linux_old1/drivers/thunderbolt/switch.c

2055 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - switch/port utility functions
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2018, Intel Corporation
*/
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/nvmem-provider.h>
#include <linux/pm_runtime.h>
#include <linux/sched/signal.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "tb.h"
/* Switch NVM support */
#define NVM_DEVID 0x05
#define NVM_VERSION 0x08
#define NVM_CSS 0x10
#define NVM_FLASH_SIZE 0x45
#define NVM_MIN_SIZE SZ_32K
#define NVM_MAX_SIZE SZ_512K
static DEFINE_IDA(nvm_ida);
struct nvm_auth_status {
struct list_head list;
uuid_t uuid;
u32 status;
};
/*
* Hold NVM authentication failure status per switch This information
* needs to stay around even when the switch gets power cycled so we
* keep it separately.
*/
static LIST_HEAD(nvm_auth_status_cache);
static DEFINE_MUTEX(nvm_auth_status_lock);
static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
list_for_each_entry(st, &nvm_auth_status_cache, list) {
if (uuid_equal(&st->uuid, sw->uuid))
return st;
}
return NULL;
}
static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
mutex_unlock(&nvm_auth_status_lock);
*status = st ? st->status : 0;
}
static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
{
struct nvm_auth_status *st;
if (WARN_ON(!sw->uuid))
return;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (!st) {
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto unlock;
memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
INIT_LIST_HEAD(&st->list);
list_add_tail(&st->list, &nvm_auth_status_cache);
}
st->status = status;
unlock:
mutex_unlock(&nvm_auth_status_lock);
}
static void nvm_clear_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (st) {
list_del(&st->list);
kfree(st);
}
mutex_unlock(&nvm_auth_status_lock);
}
static int nvm_validate_and_write(struct tb_switch *sw)
{
unsigned int image_size, hdr_size;
const u8 *buf = sw->nvm->buf;
u16 ds_size;
int ret;
if (!buf)
return -EINVAL;
image_size = sw->nvm->buf_data_size;
if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
return -EINVAL;
/*
* FARB pointer must point inside the image and must at least
* contain parts of the digital section we will be reading here.
*/
hdr_size = (*(u32 *)buf) & 0xffffff;
if (hdr_size + NVM_DEVID + 2 >= image_size)
return -EINVAL;
/* Digital section start should be aligned to 4k page */
if (!IS_ALIGNED(hdr_size, SZ_4K))
return -EINVAL;
/*
* Read digital section size and check that it also fits inside
* the image.
*/
ds_size = *(u16 *)(buf + hdr_size);
if (ds_size >= image_size)
return -EINVAL;
if (!sw->safe_mode) {
u16 device_id;
/*
* Make sure the device ID in the image matches the one
* we read from the switch config space.
*/
device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
if (device_id != sw->config.device_id)
return -EINVAL;
if (sw->generation < 3) {
/* Write CSS headers first */
ret = dma_port_flash_write(sw->dma_port,
DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
DMA_PORT_CSS_MAX_SIZE);
if (ret)
return ret;
}
/* Skip headers in the image */
buf += hdr_size;
image_size -= hdr_size;
}
return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
}
static int nvm_authenticate_host(struct tb_switch *sw)
{
int ret;
/*
* Root switch NVM upgrade requires that we disconnect the
* existing paths first (in case it is not in safe mode
* already).
*/
if (!sw->safe_mode) {
ret = tb_domain_disconnect_all_paths(sw->tb);
if (ret)
return ret;
/*
* The host controller goes away pretty soon after this if
* everything goes well so getting timeout is expected.
*/
ret = dma_port_flash_update_auth(sw->dma_port);
return ret == -ETIMEDOUT ? 0 : ret;
}
/*
* From safe mode we can get out by just power cycling the
* switch.
*/
dma_port_power_cycle(sw->dma_port);
return 0;
}
static int nvm_authenticate_device(struct tb_switch *sw)
{
int ret, retries = 10;
ret = dma_port_flash_update_auth(sw->dma_port);
if (ret && ret != -ETIMEDOUT)
return ret;
/*
* Poll here for the authentication status. It takes some time
* for the device to respond (we get timeout for a while). Once
* we get response the device needs to be power cycled in order
* to the new NVM to be taken into use.
*/
do {
u32 status;
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret < 0 && ret != -ETIMEDOUT)
return ret;
if (ret > 0) {
if (status) {
tb_sw_warn(sw, "failed to authenticate NVM\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
return 0;
}
msleep(500);
} while (--retries);
return -ETIMEDOUT;
}
static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_switch *sw = priv;
int ret;
pm_runtime_get_sync(&sw->dev);
ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_switch *sw = priv;
int ret = 0;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
/*
* Since writing the NVM image might require some special steps,
* for example when CSS headers are written, we cache the image
* locally here and handle the special cases when the user asks
* us to authenticate the image.
