linux_old1/fs/ecryptfs/messaging.c

715 lines
22 KiB
C

/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 2004-2008 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
* Tyler Hicks <tyhicks@ou.edu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <linux/sched.h>
#include <linux/user_namespace.h>
#include <linux/nsproxy.h>
#include "ecryptfs_kernel.h"
static LIST_HEAD(ecryptfs_msg_ctx_free_list);
static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
static struct mutex ecryptfs_msg_ctx_lists_mux;
static struct hlist_head *ecryptfs_daemon_hash;
struct mutex ecryptfs_daemon_hash_mux;
static int ecryptfs_hash_buckets;
#define ecryptfs_uid_hash(uid) \
hash_long((unsigned long)uid, ecryptfs_hash_buckets)
static u32 ecryptfs_msg_counter;
static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
/**
* ecryptfs_acquire_free_msg_ctx
* @msg_ctx: The context that was acquired from the free list
*
* Acquires a context element from the free list and locks the mutex
* on the context. Sets the msg_ctx task to current. Returns zero on
* success; non-zero on error or upon failure to acquire a free
* context element. Must be called with ecryptfs_msg_ctx_lists_mux
* held.
*/
static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
{
struct list_head *p;
int rc;
if (list_empty(&ecryptfs_msg_ctx_free_list)) {
printk(KERN_WARNING "%s: The eCryptfs free "
"context list is empty. It may be helpful to "
"specify the ecryptfs_message_buf_len "
"parameter to be greater than the current "
"value of [%d]\n", __func__, ecryptfs_message_buf_len);
rc = -ENOMEM;
goto out;
}
list_for_each(p, &ecryptfs_msg_ctx_free_list) {
*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
if (mutex_trylock(&(*msg_ctx)->mux)) {
(*msg_ctx)->task = current;
rc = 0;
goto out;
}
}
rc = -ENOMEM;
out:
return rc;
}
/**
* ecryptfs_msg_ctx_free_to_alloc
* @msg_ctx: The context to move from the free list to the alloc list
*
* Must be called with ecryptfs_msg_ctx_lists_mux held.
*/
static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
{
list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
msg_ctx->counter = ++ecryptfs_msg_counter;
}
/**
* ecryptfs_msg_ctx_alloc_to_free
* @msg_ctx: The context to move from the alloc list to the free list
*
* Must be called with ecryptfs_msg_ctx_lists_mux held.
*/
void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
{
list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
if (msg_ctx->msg)
kfree(msg_ctx->msg);
msg_ctx->msg = NULL;
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
}
/**
* ecryptfs_find_daemon_by_euid
* @euid: The effective user id which maps to the desired daemon id
* @user_ns: The namespace in which @euid applies
* @daemon: If return value is zero, points to the desired daemon pointer
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Search the hash list for the given user id.
*
* Returns zero if the user id exists in the list; non-zero otherwise.
*/
int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns)
{
struct hlist_node *elem;
int rc;
hlist_for_each_entry(*daemon, elem,
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
euid_chain) {
if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
rc = 0;
goto out;
}
}
rc = -EINVAL;
out:
return rc;
}
static int
ecryptfs_send_message_locked(unsigned int transport, char *data, int data_len,
u8 msg_type, struct ecryptfs_msg_ctx **msg_ctx);
/**
* ecryptfs_send_raw_message
* @transport: Transport type
* @msg_type: Message type
* @daemon: Daemon struct for recipient of message
*
* A raw message is one that does not include an ecryptfs_message
* struct. It simply has a type.
