linux_old1/drivers/media/platform/mtk-vpu/mtk_vpu.c

964 lines
24 KiB
C

/*
* Copyright (c) 2016 MediaTek Inc.
* Author: Andrew-CT Chen <andrew-ct.chen@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/dma-mapping.h>
#include "mtk_vpu.h"
/**
* VPU (video processor unit) is a tiny processor controlling video hardware
* related to video codec, scaling and color format converting.
* VPU interfaces with other blocks by share memory and interrupt.
**/
#define INIT_TIMEOUT_MS 2000U
#define IPI_TIMEOUT_MS 2000U
#define VPU_FW_VER_LEN 16
/* maximum program/data TCM (Tightly-Coupled Memory) size */
#define VPU_PTCM_SIZE (96 * SZ_1K)
#define VPU_DTCM_SIZE (32 * SZ_1K)
/* the offset to get data tcm address */
#define VPU_DTCM_OFFSET 0x18000UL
/* daynamic allocated maximum extended memory size */
#define VPU_EXT_P_SIZE SZ_1M
#define VPU_EXT_D_SIZE SZ_4M
/* maximum binary firmware size */
#define VPU_P_FW_SIZE (VPU_PTCM_SIZE + VPU_EXT_P_SIZE)
#define VPU_D_FW_SIZE (VPU_DTCM_SIZE + VPU_EXT_D_SIZE)
/* the size of share buffer between Host and VPU */
#define SHARE_BUF_SIZE 48
/* binary firmware name */
#define VPU_P_FW "vpu_p.bin"
#define VPU_D_FW "vpu_d.bin"
#define VPU_RESET 0x0
#define VPU_TCM_CFG 0x0008
#define VPU_PMEM_EXT0_ADDR 0x000C
#define VPU_PMEM_EXT1_ADDR 0x0010
#define VPU_TO_HOST 0x001C
#define VPU_DMEM_EXT0_ADDR 0x0014
#define VPU_DMEM_EXT1_ADDR 0x0018
#define HOST_TO_VPU 0x0024
#define VPU_PC_REG 0x0060
#define VPU_WDT_REG 0x0084
/* vpu inter-processor communication interrupt */
#define VPU_IPC_INT BIT(8)
/**
* enum vpu_fw_type - VPU firmware type
*
* @P_FW: program firmware
* @D_FW: data firmware
*
*/
enum vpu_fw_type {
P_FW,
D_FW,
};
/**
* struct vpu_mem - VPU extended program/data memory information
*
* @va: the kernel virtual memory address of VPU extended memory
* @pa: the physical memory address of VPU extended memory
*
*/
struct vpu_mem {
void *va;
dma_addr_t pa;
};
/**
* struct vpu_regs - VPU TCM and configuration registers
*
* @tcm: the register for VPU Tightly-Coupled Memory
* @cfg: the register for VPU configuration
* @irq: the irq number for VPU interrupt
*/
struct vpu_regs {
void __iomem *tcm;
void __iomem *cfg;
int irq;
};
/**
* struct vpu_wdt_handler - VPU watchdog reset handler
*
* @reset_func: reset handler
* @priv: private data
*/
struct vpu_wdt_handler {
void (*reset_func)(void *);
void *priv;
};
/**
* struct vpu_wdt - VPU watchdog workqueue
*
* @handler: VPU watchdog reset handler
* @ws: workstruct for VPU watchdog
* @wq: workqueue for VPU watchdog
*/
struct vpu_wdt {
struct vpu_wdt_handler handler[VPU_RST_MAX];
struct work_struct ws;
struct workqueue_struct *wq;
};
/**
* struct vpu_run - VPU initialization status
*
* @signaled: the signal of vpu initialization completed
* @fw_ver: VPU firmware version
* @dec_capability: decoder capability which is not used for now and
* the value is reserved for future use
* @enc_capability: encoder capability which is not used for now and
* the value is reserved for future use
* @wq: wait queue for VPU initialization status
*/
struct vpu_run {
u32 signaled;
char fw_ver[VPU_FW_VER_LEN];
unsigned int dec_capability;
unsigned int enc_capability;
wait_queue_head_t wq;
};
/**
* struct vpu_ipi_desc - VPU IPI descriptor
*
* @handler: IPI handler
* @name: the name of IPI handler
* @priv: the private data of IPI handler
*/
struct vpu_ipi_desc {
ipi_handler_t handler;
const char *name;
void *priv;
};
/**
* struct share_obj - DTCM (Data Tightly-Coupled Memory) buffer shared with
* AP and VPU
*
* @id: IPI id
* @len: share buffer length
* @share_buf: share buffer data
*/
struct share_obj {
s32 id;
u32 len;
unsigned char share_buf[SHARE_BUF_SIZE];
};
/**
* struct mtk_vpu - vpu driver data
* @extmem: VPU extended memory information
* @reg: VPU TCM and configuration registers
* @run: VPU initialization status
* @wdt: VPU watchdog workqueue
* @ipi_desc: VPU IPI descriptor
* @recv_buf: VPU DTCM share buffer for receiving. The
* receive buffer is only accessed in interrupt context.