*/
if (!sw->nvm->buf) {
sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
if (!sw->nvm->buf) {
ret = -ENOMEM;
goto unlock;
}
}
sw->nvm->buf_data_size = offset + bytes;
memcpy(sw->nvm->buf + offset, val, bytes);
unlock:
mutex_unlock(&sw->tb->lock);
return ret;
}
static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
size_t size, bool active)
{
struct nvmem_config config;
memset(&config, 0, sizeof(config));
if (active) {
config.name = "nvm_active";
config.reg_read = tb_switch_nvm_read;
config.read_only = true;
} else {
config.name = "nvm_non_active";
config.reg_write = tb_switch_nvm_write;
config.root_only = true;
}
config.id = id;
config.stride = 4;
config.word_size = 4;
config.size = size;
config.dev = &sw->dev;
config.owner = THIS_MODULE;
config.priv = sw;
return nvmem_register(&config);
}
static int tb_switch_nvm_add(struct tb_switch *sw)
{
struct nvmem_device *nvm_dev;
struct tb_switch_nvm *nvm;
u32 val;
int ret;
if (!sw->dma_port)
return 0;
nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
if (!nvm)
return -ENOMEM;
nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
/*
* If the switch is in safe-mode the only accessible portion of
* the NVM is the non-active one where userspace is expected to
* write new functional NVM.
*/
if (!sw->safe_mode) {
u32 nvm_size, hdr_size;
ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
sizeof(val));
if (ret)
goto err_ida;
hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
nvm_size = (SZ_1M << (val & 7)) / 8;
nvm_size = (nvm_size - hdr_size) / 2;
ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
sizeof(val));
if (ret)
goto err_ida;
nvm->major = val >> 16;
nvm->minor = val >> 8;
nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
if (IS_ERR(nvm_dev)) {
ret = PTR_ERR(nvm_dev);
goto err_ida;
}
nvm->active = nvm_dev;
}
nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
if (IS_ERR(nvm_dev)) {
ret = PTR_ERR(nvm_dev);
goto err_nvm_active;
}
nvm->non_active = nvm_dev;
sw->nvm = nvm;
return 0;
err_nvm_active:
if (nvm->active)
nvmem_unregister(nvm->active);
err_ida:
ida_simple_remove(&nvm_ida, nvm->id);
kfree(nvm);
return ret;
}
static void tb_switch_nvm_remove(struct tb_switch *sw)
{
struct tb_switch_nvm *nvm;
nvm = sw->nvm;
sw->nvm = NULL;
if (!nvm)
return;
/* Remove authentication status in case the switch is unplugged */
if (!nvm->authenticating)
nvm_clear_auth_status(sw);
nvmem_unregister(nvm->non_active);
if (nvm->active)
nvmem_unregister(nvm->active);
ida_simple_remove(&nvm_ida, nvm->id);
vfree(nvm->buf);
kfree(nvm);
}
/* port utility functions */
static const char *tb_port_type(struct tb_regs_port_header *port)
{
switch (port->type >> 16) {
case 0:
switch ((u8) port->type) {
case 0:
return "Inactive";
case 1:
return "Port";
case 2:
return "NHI";
default:
return "unknown";
}
case 0x2:
return "Ethernet";
case 0x8:
return "SATA";
case 0xe:
return "DP/HDMI";
case 0x10:
return "PCIe";
case 0x20:
return "USB";
default:
return "unknown";
}
}
static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
{
tb_dbg(tb,
" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
port->port_number, port->vendor_id, port->device_id,
port->revision, port->thunderbolt_version, tb_port_type(port),
port->type);
tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
port->max_in_hop_id, port->max_out_hop_id);
tb_dbg(tb, " Max counters: %d\n", port->max_counters);
tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
}
/**
* tb_port_state() - get connectedness state of a port
*
* The port must have a TB_CAP_PHY (i.e. it should be a real port).
*
* Return: Returns an enum tb_port_state on success or an error code on failure.
*/
static int tb_port_state(struct tb_port *port)
{
struct tb_cap_phy phy;
int res;
if (port->cap_phy == 0) {
tb_port_WARN(port, "does not have a PHY\n");
return -EINVAL;
}
res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
if (res)
return res;
return phy.state;
}
/**
* tb_wait_for_port() - wait for a port to become ready
*
* Wait up to 1 second for a port to reach state TB_PORT_UP. If
* wait_if_unplugged is set then we also wait if the port is in state
* TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
* switch resume). Otherwise we only wait if a device is registered but the link
* has not yet been established.