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_send_raw_message(unsigned int transport, u8 msg_type,
struct ecryptfs_daemon *daemon)
{
struct ecryptfs_msg_ctx *msg_ctx;
int rc;
switch(transport) {
case ECRYPTFS_TRANSPORT_NETLINK:
rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0,
daemon->pid);
break;
case ECRYPTFS_TRANSPORT_MISCDEV:
rc = ecryptfs_send_message_locked(transport, NULL, 0, msg_type,
&msg_ctx);
if (rc) {
printk(KERN_ERR "%s: Error whilst attempting to send "
"message via procfs; rc = [%d]\n", __func__, rc);
goto out;
}
/* Raw messages are logically context-free (e.g., no
* reply is expected), so we set the state of the
* ecryptfs_msg_ctx object to indicate that it should
* be freed as soon as the transport sends out the message. */
mutex_lock(&msg_ctx->mux);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_NO_REPLY;
mutex_unlock(&msg_ctx->mux);
break;
case ECRYPTFS_TRANSPORT_CONNECTOR:
case ECRYPTFS_TRANSPORT_RELAYFS:
default:
rc = -ENOSYS;
}
out:
return rc;
}
/**
* ecryptfs_spawn_daemon - Create and initialize a new daemon struct
* @daemon: Pointer to set to newly allocated daemon struct
* @euid: Effective user id for the daemon
* @user_ns: The namespace in which @euid applies
* @pid: Process id for the daemon
*
* Must be called ceremoniously while in possession of
* ecryptfs_sacred_daemon_hash_mux
*
* Returns zero on success; non-zero otherwise
*/
int
ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns, struct pid *pid)
{
int rc = 0;
(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
if (!(*daemon)) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
"GFP_KERNEL memory\n", __func__, sizeof(**daemon));
goto out;
}
(*daemon)->euid = euid;
(*daemon)->user_ns = get_user_ns(user_ns);
(*daemon)->pid = get_pid(pid);
(*daemon)->task = current;
mutex_init(&(*daemon)->mux);
INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
init_waitqueue_head(&(*daemon)->wait);
(*daemon)->num_queued_msg_ctx = 0;
hlist_add_head(&(*daemon)->euid_chain,
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
out:
return rc;
}
/**
* ecryptfs_process_helo
* @transport: The underlying transport (netlink, etc.)
* @euid: The user ID owner of the message
* @user_ns: The namespace in which @euid applies
* @pid: The process ID for the userspace program that sent the
* message
*
* Adds the euid and pid values to the daemon euid hash. If an euid
* already has a daemon pid registered, the daemon will be
* unregistered before the new daemon is put into the hash list.
* Returns zero after adding a new daemon to the hash list;
* non-zero otherwise.
*/
int ecryptfs_process_helo(unsigned int transport, uid_t euid,
struct user_namespace *user_ns, struct pid *pid)
{
struct ecryptfs_daemon *new_daemon;
struct ecryptfs_daemon *old_daemon;
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_find_daemon_by_euid(&old_daemon, euid, user_ns);
if (rc != 0) {
printk(KERN_WARNING "Received request from user [%d] "
"to register daemon [0x%p]; unregistering daemon "
"[0x%p]\n", euid, pid, old_daemon->pid);
rc = ecryptfs_send_raw_message(transport, ECRYPTFS_MSG_QUIT,
old_daemon);
if (rc)
printk(KERN_WARNING "Failed to send QUIT "
"message to daemon [0x%p]; rc = [%d]\n",
old_daemon->pid, rc);
hlist_del(&old_daemon->euid_chain);
kfree(old_daemon);
}
rc = ecryptfs_spawn_daemon(&new_daemon, euid, user_ns, pid);
if (rc)
printk(KERN_ERR "%s: The gods are displeased with this attempt "
"to create a new daemon object for euid [%d]; pid "
"[0x%p]; rc = [%d]\n", __func__, euid, pid, rc);
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_exorcise_daemon - Destroy the daemon struct
*
* Must be called ceremoniously while in possession of
* ecryptfs_daemon_hash_mux and the daemon's own mux.