* @send_buf: VPU DTCM share buffer for sending
* @dev: VPU struct device
* @clk: VPU clock on/off
* @fw_loaded: indicate VPU firmware loaded
* @enable_4GB: VPU 4GB mode on/off
* @vpu_mutex: protect mtk_vpu (except recv_buf) and ensure only
* one client to use VPU service at a time. For example,
* suppose a client is using VPU to decode VP8.
* If the other client wants to encode VP8,
* it has to wait until VP8 decode completes.
* @wdt_refcnt: WDT reference count to make sure the watchdog can be
* disabled if no other client is using VPU service
* @ack_wq: The wait queue for each codec and mdp. When sleeping
* processes wake up, they will check the condition
* "ipi_id_ack" to run the corresponding action or
* go back to sleep.
* @ipi_id_ack: The ACKs for registered IPI function sending
* interrupt to VPU
*
*/
struct mtk_vpu {
struct vpu_mem extmem[2];
struct vpu_regs reg;
struct vpu_run run;
struct vpu_wdt wdt;
struct vpu_ipi_desc ipi_desc[IPI_MAX];
struct share_obj *recv_buf;
struct share_obj *send_buf;
struct device *dev;
struct clk *clk;
bool fw_loaded;
bool enable_4GB;
struct mutex vpu_mutex; /* for protecting vpu data data structure */
u32 wdt_refcnt;
wait_queue_head_t ack_wq;
bool ipi_id_ack[IPI_MAX];
};
static inline void vpu_cfg_writel(struct mtk_vpu *vpu, u32 val, u32 offset)
{
writel(val, vpu->reg.cfg + offset);
}
static inline u32 vpu_cfg_readl(struct mtk_vpu *vpu, u32 offset)
{
return readl(vpu->reg.cfg + offset);
}
static inline bool vpu_running(struct mtk_vpu *vpu)
{
return vpu_cfg_readl(vpu, VPU_RESET) & BIT(0);
}
static void vpu_clock_disable(struct mtk_vpu *vpu)
{
/* Disable VPU watchdog */
mutex_lock(&vpu->vpu_mutex);
if (!--vpu->wdt_refcnt)
vpu_cfg_writel(vpu,
vpu_cfg_readl(vpu, VPU_WDT_REG) & ~(1L << 31),
VPU_WDT_REG);
mutex_unlock(&vpu->vpu_mutex);
clk_disable(vpu->clk);
}
static int vpu_clock_enable(struct mtk_vpu *vpu)
{
int ret;
ret = clk_enable(vpu->clk);
if (ret)
return ret;
/* Enable VPU watchdog */
mutex_lock(&vpu->vpu_mutex);
if (!vpu->wdt_refcnt++)
vpu_cfg_writel(vpu,
vpu_cfg_readl(vpu, VPU_WDT_REG) | (1L << 31),
VPU_WDT_REG);
mutex_unlock(&vpu->vpu_mutex);
return ret;
}
int vpu_ipi_register(struct platform_device *pdev,
enum ipi_id id, ipi_handler_t handler,
const char *name, void *priv)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
struct vpu_ipi_desc *ipi_desc;
if (!vpu) {
dev_err(&pdev->dev, "vpu device in not ready\n");
return -EPROBE_DEFER;
}
if (id >= 0 && id < IPI_MAX && handler) {
ipi_desc = vpu->ipi_desc;
ipi_desc[id].name = name;
ipi_desc[id].handler = handler;
ipi_desc[id].priv = priv;
return 0;
}
dev_err(&pdev->dev, "register vpu ipi id %d with invalid arguments\n",
id);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(vpu_ipi_register);
int vpu_ipi_send(struct platform_device *pdev,
enum ipi_id id, void *buf,
unsigned int len)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
struct share_obj *send_obj = vpu->send_buf;
unsigned long timeout;
int ret = 0;
if (id <= IPI_VPU_INIT || id >= IPI_MAX ||
len > sizeof(send_obj->share_buf) || !buf) {
dev_err(vpu->dev, "failed to send ipi message\n");