*
* Return: Returns an error code on failure. Returns 0 if the port is not
* connected or failed to reach state TB_PORT_UP within one second. Returns 1
* if the port is connected and in state TB_PORT_UP.
*/
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
{
int retries = 10;
int state;
if (!port->cap_phy) {
tb_port_WARN(port, "does not have PHY\n");
return -EINVAL;
}
if (tb_is_upstream_port(port)) {
tb_port_WARN(port, "is the upstream port\n");
return -EINVAL;
}
while (retries--) {
state = tb_port_state(port);
if (state < 0)
return state;
if (state == TB_PORT_DISABLED) {
tb_port_dbg(port, "is disabled (state: 0)\n");
return 0;
}
if (state == TB_PORT_UNPLUGGED) {
if (wait_if_unplugged) {
/* used during resume */
tb_port_dbg(port,
"is unplugged (state: 7), retrying...\n");
msleep(100);
continue;
}
tb_port_dbg(port, "is unplugged (state: 7)\n");
return 0;
}
if (state == TB_PORT_UP) {
tb_port_dbg(port, "is connected, link is up (state: 2)\n");
return 1;
}
/*
* After plug-in the state is TB_PORT_CONNECTING. Give it some
* time.
*/
tb_port_dbg(port,
"is connected, link is not up (state: %d), retrying...\n",
state);
msleep(100);
}
tb_port_warn(port,
"failed to reach state TB_PORT_UP. Ignoring port...\n");
return 0;
}
/**
* tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
*
* Change the number of NFC credits allocated to @port by @credits. To remove
* NFC credits pass a negative amount of credits.
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_add_nfc_credits(struct tb_port *port, int credits)
{
u32 nfc_credits;
if (credits == 0 || port->sw->is_unplugged)
return 0;
nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
nfc_credits += credits;
tb_port_dbg(port, "adding %d NFC credits to %lu",
credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
port->config.nfc_credits |= nfc_credits;
return tb_port_write(port, &port->config.nfc_credits,
TB_CFG_PORT, 4, 1);
}
/**
* tb_port_set_initial_credits() - Set initial port link credits allocated
* @port: Port to set the initial credits
* @credits: Number of credits to to allocate
*
* Set initial credits value to be used for ingress shared buffering.
*/
int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
if (ret)
return ret;
data &= ~TB_PORT_LCA_MASK;
data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
}
/**
* tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_clear_counter(struct tb_port *port, int counter)
{
u32 zero[3] = { 0, 0, 0 };
tb_port_dbg(port, "clearing counter %d\n", counter);
return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
}
/**
* tb_init_port() - initialize a port
*
* This is a helper method for tb_switch_alloc. Does not check or initialize
* any downstream switches.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_init_port(struct tb_port *port)
{
int res;
int cap;
res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
if (res)
return res;
/* Port 0 is the switch itself and has no PHY. */
if (port->config.type == TB_TYPE_PORT && port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
if (cap > 0)
port->cap_phy = cap;
else
tb_port_WARN(port, "non switch port without a PHY\n");
} else if (port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
if (cap > 0)
port->cap_adap = cap;
}
tb_dump_port(port->sw->tb, &port->config);
/* Control port does not need HopID allocation */
if (port->port) {
ida_init(&port->in_hopids);
ida_init(&port->out_hopids);
}
return 0;
}
static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
int max_hopid)
{
int port_max_hopid;
struct ida *ida;
if (in) {
port_max_hopid = port->config.max_in_hop_id;
ida = &port->in_hopids;
} else {
port_max_hopid = port->config.max_out_hop_id;
ida = &port->out_hopids;
}
/* HopIDs 0-7 are reserved */
if (min_hopid < TB_PATH_MIN_HOPID)
min_hopid = TB_PATH_MIN_HOPID;
if (max_hopid < 0 || max_hopid > port_max_hopid)
max_hopid = port_max_hopid;
return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
}
/**
* tb_port_alloc_in_hopid() - Allocate input HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable input HopID
* @max_hopid: Maximum acceptable input HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
}
/**
* tb_port_alloc_out_hopid() - Allocate output HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable output HopID
* @max_hopid: Maximum acceptable output HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
}
/**
* tb_port_release_in_hopid() - Release allocated input HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_in_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->in_hopids, hopid);
}
/**
* tb_port_release_out_hopid() - Release allocated output HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_out_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->out_hopids, hopid);
}
/**
* tb_next_port_on_path() - Return next port for given port on a path
* @start: Start port of the walk
* @end: End port of the walk
* @prev: Previous port (%NULL if this is the first)
*
* This function can be used to walk from one port to another if they
* are connected through zero or more switches. If the @prev is dual
* link port, the function follows that link and returns another end on
* that same link.
