 0;
/*
* Let mmc_bus_put() free the bus/bus_ops if we've found that
* the card is no longer present.
*/
mmc_bus_put(host);
mmc_bus_get(host);
/* if there still is a card present, stop here */
if (host->bus_ops != NULL) {
mmc_bus_put(host);
goto out;
}
/*
* Only we can add a new handler, so it's safe to
* release the lock here.
*/
mmc_bus_put(host);
if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
mmc_claim_host(host);
mmc_power_off(host);
mmc_release_host(host);
goto out;
}
mmc_claim_host(host);
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
break;
if (freqs[i] <= host->f_min)
break;
}
mmc_release_host(host);
out:
if (host->caps & MMC_CAP_NEEDS_POLL)
mmc_schedule_delayed_work(&host->detect, HZ);
}
void mmc_start_host(struct mmc_host *host)
{
host->f_init = max(freqs[0], host->f_min);
host->rescan_disable = 0;
if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
mmc_power_off(host);
else
mmc_power_up(host);
mmc_detect_change(host, 0);
}
void mmc_stop_host(struct mmc_host *host)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->removed = 1;
spin_unlock_irqrestore(&host->lock, flags);
#endif
host->rescan_disable = 1;
cancel_delayed_work_sync(&host->detect);
mmc_flush_scheduled_work();
/* clear pm flags now and let card drivers set them as needed */
host->pm_flags = 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead) {
/* Calling bus_ops->remove() with a claimed host can deadlock */
if (host->bus_ops->remove)
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
mmc_bus_put(host);
return;
}
mmc_bus_put(host);
BUG_ON(host->card);
mmc_power_off(host);
}
int mmc_power_save_host(struct mmc_host *host)
{
int ret = 0;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
mmc_bus_put(host);
return -EINVAL;
}
if (host->bus_ops->power_save)
ret = host->bus_ops->power_save(host);
mmc_bus_put(host);
mmc_power_off(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_save_host);
int mmc_power_restore_host(struct mmc_host *host)
{
int ret;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
mmc_bus_put(host);
return -EINVAL;
}
mmc_power_up(host);
ret = host->bus_ops->power_restore(host);
mmc_bus_put(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_restore_host);
int mmc_card_awake(struct mmc_host *host)
{
int err = -ENOSYS;
if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
return 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
err = host->bus_ops->awake(host);
mmc_bus_put(host);
return err;
}
EXPORT_SYMBOL(mmc_card_awake);
int mmc_card_sleep(struct mmc_host *host)
{
int err = -ENOSYS;
if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
return 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
err = host->bus_ops->sleep(host);
mmc_bus_put(host);
return err;
}
EXPORT_SYMBOL(mmc_card_sleep);
int mmc_card_can_sleep(struct mmc_host *host)
{
struct mmc_card *card = host->card;
if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_card_can_sleep);
/*
* Flush the cache to the non-volatile storage.
*/
int mmc_flush_cache(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int err = 0;
if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
return err;
if (mmc_card_mmc(card) &&
(card->ext_csd.cache_size > 0) &&
(card->ext_csd.cache_ctrl & 1)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 1, 0);
if (err)
pr_err("%s: cache flush error %d\n",
mmc_hostname(card->host), err);
}
return err;
}
EXPORT_SYMBOL(mmc_flush_cache);
/*
* Turn the cache ON/OFF.
* Turning the cache OFF shall trigger flushing of the data
* to the non-volatile storage.
* This function should be called with host claimed
*/
int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
{
struct mmc_card *card = host->card;
unsigned int timeout;
int err = 0;
if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
mmc_card_is_removable(host))
return err;
if (card && mmc_card_mmc(card) &&
(card->ext_csd.cache_size > 0)) {
enable = !!enable;
if (card->ext_csd.cache_ctrl ^ enable) {
timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CACHE_CTRL, enable, timeout);
if (err)
pr_err("%s: cache %s error %d\n",
mmc_hostname(card->host),
enable ? "on" : "off",
err);
else
card->ext_csd.cache_ctrl = enable;
}
}
return err;
}
EXPORT_SYMBOL(mmc_cache_ctrl);
#ifdef CONFIG_PM
/**
* mmc_suspend_host - suspend a host
* @host: mmc host
*/
int mmc_suspend_host(struct mmc_host *host)
{
int err = 0;
cancel_delayed_work(&host->detect);
mmc_flush_scheduled_work();
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead) {
if (host->bus_ops->suspend) {
if (mmc_card_doing_bkops(host->card)) {
err = mmc_stop_bkops(host->card);
if (err)
goto out;
}
err = host->bus_ops->suspend(host);
}
if (err == -ENOSYS || !host->bus_ops->resume) {
/*
* We simply "remove" the card in this case.