return -EINVAL;
}
ret = vpu_clock_enable(vpu);
if (ret) {
dev_err(vpu->dev, "failed to enable vpu clock\n");
return ret;
}
if (!vpu_running(vpu)) {
dev_err(vpu->dev, "vpu_ipi_send: VPU is not running\n");
ret = -EINVAL;
goto clock_disable;
}
mutex_lock(&vpu->vpu_mutex);
/* Wait until VPU receives the last command */
timeout = jiffies + msecs_to_jiffies(IPI_TIMEOUT_MS);
do {
if (time_after(jiffies, timeout)) {
dev_err(vpu->dev, "vpu_ipi_send: IPI timeout!\n");
ret = -EIO;
goto mut_unlock;
}
} while (vpu_cfg_readl(vpu, HOST_TO_VPU));
memcpy((void *)send_obj->share_buf, buf, len);
send_obj->len = len;
send_obj->id = id;
vpu->ipi_id_ack[id] = false;
/* send the command to VPU */
vpu_cfg_writel(vpu, 0x1, HOST_TO_VPU);
mutex_unlock(&vpu->vpu_mutex);
/* wait for VPU's ACK */
timeout = msecs_to_jiffies(IPI_TIMEOUT_MS);
ret = wait_event_timeout(vpu->ack_wq, vpu->ipi_id_ack[id], timeout);
vpu->ipi_id_ack[id] = false;
if (ret == 0) {
dev_err(vpu->dev, "vpu ipi %d ack time out !", id);
ret = -EIO;
goto clock_disable;
}
vpu_clock_disable(vpu);
return 0;
mut_unlock:
mutex_unlock(&vpu->vpu_mutex);
clock_disable:
vpu_clock_disable(vpu);
return ret;
}
EXPORT_SYMBOL_GPL(vpu_ipi_send);
static void vpu_wdt_reset_func(struct work_struct *ws)
{
struct vpu_wdt *wdt = container_of(ws, struct vpu_wdt, ws);
struct mtk_vpu *vpu = container_of(wdt, struct mtk_vpu, wdt);
struct vpu_wdt_handler *handler = wdt->handler;
int index, ret;
dev_info(vpu->dev, "vpu reset\n");
ret = vpu_clock_enable(vpu);
if (ret) {
dev_err(vpu->dev, "[VPU] wdt enables clock failed %d\n", ret);
return;
}
mutex_lock(&vpu->vpu_mutex);
vpu_cfg_writel(vpu, 0x0, VPU_RESET);
vpu->fw_loaded = false;
mutex_unlock(&vpu->vpu_mutex);
vpu_clock_disable(vpu);
for (index = 0; index < VPU_RST_MAX; index++) {
if (handler[index].reset_func) {
handler[index].reset_func(handler[index].priv);
dev_dbg(vpu->dev, "wdt handler func %d\n", index);
}
}
}
int vpu_wdt_reg_handler(struct platform_device *pdev,
void wdt_reset(void *),
void *priv, enum rst_id id)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
struct vpu_wdt_handler *handler;
if (!vpu) {
dev_err(&pdev->dev, "vpu device in not ready\n");
return -EPROBE_DEFER;
}
handler = vpu->wdt.handler;
if (id >= 0 && id < VPU_RST_MAX && wdt_reset) {
dev_dbg(vpu->dev, "wdt register id %d\n", id);
mutex_lock(&vpu->vpu_mutex);
handler[id].reset_func = wdt_reset;
handler[id].priv = priv;
mutex_unlock(&vpu->vpu_mutex);
return 0;
}
dev_err(vpu->dev, "register vpu wdt handler failed\n");
return -EINVAL;
}
EXPORT_SYMBOL_GPL(vpu_wdt_reg_handler);
unsigned int vpu_get_vdec_hw_capa(struct platform_device *pdev)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
return vpu->run.dec_capability;
}
EXPORT_SYMBOL_GPL(vpu_get_vdec_hw_capa);
unsigned int vpu_get_venc_hw_capa(struct platform_device *pdev)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
return vpu->run.enc_capability;
}
EXPORT_SYMBOL_GPL(vpu_get_venc_hw_capa);
void *vpu_mapping_dm_addr(struct platform_device *pdev,
u32 dtcm_dmem_addr)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