*/
int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
{
struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
int rc = 0;
mutex_lock(&daemon->mux);
if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
|| (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
rc = -EBUSY;
printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
"[0x%p], but it is in the midst of a read or a poll\n",
__func__, daemon->pid);
mutex_unlock(&daemon->mux);
goto out;
}
list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
&daemon->msg_ctx_out_queue, daemon_out_list) {
list_del(&msg_ctx->daemon_out_list);
daemon->num_queued_msg_ctx--;
printk(KERN_WARNING "%s: Warning: dropping message that is in "
"the out queue of a dying daemon\n", __func__);
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
}
hlist_del(&daemon->euid_chain);
if (daemon->task)
wake_up_process(daemon->task);
if (daemon->pid)
put_pid(daemon->pid);
if (daemon->user_ns)
put_user_ns(daemon->user_ns);
mutex_unlock(&daemon->mux);
memset(daemon, 0, sizeof(*daemon));
kfree(daemon);
out:
return rc;
}
/**
* ecryptfs_process_quit
* @euid: The user ID owner of the message
* @user_ns: The namespace in which @euid applies
* @pid: The process ID for the userspace program that sent the
* message
*
* Deletes the corresponding daemon for the given euid and pid, if
* it is the registered that is requesting the deletion. Returns zero
* after deleting the desired daemon; non-zero otherwise.
*/
int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
struct pid *pid)
{
struct ecryptfs_daemon *daemon;
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
if (rc || !daemon) {
rc = -EINVAL;
printk(KERN_ERR "Received request from user [%d] to "
"unregister unrecognized daemon [0x%p]\n", euid, pid);
goto out_unlock;
}
rc = ecryptfs_exorcise_daemon(daemon);
out_unlock:
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_process_reponse
* @msg: The ecryptfs message received; the caller should sanity check
* msg->data_len and free the memory
* @pid: The process ID of the userspace application that sent the
* message
* @seq: The sequence number of the message; must match the sequence
* number for the existing message context waiting for this
* response
*
* Processes a response message after sending an operation request to
* userspace. Some other process is awaiting this response. Before
* sending out its first communications, the other process allocated a
* msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
* response message contains this index so that we can copy over the
* response message into the msg_ctx that the process holds a
* reference to. The other process is going to wake up, check to see
* that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
* proceed to read off and process the response message. Returns zero
* upon delivery to desired context element; non-zero upon delivery
* failure or error.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
struct user_namespace *user_ns, struct pid *pid,
u32 seq)
{
struct ecryptfs_daemon *daemon;
struct ecryptfs_msg_ctx *msg_ctx;
size_t msg_size;
struct nsproxy *nsproxy;
struct user_namespace *current_user_ns;
int rc;
if (msg->index >= ecryptfs_message_buf_len) {
rc = -EINVAL;
printk(KERN_ERR "%s: Attempt to reference "
"context buffer at index [%d]; maximum "
"allowable is [%d]\n", __func__, msg->index,
(ecryptfs_message_buf_len - 1));
goto out;
}
msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
mutex_lock(&msg_ctx->mux);
mutex_lock(&ecryptfs_daemon_hash_mux);
rcu_read_lock();
nsproxy = task_nsproxy(msg_ctx->task);
if (nsproxy == NULL) {
rc = -EBADMSG;
printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
"message.\n", __func__);
rcu_read_unlock();
mutex_unlock(&ecryptfs_daemon_hash_mux);
goto wake_up;
}
current_user_ns = nsproxy->user_ns;
rc = ecryptfs_find_daemon_by_euid(&daemon, msg_ctx->task->euid,
current_user_ns);
rcu_read_unlock();
mutex_unlock(&ecryptfs_daemon_hash_mux);
if (rc) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: User [%d] received a "
"message response from process [0x%p] but does "