*
* If the @end port has been reached, return %NULL.
*
* Domain tb->lock must be held when this function is called.
*/
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
struct tb_port *prev)
{
struct tb_port *next;
if (!prev)
return start;
if (prev->sw == end->sw) {
if (prev == end)
return NULL;
return end;
}
if (start->sw->config.depth < end->sw->config.depth) {
if (prev->remote &&
prev->remote->sw->config.depth > prev->sw->config.depth)
next = prev->remote;
else
next = tb_port_at(tb_route(end->sw), prev->sw);
} else {
if (tb_is_upstream_port(prev)) {
next = prev->remote;
} else {
next = tb_upstream_port(prev->sw);
/*
* Keep the same link if prev and next are both
* dual link ports.
*/
if (next->dual_link_port &&
next->link_nr != prev->link_nr) {
next = next->dual_link_port;
}
}
}
return next;
}
/**
* tb_port_is_enabled() - Is the adapter port enabled
* @port: Port to check
*/
bool tb_port_is_enabled(struct tb_port *port)
{
switch (port->config.type) {
case TB_TYPE_PCIE_UP:
case TB_TYPE_PCIE_DOWN:
return tb_pci_port_is_enabled(port);
case TB_TYPE_DP_HDMI_IN:
case TB_TYPE_DP_HDMI_OUT:
return tb_dp_port_is_enabled(port);
default:
return false;
}
}
/**
* tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
* @port: PCIe port to check
*/
bool tb_pci_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
return false;
return !!(data & TB_PCI_EN);
}
/**
* tb_pci_port_enable() - Enable PCIe adapter port
* @port: PCIe port to enable
* @enable: Enable/disable the PCIe adapter
*/
int tb_pci_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? TB_PCI_EN : 0x0;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
}
/**
* tb_dp_port_hpd_is_active() - Is HPD already active
* @port: DP out port to check
*
* Checks if the DP OUT adapter port has HDP bit already set.
*/
int tb_dp_port_hpd_is_active(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
if (ret)
return ret;
return !!(data & TB_DP_HDP);
}
/**
* tb_dp_port_hpd_clear() - Clear HPD from DP IN port
* @port: Port to clear HPD
*
* If the DP IN port has HDP set, this function can be used to clear it.
*/
int tb_dp_port_hpd_clear(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
if (ret)
return ret;
data |= TB_DP_HPDC;
return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
}
/**
* tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
* @port: DP IN/OUT port to set hops
* @video: Video Hop ID
* @aux_tx: AUX TX Hop ID
* @aux_rx: AUX RX Hop ID
*
* Programs specified Hop IDs for DP IN/OUT port.
*/
int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
unsigned int aux_tx, unsigned int aux_rx)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
ARRAY_SIZE(data));
if (ret)
return ret;
data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
ARRAY_SIZE(data));
}
/**
* tb_dp_port_is_enabled() - Is DP adapter port enabled
* @port: DP adapter port to check
*/
bool tb_dp_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
return false;
return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
}
/**
* tb_dp_port_enable() - Enables/disables DP paths of a port
* @port: DP IN/OUT port
* @enable: Enable/disable DP path
*
* Once Hop IDs are programmed DP paths can be enabled or disabled by
* calling this function.
*/
int tb_dp_port_enable(struct tb_port *port, bool enable)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1);
if (ret)
return ret;
if (enable)
data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
else
data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1);
}
/* switch utility functions */
static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
{
tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
sw->vendor_id, sw->device_id, sw->revision,
sw->thunderbolt_version);
tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
tb_dbg(tb, " Config:\n");
tb_dbg(tb,
" Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
sw->upstream_port_number, sw->depth,
(((u64) sw->route_hi) << 32) | sw->route_lo,
sw->enabled, sw->plug_events_delay);
tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
sw->__unknown1, sw->__unknown4);
}
/**
* reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_switch_reset(struct tb *tb, u64 route)
{
struct tb_cfg_result res;
struct tb_regs_switch_header header = {
header.route_hi = route >> 32,
header.route_lo = route,
header.enabled = true,
};
tb_dbg(tb, "resetting switch at %llx\n", route);
res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
0, 2, 2, 2);
if (res.err)
return res.err;
res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
if (res.err > 0)
return -EIO;
return res.err;
}
/**
* tb_plug_events_active() - enable/disable plug events on a switch
*
* Also configures a sane plug_events_delay of 255ms.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_plug_events_active(struct tb_switch *sw, bool active)
{
u32 data;
int res;
if (!sw->config.enabled)
return 0;
sw->config.plug_events_delay = 0xff;
res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
if (res)
return res;
res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
if (res)
return res;
if (active) {
data = data & 0xFFFFFF83;
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
break;
default:
data |= 4;
}
} else {
data = data | 0x7c;
}
return tb_sw_write(sw, &data, TB_CFG_SWITCH,
sw->cap_plug_events + 1, 1);
}
static ssize_t authorized_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->authorized);
}
static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
{
int ret = -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized)
goto unlock;
/*
* Make sure there is no PCIe rescan ongoing when a new PCIe
* tunnel is created. Otherwise the PCIe rescan code might find
* the new tunnel too early.