if (!dtcm_dmem_addr ||
(dtcm_dmem_addr > (VPU_DTCM_SIZE + VPU_EXT_D_SIZE))) {
dev_err(vpu->dev, "invalid virtual data memory address\n");
return ERR_PTR(-EINVAL);
}
if (dtcm_dmem_addr < VPU_DTCM_SIZE)
return (__force void *)(dtcm_dmem_addr + vpu->reg.tcm +
VPU_DTCM_OFFSET);
return vpu->extmem[D_FW].va + (dtcm_dmem_addr - VPU_DTCM_SIZE);
}
EXPORT_SYMBOL_GPL(vpu_mapping_dm_addr);
struct platform_device *vpu_get_plat_device(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *vpu_node;
struct platform_device *vpu_pdev;
vpu_node = of_parse_phandle(dev->of_node, "mediatek,vpu", 0);
if (!vpu_node) {
dev_err(dev, "can't get vpu node\n");
return NULL;
}
vpu_pdev = of_find_device_by_node(vpu_node);
if (WARN_ON(!vpu_pdev)) {
dev_err(dev, "vpu pdev failed\n");
of_node_put(vpu_node);
return NULL;
}
return vpu_pdev;
}
EXPORT_SYMBOL_GPL(vpu_get_plat_device);
/* load vpu program/data memory */
static int load_requested_vpu(struct mtk_vpu *vpu,
const struct firmware *vpu_fw,
u8 fw_type)
{
size_t tcm_size = fw_type ? VPU_DTCM_SIZE : VPU_PTCM_SIZE;
size_t fw_size = fw_type ? VPU_D_FW_SIZE : VPU_P_FW_SIZE;
char *fw_name = fw_type ? VPU_D_FW : VPU_P_FW;
size_t dl_size = 0;
size_t extra_fw_size = 0;
void *dest;
int ret;
ret = request_firmware(&vpu_fw, fw_name, vpu->dev);
if (ret < 0) {
dev_err(vpu->dev, "Failed to load %s, %d\n", fw_name, ret);
return ret;
}
dl_size = vpu_fw->size;
if (dl_size > fw_size) {
dev_err(vpu->dev, "fw %s size %zu is abnormal\n", fw_name,
dl_size);
release_firmware(vpu_fw);
return -EFBIG;
}
dev_dbg(vpu->dev, "Downloaded fw %s size: %zu.\n",
fw_name,
dl_size);
/* reset VPU */
vpu_cfg_writel(vpu, 0x0, VPU_RESET);
/* handle extended firmware size */
if (dl_size > tcm_size) {
dev_dbg(vpu->dev, "fw size %zu > limited fw size %zu\n",
dl_size, tcm_size);
extra_fw_size = dl_size - tcm_size;
dev_dbg(vpu->dev, "extra_fw_size %zu\n", extra_fw_size);
dl_size = tcm_size;
}
dest = (__force void *)vpu->reg.tcm;
if (fw_type == D_FW)
dest += VPU_DTCM_OFFSET;
memcpy(dest, vpu_fw->data, dl_size);
/* download to extended memory if need */
if (extra_fw_size > 0) {
dest = vpu->extmem[fw_type].va;
dev_dbg(vpu->dev, "download extended memory type %x\n",
fw_type);
memcpy(dest, vpu_fw->data + tcm_size, extra_fw_size);
}
release_firmware(vpu_fw);
return 0;
}
int vpu_load_firmware(struct platform_device *pdev)
{
struct mtk_vpu *vpu;
struct device *dev = &pdev->dev;
struct vpu_run *run;
const struct firmware *vpu_fw = NULL;
int ret;
if (!pdev) {
dev_err(dev, "VPU platform device is invalid\n");
return -EINVAL;
}
vpu = platform_get_drvdata(pdev);
run = &vpu->run;
mutex_lock(&vpu->vpu_mutex);
if (vpu->fw_loaded) {
mutex_unlock(&vpu->vpu_mutex);
return 0;
}
mutex_unlock(&vpu->vpu_mutex);
ret = vpu_clock_enable(vpu);
if (ret) {
dev_err(dev, "enable clock failed %d\n", ret);
return ret;
}
mutex_lock(&vpu->vpu_mutex);
run->signaled = false;
dev_dbg(vpu->dev, "firmware request\n");
/* Downloading program firmware to device*/
ret = load_requested_vpu(vpu, vpu_fw, P_FW);
if (ret < 0) {
dev_err(dev, "Failed to request %s, %d\n", VPU_P_FW, ret);