"not have a registered daemon\n", __func__,
msg_ctx->task->euid, pid);
goto wake_up;
}
if (msg_ctx->task->euid != euid) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: Received message from user "
"[%d]; expected message from user [%d]\n", __func__,
euid, msg_ctx->task->euid);
goto unlock;
}
if (current_user_ns != user_ns) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: Received message from user_ns "
"[0x%p]; expected message from user_ns [0x%p]\n",
__func__, user_ns, nsproxy->user_ns);
goto unlock;
}
if (daemon->pid != pid) {
rc = -EBADMSG;
printk(KERN_ERR "%s: User [%d] sent a message response "
"from an unrecognized process [0x%p]\n",
__func__, msg_ctx->task->euid, pid);
goto unlock;
}
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
rc = -EINVAL;
printk(KERN_WARNING "%s: Desired context element is not "
"pending a response\n", __func__);
goto unlock;
} else if (msg_ctx->counter != seq) {
rc = -EINVAL;
printk(KERN_WARNING "%s: Invalid message sequence; "
"expected [%d]; received [%d]\n", __func__,
msg_ctx->counter, seq);
goto unlock;
}
msg_size = (sizeof(*msg) + msg->data_len);
msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
if (!msg_ctx->msg) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
"GFP_KERNEL memory\n", __func__, msg_size);
goto unlock;
}
memcpy(msg_ctx->msg, msg, msg_size);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
rc = 0;
wake_up:
wake_up_process(msg_ctx->task);
unlock:
mutex_unlock(&msg_ctx->mux);
out:
return rc;
}
/**
* ecryptfs_send_message_locked
* @transport: The transport over which to send the message (i.e.,
* netlink)
* @data: The data to send
* @data_len: The length of data
* @msg_ctx: The message context allocated for the send
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Returns zero on success; non-zero otherwise
*/
static int
ecryptfs_send_message_locked(unsigned int transport, char *data, int data_len,
u8 msg_type, struct ecryptfs_msg_ctx **msg_ctx)
{
struct ecryptfs_daemon *daemon;
int rc;
rc = ecryptfs_find_daemon_by_euid(&daemon, current->euid,
current->nsproxy->user_ns);
if (rc || !daemon) {
rc = -ENOTCONN;
printk(KERN_ERR "%s: User [%d] does not have a daemon "
"registered\n", __func__, current->euid);
goto out;
}
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
if (rc) {
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
printk(KERN_WARNING "%s: Could not claim a free "
"context element\n", __func__);
goto out;
}
ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
mutex_unlock(&(*msg_ctx)->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
switch (transport) {
case ECRYPTFS_TRANSPORT_NETLINK:
rc = ecryptfs_send_netlink(data, data_len, *msg_ctx, msg_type,
0, daemon->pid);
break;
case ECRYPTFS_TRANSPORT_MISCDEV:
rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type,
0, daemon);
break;
case ECRYPTFS_TRANSPORT_CONNECTOR:
case ECRYPTFS_TRANSPORT_RELAYFS:
default:
rc = -ENOSYS;
}
if (rc)
printk(KERN_ERR "%s: Error attempting to send message to "
"userspace daemon; rc = [%d]\n", __func__, rc);
out:
return rc;
}
/**
* ecryptfs_send_message
* @transport: The transport over which to send the message (i.e.,
* netlink)
* @data: The data to send
* @data_len: The length of data
* @msg_ctx: The message context allocated for the send
*
* Grabs ecryptfs_daemon_hash_mux.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
struct ecryptfs_msg_ctx **msg_ctx)
{
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_send_message_locked(transport, data, data_len,
ECRYPTFS_MSG_REQUEST, msg_ctx);
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_wait_for_response
* @msg_ctx: The context that was assigned when sending a message
* @msg: The incoming message from userspace; not set if rc != 0
*
* Sleeps until awaken by ecryptfs_receive_message or until the amount
* of time exceeds ecryptfs_message_wait_timeout. If zero is
* returned, msg will point to a valid message from userspace; a
* non-zero value is returned upon failure to receive a message or an
* error occurs. Callee must free @msg on success.