*/
pci_lock_rescan_remove();
pm_runtime_get_sync(&sw->dev);
switch (val) {
/* Approve switch */
case 1:
if (sw->key)
ret = tb_domain_approve_switch_key(sw->tb, sw);
else
ret = tb_domain_approve_switch(sw->tb, sw);
break;
/* Challenge switch */
case 2:
if (sw->key)
ret = tb_domain_challenge_switch_key(sw->tb, sw);
break;
default:
break;
}
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
pci_unlock_rescan_remove();
if (!ret) {
sw->authorized = val;
/* Notify status change to the userspace */
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
}
unlock:
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t authorized_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int val;
ssize_t ret;
ret = kstrtouint(buf, 0, &val);
if (ret)
return ret;
if (val > 2)
return -EINVAL;
ret = tb_switch_set_authorized(sw, val);
return ret ? ret : count;
}
static DEVICE_ATTR_RW(authorized);
static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->boot);
}
static DEVICE_ATTR_RO(boot);
static ssize_t device_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->device);
}
static DEVICE_ATTR_RO(device);
static ssize_t
device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
}
static DEVICE_ATTR_RO(device_name);
static ssize_t key_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
ssize_t ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->key)
ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
else
ret = sprintf(buf, "\n");
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t key_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
u8 key[TB_SWITCH_KEY_SIZE];
ssize_t ret = count;
bool clear = false;
if (!strcmp(buf, "\n"))
clear = true;
else if (hex2bin(key, buf, sizeof(key)))
return -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized) {
ret = -EBUSY;
} else {
kfree(sw->key);
if (clear) {
sw->key = NULL;
} else {
sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
if (!sw->key)
ret = -ENOMEM;
}
}
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR(key, 0600, key_show, key_store);
static void nvm_authenticate_start(struct tb_switch *sw)
{
struct pci_dev *root_port;
/*
* During host router NVM upgrade we should not allow root port to
* go into D3cold because some root ports cannot trigger PME
* itself. To be on the safe side keep the root port in D0 during
* the whole upgrade process.
*/
root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_get_noresume(&root_port->dev);
}
static void nvm_authenticate_complete(struct tb_switch *sw)
{
struct pci_dev *root_port;
root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_put(&root_port->dev);
}
static ssize_t nvm_authenticate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
u32 status;
nvm_get_auth_status(sw, &status);
return sprintf(buf, "%#x\n", status);
}
static ssize_t nvm_authenticate_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
bool val;
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
/* If NVMem devices are not yet added */
if (!sw->nvm) {
ret = -EAGAIN;
goto exit_unlock;
}
ret = kstrtobool(buf, &val);
if (ret)
goto exit_unlock;
/* Always clear the authentication status */
nvm_clear_auth_status(sw);
if (val) {
if (!sw->nvm->buf) {
ret = -EINVAL;
goto exit_unlock;
}
pm_runtime_get_sync(&sw->dev);
ret = nvm_validate_and_write(sw);
if (ret) {
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
goto exit_unlock;
}
sw->nvm->authenticating = true;
if (!tb_route(sw)) {
/*
* Keep root port from suspending as long as the
* NVM upgrade process is running.