goto OUT_LOAD_FW;
}
/* Downloading data firmware to device */
ret = load_requested_vpu(vpu, vpu_fw, D_FW);
if (ret < 0) {
dev_err(dev, "Failed to request %s, %d\n", VPU_D_FW, ret);
goto OUT_LOAD_FW;
}
vpu->fw_loaded = true;
/* boot up vpu */
vpu_cfg_writel(vpu, 0x1, VPU_RESET);
ret = wait_event_interruptible_timeout(run->wq,
run->signaled,
msecs_to_jiffies(INIT_TIMEOUT_MS)
);
if (ret == 0) {
ret = -ETIME;
dev_err(dev, "wait vpu initialization timeout!\n");
goto OUT_LOAD_FW;
} else if (-ERESTARTSYS == ret) {
dev_err(dev, "wait vpu interrupted by a signal!\n");
goto OUT_LOAD_FW;
}
ret = 0;
dev_info(dev, "vpu is ready. Fw version %s\n", run->fw_ver);
OUT_LOAD_FW:
mutex_unlock(&vpu->vpu_mutex);
vpu_clock_disable(vpu);
return ret;
}
EXPORT_SYMBOL_GPL(vpu_load_firmware);
static void vpu_init_ipi_handler(void *data, unsigned int len, void *priv)
{
struct mtk_vpu *vpu = (struct mtk_vpu *)priv;
struct vpu_run *run = (struct vpu_run *)data;
vpu->run.signaled = run->signaled;
strncpy(vpu->run.fw_ver, run->fw_ver, VPU_FW_VER_LEN);
vpu->run.dec_capability = run->dec_capability;
vpu->run.enc_capability = run->enc_capability;
wake_up_interruptible(&vpu->run.wq);
}
#ifdef CONFIG_DEBUG_FS
static ssize_t vpu_debug_read(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char buf[256];
unsigned int len;
unsigned int running, pc, vpu_to_host, host_to_vpu, wdt;
int ret;
struct device *dev = file->private_data;
struct mtk_vpu *vpu = dev_get_drvdata(dev);
ret = vpu_clock_enable(vpu);
if (ret) {
dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret);
return 0;
}
/* vpu register status */
running = vpu_running(vpu);
pc = vpu_cfg_readl(vpu, VPU_PC_REG);
wdt = vpu_cfg_readl(vpu, VPU_WDT_REG);
host_to_vpu = vpu_cfg_readl(vpu, HOST_TO_VPU);
vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST);
vpu_clock_disable(vpu);
if (running) {
len = snprintf(buf, sizeof(buf), "VPU is running\n\n"
"FW Version: %s\n"
"PC: 0x%x\n"
"WDT: 0x%x\n"
"Host to VPU: 0x%x\n"
"VPU to Host: 0x%x\n",
vpu->run.fw_ver, pc, wdt,
host_to_vpu, vpu_to_host);
} else {
len = snprintf(buf, sizeof(buf), "VPU not running\n");
}
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static const struct file_operations vpu_debug_fops = {
.open = simple_open,
.read = vpu_debug_read,
};
#endif /* CONFIG_DEBUG_FS */
static void vpu_free_ext_mem(struct mtk_vpu *vpu, u8 fw_type)
{
struct device *dev = vpu->dev;
size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE;
dma_free_coherent(dev, fw_ext_size, vpu->extmem[fw_type].va,
vpu->extmem[fw_type].pa);
}
static int vpu_alloc_ext_mem(struct mtk_vpu *vpu, u32 fw_type)
{
struct device *dev = vpu->dev;
size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE;
u32 vpu_ext_mem0 = fw_type ? VPU_DMEM_EXT0_ADDR : VPU_PMEM_EXT0_ADDR;
u32 vpu_ext_mem1 = fw_type ? VPU_DMEM_EXT1_ADDR : VPU_PMEM_EXT1_ADDR;
u32 offset_4gb = vpu->enable_4GB ? 0x40000000 : 0;
vpu->extmem[fw_type].va = dma_alloc_coherent(dev,
fw_ext_size,
&vpu->extmem[fw_type].pa,
GFP_KERNEL);
if (!vpu->extmem[fw_type].va) {
dev_err(dev, "Failed to allocate the extended program memory\n");