*/
int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
struct ecryptfs_message **msg)
{
signed long timeout = ecryptfs_message_wait_timeout * HZ;
int rc = 0;
sleep:
timeout = schedule_timeout_interruptible(timeout);
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
mutex_lock(&msg_ctx->mux);
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
if (timeout) {
mutex_unlock(&msg_ctx->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
goto sleep;
}
rc = -ENOMSG;
} else {
*msg = msg_ctx->msg;
msg_ctx->msg = NULL;
}
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
mutex_unlock(&msg_ctx->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
return rc;
}
int ecryptfs_init_messaging(unsigned int transport)
{
int i;
int rc = 0;
if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
printk(KERN_WARNING "%s: Specified number of users is "
"too large, defaulting to [%d] users\n", __func__,
ecryptfs_number_of_users);
}
mutex_init(&ecryptfs_daemon_hash_mux);
mutex_lock(&ecryptfs_daemon_hash_mux);
ecryptfs_hash_buckets = 1;
while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
ecryptfs_hash_buckets++;
ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
* ecryptfs_hash_buckets), GFP_KERNEL);
if (!ecryptfs_daemon_hash) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
mutex_unlock(&ecryptfs_daemon_hash_mux);
goto out;
}
for (i = 0; i < ecryptfs_hash_buckets; i++)
INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
mutex_unlock(&ecryptfs_daemon_hash_mux);
ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
* ecryptfs_message_buf_len),
GFP_KERNEL);
if (!ecryptfs_msg_ctx_arr) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
goto out;
}
mutex_init(&ecryptfs_msg_ctx_lists_mux);
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
ecryptfs_msg_counter = 0;
for (i = 0; i < ecryptfs_message_buf_len; i++) {
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
ecryptfs_msg_ctx_arr[i].index = i;
ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
ecryptfs_msg_ctx_arr[i].counter = 0;
ecryptfs_msg_ctx_arr[i].task = NULL;
ecryptfs_msg_ctx_arr[i].msg = NULL;
list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
&ecryptfs_msg_ctx_free_list);
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
}
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
switch(transport) {
case ECRYPTFS_TRANSPORT_NETLINK:
rc = ecryptfs_init_netlink();
if (rc)
ecryptfs_release_messaging(transport);
break;
case ECRYPTFS_TRANSPORT_MISCDEV:
rc = ecryptfs_init_ecryptfs_miscdev();
if (rc)
ecryptfs_release_messaging(transport);
break;
case ECRYPTFS_TRANSPORT_CONNECTOR:
case ECRYPTFS_TRANSPORT_RELAYFS:
default:
rc = -ENOSYS;
}
out:
return rc;
}
void ecryptfs_release_messaging(unsigned int transport)
{
if (ecryptfs_msg_ctx_arr) {
int i;
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
for (i = 0; i < ecryptfs_message_buf_len; i++) {
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
if (ecryptfs_msg_ctx_arr[i].msg)
kfree(ecryptfs_msg_ctx_arr[i].msg);
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
}
kfree(ecryptfs_msg_ctx_arr);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
}
if (ecryptfs_daemon_hash) {
struct hlist_node *elem;
struct ecryptfs_daemon *daemon;
int i;
mutex_lock(&ecryptfs_daemon_hash_mux);
for (i = 0; i < ecryptfs_hash_buckets; i++) {
int rc;
hlist_for_each_entry(daemon, elem,
&ecryptfs_daemon_hash[i],
euid_chain) {
rc = ecryptfs_exorcise_daemon(daemon);
if (rc)
printk(KERN_ERR "%s: Error whilst "
"attempting to destroy daemon; "
"rc = [%d]. Dazed and confused, "
"but trying to continue.\n",
__func__, rc);
}
}
kfree(ecryptfs_daemon_hash);
mutex_unlock(&ecryptfs_daemon_hash_mux);
}
switch(transport) {
case ECRYPTFS_TRANSPORT_NETLINK:
ecryptfs_release_netlink();
break;
case ECRYPTFS_TRANSPORT_MISCDEV:
ecryptfs_destroy_ecryptfs_miscdev();
break;
case ECRYPTFS_TRANSPORT_CONNECTOR:
case ECRYPTFS_TRANSPORT_RELAYFS:
default:
break;
}
return;
}