*/
nvm_authenticate_start(sw);
ret = nvm_authenticate_host(sw);
if (ret)
nvm_authenticate_complete(sw);
} else {
ret = nvm_authenticate_device(sw);
}
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
}
exit_unlock:
mutex_unlock(&sw->tb->lock);
if (ret)
return ret;
return count;
}
static DEVICE_ATTR_RW(nvm_authenticate);
static ssize_t nvm_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->safe_mode)
ret = -ENODATA;
else if (!sw->nvm)
ret = -EAGAIN;
else
ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR_RO(nvm_version);
static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->vendor);
}
static DEVICE_ATTR_RO(vendor);
static ssize_t
vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
}
static DEVICE_ATTR_RO(vendor_name);
static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%pUb\n", sw->uuid);
}
static DEVICE_ATTR_RO(unique_id);
static struct attribute *switch_attrs[] = {
&dev_attr_authorized.attr,
&dev_attr_boot.attr,
&dev_attr_device.attr,
&dev_attr_device_name.attr,
&dev_attr_key.attr,
&dev_attr_nvm_authenticate.attr,
&dev_attr_nvm_version.attr,
&dev_attr_vendor.attr,
&dev_attr_vendor_name.attr,
&dev_attr_unique_id.attr,
NULL,
};
static umode_t switch_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct tb_switch *sw = tb_to_switch(dev);
if (attr == &dev_attr_key.attr) {
if (tb_route(sw) &&
sw->tb->security_level == TB_SECURITY_SECURE &&
sw->security_level == TB_SECURITY_SECURE)
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate.attr ||
attr == &dev_attr_nvm_version.attr) {
if (sw->dma_port)
return attr->mode;
return 0;
} else if (attr == &dev_attr_boot.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
}
return sw->safe_mode ? 0 : attr->mode;
}
static struct attribute_group switch_group = {
.is_visible = switch_attr_is_visible,
.attrs = switch_attrs,
};
static const struct attribute_group *switch_groups[] = {
&switch_group,
NULL,
};
static void tb_switch_release(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
int i;
dma_port_free(sw->dma_port);
for (i = 1; i <= sw->config.max_port_number; i++) {
if (!sw->ports[i].disabled) {
ida_destroy(&sw->ports[i].in_hopids);
ida_destroy(&sw->ports[i].out_hopids);
}
}
kfree(sw->uuid);
kfree(sw->device_name);
kfree(sw->vendor_name);
kfree(sw->ports);
kfree(sw->drom);
kfree(sw->key);
kfree(sw);
}
/*
* Currently only need to provide the callbacks. Everything else is handled
* in the connection manager.
*/
static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
{
return 0;
}
static const struct dev_pm_ops tb_switch_pm_ops = {
SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
NULL)
};
struct device_type tb_switch_type = {
.name = "thunderbolt_device",
.release = tb_switch_release,
.pm = &tb_switch_pm_ops,
};
static int tb_switch_get_generation(struct tb_switch *sw)
{
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
return 1;
case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
return 2;
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
return 3;
default:
/*
* For unknown switches assume generation to be 1 to be
* on the safe side.
*/
tb_sw_warn(sw, "unsupported switch device id %#x\n",
sw->config.device_id);
return 1;
}
}
/**
* tb_switch_alloc() - allocate a switch
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* Allocates and initializes a switch. Will not upload configuration to
* the switch. For that you need to call tb_switch_configure()
* separately. The returned switch should be released by calling
* tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of
* failure.
*/
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
u64 route)
{
struct tb_switch *sw;
int upstream_port;
int i, ret, depth;
/* Make sure we do not exceed maximum topology limit */
depth = tb_route_length(route);
if (depth > TB_SWITCH_MAX_DEPTH)
return ERR_PTR(-EADDRNOTAVAIL);
upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
if (upstream_port < 0)
return ERR_PTR(upstream_port);
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
if (ret)
goto err_free_sw_ports;
tb_dbg(tb, "current switch config:\n");
tb_dump_switch(tb, &sw->config);
/* configure switch */
sw->config.upstream_port_number = upstream_port;
sw->config.depth = depth;
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->config.enabled = 0;
/* initialize ports */
sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
GFP_KERNEL);
if (!sw->ports) {
ret = -ENOMEM;
goto err_free_sw_ports;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
/* minimum setup for tb_find_cap and tb_drom_read to work */
sw->ports[i].sw = sw;
sw->ports[i].port = i;
}
sw->generation = tb_switch_get_generation(sw);
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
if (ret < 0) {
tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
goto err_free_sw_ports;
}
sw->cap_plug_events = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
if (ret > 0)
sw->cap_lc = ret;
/* Root switch is always authorized */
if (!route)
sw->authorized = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
err_free_sw_ports:
kfree(sw->ports);
kfree(sw);
return ERR_PTR(ret);
}
/**
* tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* This creates a switch in safe mode. This means the switch pretty much
* lacks all capabilities except DMA configuration port before it is
* flashed with a valid NVM firmware.
*
* The returned switch must be released by calling tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of failure
*/
struct tb_switch *
tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
{
struct tb_switch *sw;
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
sw->config.depth = tb_route_length(route);
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->safe_mode = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
}
/**
* tb_switch_configure() - Uploads configuration to the switch
* @sw: Switch to configure
*
* Call this function before the switch is added to the system. It will
* upload configuration to the switch and makes it available for the
* connection manager to use.