return -ENOMEM;
}
/* Disable extend0. Enable extend1 */
vpu_cfg_writel(vpu, 0x1, vpu_ext_mem0);
vpu_cfg_writel(vpu, (vpu->extmem[fw_type].pa & 0xFFFFF000) + offset_4gb,
vpu_ext_mem1);
dev_info(dev, "%s extend memory phy=0x%llx virt=0x%p\n",
fw_type ? "Data" : "Program",
(unsigned long long)vpu->extmem[fw_type].pa,
vpu->extmem[fw_type].va);
return 0;
}
static void vpu_ipi_handler(struct mtk_vpu *vpu)
{
struct share_obj *rcv_obj = vpu->recv_buf;
struct vpu_ipi_desc *ipi_desc = vpu->ipi_desc;
if (rcv_obj->id < IPI_MAX && ipi_desc[rcv_obj->id].handler) {
ipi_desc[rcv_obj->id].handler(rcv_obj->share_buf,
rcv_obj->len,
ipi_desc[rcv_obj->id].priv);
if (rcv_obj->id > IPI_VPU_INIT) {
vpu->ipi_id_ack[rcv_obj->id] = true;
wake_up(&vpu->ack_wq);
}
} else {
dev_err(vpu->dev, "No such ipi id = %d\n", rcv_obj->id);
}
}
static int vpu_ipi_init(struct mtk_vpu *vpu)
{
/* Disable VPU to host interrupt */
vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST);
/* shared buffer initialization */
vpu->recv_buf = (__force struct share_obj *)(vpu->reg.tcm +
VPU_DTCM_OFFSET);
vpu->send_buf = vpu->recv_buf + 1;
memset(vpu->recv_buf, 0, sizeof(struct share_obj));
memset(vpu->send_buf, 0, sizeof(struct share_obj));
return 0;
}
static irqreturn_t vpu_irq_handler(int irq, void *priv)
{
struct mtk_vpu *vpu = priv;
u32 vpu_to_host;
int ret;
/*
* Clock should have been enabled already.
* Enable again in case vpu_ipi_send times out
* and has disabled the clock.
*/
ret = clk_enable(vpu->clk);
if (ret) {
dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret);
return IRQ_NONE;
}
vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST);
if (vpu_to_host & VPU_IPC_INT) {
vpu_ipi_handler(vpu);
} else {
dev_err(vpu->dev, "vpu watchdog timeout! 0x%x", vpu_to_host);
queue_work(vpu->wdt.wq, &vpu->wdt.ws);
}
/* VPU won't send another interrupt until we set VPU_TO_HOST to 0. */
vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST);
clk_disable(vpu->clk);
return IRQ_HANDLED;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *vpu_debugfs;
#endif
static int mtk_vpu_probe(struct platform_device *pdev)
{
struct mtk_vpu *vpu;
struct device *dev;
struct resource *res;
int ret = 0;
dev_dbg(&pdev->dev, "initialization\n");
dev = &pdev->dev;
vpu = devm_kzalloc(dev, sizeof(*vpu), GFP_KERNEL);
if (!vpu)
return -ENOMEM;
vpu->dev = &pdev->dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcm");
vpu->reg.tcm = devm_ioremap_resource(dev, res);
if (IS_ERR((__force void *)vpu->reg.tcm))
return PTR_ERR((__force void *)vpu->reg.tcm);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg_reg");
vpu->reg.cfg = devm_ioremap_resource(dev, res);
if (IS_ERR((__force void *)vpu->reg.cfg))
return PTR_ERR((__force void *)vpu->reg.cfg);
/* Get VPU clock */
vpu->clk = devm_clk_get(dev, "main");
if (IS_ERR(vpu->clk)) {
dev_err(dev, "get vpu clock failed\n");
return PTR_ERR(vpu->clk);
}
platform_set_drvdata(pdev, vpu);
ret = clk_prepare(vpu->clk);
if (ret) {
dev_err(dev, "prepare vpu clock failed\n");
return ret;
}
/* VPU watchdog */
vpu->wdt.wq = create_singlethread_workqueue("vpu_wdt");