* It will be redetected on resume. (Calling
* bus_ops->remove() with a claimed host can
* deadlock.)
*/
if (host->bus_ops->remove)
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
host->pm_flags = 0;
err = 0;
}
}
mmc_bus_put(host);
if (!err && !mmc_card_keep_power(host))
mmc_power_off(host);
out:
return err;
}
EXPORT_SYMBOL(mmc_suspend_host);
/**
* mmc_resume_host - resume a previously suspended host
* @host: mmc host
*/
int mmc_resume_host(struct mmc_host *host)
{
int err = 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead) {
if (!mmc_card_keep_power(host)) {
mmc_power_up(host);
mmc_select_voltage(host, host->ocr);
/*
* Tell runtime PM core we just powered up the card,
* since it still believes the card is powered off.
* Note that currently runtime PM is only enabled
* for SDIO cards that are MMC_CAP_POWER_OFF_CARD
*/
if (mmc_card_sdio(host->card) &&
(host->caps & MMC_CAP_POWER_OFF_CARD)) {
pm_runtime_disable(&host->card->dev);
pm_runtime_set_active(&host->card->dev);
pm_runtime_enable(&host->card->dev);
}
}
BUG_ON(!host->bus_ops->resume);
err = host->bus_ops->resume(host);
if (err) {
pr_warning("%s: error %d during resume "
"(card was removed?)\n",
mmc_hostname(host), err);
err = 0;
}
}
host->pm_flags &= ~MMC_PM_KEEP_POWER;
mmc_bus_put(host);
return err;
}
EXPORT_SYMBOL(mmc_resume_host);
/* Do the card removal on suspend if card is assumed removeable
* Do that in pm notifier while userspace isn't yet frozen, so we will be able
to sync the card.
*/
int mmc_pm_notify(struct notifier_block *notify_block,
unsigned long mode, void *unused)
{
struct mmc_host *host = container_of(
notify_block, struct mmc_host, pm_notify);
unsigned long flags;
int err = 0;
switch (mode) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
if (host->card && mmc_card_mmc(host->card) &&
mmc_card_doing_bkops(host->card)) {
err = mmc_stop_bkops(host->card);
if (err) {
pr_err("%s: didn't stop bkops\n",
mmc_hostname(host));
return err;
}
mmc_card_clr_doing_bkops(host->card);
}
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 1;
spin_unlock_irqrestore(&host->lock, flags);
cancel_delayed_work_sync(&host->detect);
if (!host->bus_ops || host->bus_ops->suspend)
break;
/* Calling bus_ops->remove() with a claimed host can deadlock */
if (host->bus_ops->remove)
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
host->pm_flags = 0;
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
case PM_POST_RESTORE:
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 0;
spin_unlock_irqrestore(&host->lock, flags);
mmc_detect_change(host, 0);
}
return 0;
}
#endif
/**
* mmc_init_context_info() - init synchronization context
* @host: mmc host
*
* Init struct context_info needed to implement asynchronous
* request mechanism, used by mmc core, host driver and mmc requests
* supplier.
*/
void mmc_init_context_info(struct mmc_host *host)
{
spin_lock_init(&host->context_info.lock);
host->context_info.is_new_req = false;
host->context_info.is_done_rcv = false;
host->context_info.is_waiting_last_req = false;
init_waitqueue_head(&host->context_info.wait);
}
static int __init mmc_init(void)
{
int ret;
workqueue = alloc_ordered_workqueue("kmmcd", 0);
if (!workqueue)
return -ENOMEM;
ret = mmc_register_bus();
if (ret)
goto destroy_workqueue;
ret = mmc_register_host_class();
if (ret)
goto unregister_bus;
ret = sdio_register_bus();
if (ret)
goto unregister_host_class;
return 0;
unregister_host_class:
mmc_unregister_host_class();
unregister_bus:
mmc_unregister_bus();
destroy_workqueue:
destroy_workqueue(workqueue);
return ret;
}
static void __exit mmc_exit(void)
{
sdio_unregister_bus();
mmc_unregister_host_class();
mmc_unregister_bus();
destroy_workqueue(workqueue);
}
subsys_initcall(mmc_init);
module_exit(mmc_exit);
MODULE_LICENSE("GPL");