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_configure(struct tb_switch *sw)
{
struct tb *tb = sw->tb;
u64 route;
int ret;
route = tb_route(sw);
tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
route, tb_route_length(route), sw->config.upstream_port_number);
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
tb_sw_warn(sw, "unknown switch vendor id %#x\n",
sw->config.vendor_id);
sw->config.enabled = 1;
/* upload configuration */
ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
if (ret)
return ret;
ret = tb_lc_configure_link(sw);
if (ret)
return ret;
return tb_plug_events_active(sw, true);
}
static int tb_switch_set_uuid(struct tb_switch *sw)
{
u32 uuid[4];
int ret;
if (sw->uuid)
return 0;
/*
* The newer controllers include fused UUID as part of link
* controller specific registers
*/
ret = tb_lc_read_uuid(sw, uuid);
if (ret) {
/*
* ICM generates UUID based on UID and fills the upper
* two words with ones. This is not strictly following
* UUID format but we want to be compatible with it so
* we do the same here.
*/
uuid[0] = sw->uid & 0xffffffff;
uuid[1] = (sw->uid >> 32) & 0xffffffff;
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
}
sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
if (!sw->uuid)
return -ENOMEM;
return 0;
}
static int tb_switch_add_dma_port(struct tb_switch *sw)
{
u32 status;
int ret;
switch (sw->generation) {
case 3:
break;
case 2:
/* Only root switch can be upgraded */
if (tb_route(sw))
return 0;
break;
default:
/*
* DMA port is the only thing available when the switch
* is in safe mode.
*/
if (!sw->safe_mode)
return 0;
break;
}
if (sw->no_nvm_upgrade)
return 0;
sw->dma_port = dma_port_alloc(sw);
if (!sw->dma_port)
return 0;
/*
* Check status of the previous flash authentication. If there
* is one we need to power cycle the switch in any case to make
* it functional again.
*/
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret <= 0)
return ret;
/* Now we can allow root port to suspend again */
if (!tb_route(sw))
nvm_authenticate_complete(sw);
if (status) {
tb_sw_info(sw, "switch flash authentication failed\n");
ret = tb_switch_set_uuid(sw);
if (ret)
return ret;
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
/*
* We return error here which causes the switch adding failure.
* It should appear back after power cycle is complete.
*/
return -ESHUTDOWN;
}
/**
* tb_switch_add() - Add a switch to the domain
* @sw: Switch to add
*
* This is the last step in adding switch to the domain. It will read
* identification information from DROM and initializes ports so that
* they can be used to connect other switches. The switch will be
* exposed to the userspace when this function successfully returns. To
* remove and release the switch, call tb_switch_remove().
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_add(struct tb_switch *sw)
{
int i, ret;
/*
* Initialize DMA control port now before we read DROM. Recent
* host controllers have more complete DROM on NVM that includes
* vendor and model identification strings which we then expose
* to the userspace. NVM can be accessed through DMA
* configuration based mailbox.
*/
ret = tb_switch_add_dma_port(sw);
if (ret)
return ret;
if (!sw->safe_mode) {
/* read drom */
ret = tb_drom_read(sw);
if (ret) {
tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
return ret;
}
tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
ret = tb_switch_set_uuid(sw);
if (ret)
return ret;
for (i = 0; i <= sw->config.max_port_number; i++) {
if (sw->ports[i].disabled) {
tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
continue;
}
ret = tb_init_port(&sw->ports[i]);
if (ret)
return ret;
}
}
ret = device_add(&sw->dev);
if (ret)
return ret;
if (tb_route(sw)) {
dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
sw->vendor, sw->device);
if (sw->vendor_name && sw->device_name)
dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
sw->device_name);
}
ret = tb_switch_nvm_add(sw);
if (ret) {
device_del(&sw->dev);
return ret;
}
pm_runtime_set_active(&sw->dev);
if (sw->rpm) {
pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&sw->dev);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_enable(&sw->dev);
pm_request_autosuspend(&sw->dev);
}
return 0;
}
/**
* tb_switch_remove() - Remove and release a switch
* @sw: Switch to remove
*
* This will remove the switch from the domain and release it after last
* reference count drops to zero. If there are switches connected below
* this switch, they will be removed as well.