if (!vpu->wdt.wq) {
dev_err(dev, "initialize wdt workqueue failed\n");
return -ENOMEM;
}
INIT_WORK(&vpu->wdt.ws, vpu_wdt_reset_func);
mutex_init(&vpu->vpu_mutex);
ret = vpu_clock_enable(vpu);
if (ret) {
dev_err(dev, "enable vpu clock failed\n");
goto workqueue_destroy;
}
dev_dbg(dev, "vpu ipi init\n");
ret = vpu_ipi_init(vpu);
if (ret) {
dev_err(dev, "Failed to init ipi\n");
goto disable_vpu_clk;
}
/* register vpu initialization IPI */
ret = vpu_ipi_register(pdev, IPI_VPU_INIT, vpu_init_ipi_handler,
"vpu_init", vpu);
if (ret) {
dev_err(dev, "Failed to register IPI_VPU_INIT\n");
goto vpu_mutex_destroy;
}
#ifdef CONFIG_DEBUG_FS
vpu_debugfs = debugfs_create_file("mtk_vpu", S_IRUGO, NULL, (void *)dev,
&vpu_debug_fops);
if (!vpu_debugfs) {
ret = -ENOMEM;
goto cleanup_ipi;
}
#endif
/* Set PTCM to 96K and DTCM to 32K */
vpu_cfg_writel(vpu, 0x2, VPU_TCM_CFG);
vpu->enable_4GB = !!(totalram_pages > (SZ_2G >> PAGE_SHIFT));
dev_info(dev, "4GB mode %u\n", vpu->enable_4GB);
if (vpu->enable_4GB) {
ret = of_reserved_mem_device_init(dev);
if (ret)
dev_info(dev, "init reserved memory failed\n");
/* continue to use dynamic allocation if failed */
}
ret = vpu_alloc_ext_mem(vpu, D_FW);
if (ret) {
dev_err(dev, "Allocate DM failed\n");
goto remove_debugfs;
}
ret = vpu_alloc_ext_mem(vpu, P_FW);
if (ret) {
dev_err(dev, "Allocate PM failed\n");
goto free_d_mem;
}
init_waitqueue_head(&vpu->run.wq);
init_waitqueue_head(&vpu->ack_wq);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(dev, "get IRQ resource failed.\n");
ret = -ENXIO;
goto free_p_mem;
}
vpu->reg.irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(dev, vpu->reg.irq, vpu_irq_handler, 0,
pdev->name, vpu);
if (ret) {
dev_err(dev, "failed to request irq\n");
goto free_p_mem;
}
vpu_clock_disable(vpu);
dev_dbg(dev, "initialization completed\n");
return 0;
free_p_mem:
vpu_free_ext_mem(vpu, P_FW);
free_d_mem:
vpu_free_ext_mem(vpu, D_FW);
remove_debugfs:
of_reserved_mem_device_release(dev);
#ifdef CONFIG_DEBUG_FS
debugfs_remove(vpu_debugfs);
cleanup_ipi:
#endif
memset(vpu->ipi_desc, 0, sizeof(struct vpu_ipi_desc) * IPI_MAX);
vpu_mutex_destroy:
mutex_destroy(&vpu->vpu_mutex);
disable_vpu_clk:
vpu_clock_disable(vpu);
workqueue_destroy:
destroy_workqueue(vpu->wdt.wq);
return ret;
}
static const struct of_device_id mtk_vpu_match[] = {
{
.compatible = "mediatek,mt8173-vpu",
},
{},
};
MODULE_DEVICE_TABLE(of, mtk_vpu_match);
static int mtk_vpu_remove(struct platform_device *pdev)
{
struct mtk_vpu *vpu = platform_get_drvdata(pdev);
#ifdef CONFIG_DEBUG_FS
debugfs_remove(vpu_debugfs);
#endif
if (vpu->wdt.wq) {
flush_workqueue(vpu->wdt.wq);
destroy_workqueue(vpu->wdt.wq);
}
vpu_free_ext_mem(vpu, P_FW);
vpu_free_ext_mem(vpu, D_FW);
mutex_destroy(&vpu->vpu_mutex);
clk_unprepare(vpu->clk);
return 0;
}
static struct platform_driver mtk_vpu_driver = {
.probe = mtk_vpu_probe,
.remove = mtk_vpu_remove,
.driver = {
.name = "mtk_vpu",
.of_match_table = mtk_vpu_match,
},
};
module_platform_driver(mtk_vpu_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Mediatek Video Prosessor Unit driver");