*/
void tb_switch_remove(struct tb_switch *sw)
{
int i;
if (sw->rpm) {
pm_runtime_get_sync(&sw->dev);
pm_runtime_disable(&sw->dev);
}
/* port 0 is the switch itself and never has a remote */
for (i = 1; i <= sw->config.max_port_number; i++) {
if (tb_port_has_remote(&sw->ports[i])) {
tb_switch_remove(sw->ports[i].remote->sw);
sw->ports[i].remote = NULL;
} else if (sw->ports[i].xdomain) {
tb_xdomain_remove(sw->ports[i].xdomain);
sw->ports[i].xdomain = NULL;
}
}
if (!sw->is_unplugged)
tb_plug_events_active(sw, false);
tb_lc_unconfigure_link(sw);
tb_switch_nvm_remove(sw);
if (tb_route(sw))
dev_info(&sw->dev, "device disconnected\n");
device_unregister(&sw->dev);
}
/**
* tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
*/
void tb_sw_set_unplugged(struct tb_switch *sw)
{
int i;
if (sw == sw->tb->root_switch) {
tb_sw_WARN(sw, "cannot unplug root switch\n");
return;
}
if (sw->is_unplugged) {
tb_sw_WARN(sw, "is_unplugged already set\n");
return;
}
sw->is_unplugged = true;
for (i = 0; i <= sw->config.max_port_number; i++) {
if (tb_port_has_remote(&sw->ports[i]))
tb_sw_set_unplugged(sw->ports[i].remote->sw);
else if (sw->ports[i].xdomain)
sw->ports[i].xdomain->is_unplugged = true;
}
}
int tb_switch_resume(struct tb_switch *sw)
{
int i, err;
tb_sw_dbg(sw, "resuming switch\n");
/*
* Check for UID of the connected switches except for root
* switch which we assume cannot be removed.
*/
if (tb_route(sw)) {
u64 uid;
/*
* Check first that we can still read the switch config
* space. It may be that there is now another domain
* connected.
*/
err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
if (err < 0) {
tb_sw_info(sw, "switch not present anymore\n");
return err;
}
err = tb_drom_read_uid_only(sw, &uid);
if (err) {
tb_sw_warn(sw, "uid read failed\n");
return err;
}
if (sw->uid != uid) {
tb_sw_info(sw,
"changed while suspended (uid %#llx -> %#llx)\n",
sw->uid, uid);
return -ENODEV;
}
}
/* upload configuration */
err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
if (err)
return err;
err = tb_lc_configure_link(sw);
if (err)
return err;
err = tb_plug_events_active(sw, true);
if (err)
return err;
/* check for surviving downstream switches */
for (i = 1; i <= sw->config.max_port_number; i++) {
struct tb_port *port = &sw->ports[i];
if (!tb_port_has_remote(port) && !port->xdomain)
continue;
if (tb_wait_for_port(port, true) <= 0) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
} else if (tb_port_has_remote(port)) {
if (tb_switch_resume(port->remote->sw)) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
tb_sw_set_unplugged(port->remote->sw);
}
}
}
return 0;
}
void tb_switch_suspend(struct tb_switch *sw)
{
int i, err;
err = tb_plug_events_active(sw, false);
if (err)
return;
for (i = 1; i <= sw->config.max_port_number; i++) {
if (tb_port_has_remote(&sw->ports[i]))
tb_switch_suspend(sw->ports[i].remote->sw);
}
tb_lc_set_sleep(sw);
}
struct tb_sw_lookup {
struct tb *tb;
u8 link;
u8 depth;
const uuid_t *uuid;
u64 route;
};
static int tb_switch_match(struct device *dev, void *data)
{
struct tb_switch *sw = tb_to_switch(dev);
struct tb_sw_lookup *lookup = data;
if (!sw)
return 0;
if (sw->tb != lookup->tb)
return 0;
if (lookup->uuid)
return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
if (lookup->route) {
return sw->config.route_lo == lower_32_bits(lookup->route) &&
sw->config.route_hi == upper_32_bits(lookup->route);
}
/* Root switch is matched only by depth */
if (!lookup->depth)
return !sw->depth;
return sw->link == lookup->link && sw->depth == lookup->depth;
}
/**
* tb_switch_find_by_link_depth() - Find switch by link and depth
* @tb: Domain the switch belongs
* @link: Link number the switch is connected
* @depth: Depth of the switch in link
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.link = link;
lookup.depth = depth;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_uuid() - Find switch by UUID
* @tb: Domain the switch belongs
* @uuid: UUID to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.uuid = uuid;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_route() - Find switch by route string
* @tb: Domain the switch belongs
* @route: Route string to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
{
struct tb_sw_lookup lookup;
struct device *dev;
if (!route)
return tb_switch_get(tb->root_switch);
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.route = route;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
void tb_switch_exit(void)
{
ida_destroy(&nvm_ida);
}