linux_old1/net/8021q/vlan_dev.c

891 lines
24 KiB
C

/* -*- linux-c -*-
* INET 802.1Q VLAN
* Ethernet-type device handling.
*
* Authors: Ben Greear <greearb@candelatech.com>
* Please send support related email to: vlan@scry.wanfear.com
* VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
*
* Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
* - reset skb->pkt_type on incoming packets when MAC was changed
* - see that changed MAC is saddr for outgoing packets
* Oct 20, 2001: Ard van Breeman:
* - Fix MC-list, finally.
* - Flush MC-list on VLAN destroy.
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/in.h>
#include <linux/init.h>
#include <asm/uaccess.h> /* for copy_from_user */
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <net/datalink.h>
#include <net/p8022.h>
#include <net/arp.h>
#include "vlan.h"
#include "vlanproc.h"
#include <linux/if_vlan.h>
#include <net/ip.h>
/*
* Rebuild the Ethernet MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*
* TODO: This needs a checkup, I'm ignorant here. --BLG
*/
int vlan_dev_rebuild_header(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
switch (veth->h_vlan_encapsulated_proto) {
#ifdef CONFIG_INET
case __constant_htons(ETH_P_IP):
/* TODO: Confirm this will work with VLAN headers... */
return arp_find(veth->h_dest, skb);
#endif
default:
printk(VLAN_DBG
"%s: unable to resolve type %X addresses.\n",
dev->name, (int)veth->h_vlan_encapsulated_proto);
memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
break;
};
return 0;
}
static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
{
if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
if (skb_shared(skb) || skb_cloned(skb)) {
struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
kfree_skb(skb);
skb = nskb;
}
if (skb) {
/* Lifted from Gleb's VLAN code... */
memmove(skb->data - ETH_HLEN,
skb->data - VLAN_ETH_HLEN, 12);
skb->mac.raw += VLAN_HLEN;
}
}
return skb;
}
/*
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*
* Also, at this point we assume that we ARE dealing exclusively with
* VLAN packets, or packets that should be made into VLAN packets based
* on a default VLAN ID.
*
* NOTE: Should be similar to ethernet/eth.c.
*
* SANITY NOTE: This method is called when a packet is moving up the stack
* towards userland. To get here, it would have already passed
* through the ethernet/eth.c eth_type_trans() method.
* SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
* stored UNALIGNED in the memory. RISC systems don't like
* such cases very much...
* SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned,
* so there doesn't need to be any of the unaligned stuff. It has
* been commented out now... --Ben
*
*/
int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
struct packet_type* ptype, struct net_device *orig_dev)
{
unsigned char *rawp = NULL;
struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
unsigned short vid;
struct net_device_stats *stats;
unsigned short vlan_TCI;
__be16 proto;
/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
vlan_TCI = ntohs(vhdr->h_vlan_TCI);
vid = (vlan_TCI & VLAN_VID_MASK);
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
__FUNCTION__, skb, vid);
#endif
/* Ok, we will find the correct VLAN device, strip the header,
* and then go on as usual.
*/
/* We have 12 bits of vlan ID.
*
* We must not drop allow preempt until we hold a
* reference to the device (netif_rx does that) or we
* fail.
*/
rcu_read_lock();
skb->dev = __find_vlan_dev(dev, vid);
if (!skb->dev) {
rcu_read_unlock();
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
#endif
kfree_skb(skb);
return -1;
}
skb->dev->last_rx = jiffies;
/* Bump the rx counters for the VLAN device. */
stats = vlan_dev_get_stats(skb->dev);
stats->rx_packets++;
stats->rx_bytes += skb->len;
skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */
/* Ok, lets check to make sure the device (dev) we
* came in on is what this VLAN is attached to.
*/
if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
rcu_read_unlock();
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n",
__FUNCTION__, skb, dev->name,
VLAN_DEV_INFO(skb->dev)->real_dev->name,
skb->dev->name);
#endif
kfree_skb(skb);
stats->rx_errors++;
return -1;
}
/*
* Deal with ingress priority mapping.
*/
skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n",
__FUNCTION__, (unsigned long)(skb->priority),
ntohs(vhdr->h_vlan_TCI));
#endif
/* The ethernet driver already did the pkt_type calculations
* for us...
*/
switch (skb->pkt_type) {
case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
// stats->broadcast ++; // no such counter :-(
break;
case PACKET_MULTICAST:
stats->multicast++;
break;
case PACKET_OTHERHOST:
/* Our lower layer thinks this is not local, let's make sure.
* This allows the VLAN to have a different MAC than the underlying
* device, and still route correctly.
*/
if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) {
/* It is for our (changed) MAC-address! */
skb->pkt_type = PACKET_HOST;
}
break;
default:
break;
};
/* Was a VLAN packet, grab the encapsulated protocol, which the layer
* three protocols care about.
*/
/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
proto = vhdr->h_vlan_encapsulated_proto;
skb->protocol = proto;
if (ntohs(proto) >= 1536) {
/* place it back on the queue to be handled by
* true layer 3 protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
rawp = skb->data;
/*
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF) {
skb->protocol = __constant_htons(ETH_P_802_3);
/* place it back on the queue to be handled by true layer 3 protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
/*
* Real 802.2 LLC
*/
skb->protocol = __constant_htons(ETH_P_802_2);
/* place it back on the queue to be handled by upper layer protocols.
*/
/* See if we are configured to re-write the VLAN header
* to make it look like ethernet...
*/
skb = vlan_check_reorder_header(skb);
/* Can be null if skb-clone fails when re-ordering */
if (skb) {
netif_rx(skb);
} else {
/* TODO: Add a more specific counter here. */
stats->rx_errors++;
}
rcu_read_unlock();
return 0;
}
static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
struct sk_buff* skb)
{
struct vlan_priority_tci_mapping *mp =
VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
while (mp) {
if (mp->priority == skb->priority) {
return mp->vlan_qos; /* This should already be shifted to mask
* correctly with the VLAN's TCI
*/
}
mp = mp->next;
}
return 0;
}
/*
* Create the VLAN header for an arbitrary protocol layer
*
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp)
*
* This is called when the SKB is moving down the stack towards the
* physical devices.
*/
int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned len)
{
struct vlan_hdr *vhdr;
unsigned short veth_TCI = 0;
int rc = 0;
int build_vlan_header = 0;
struct net_device *vdev = dev; /* save this for the bottom of the method */
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
#endif
/* build vlan header only if re_order_header flag is NOT set. This
* fixes some programs that get confused when they see a VLAN device
* sending a frame that is VLAN encoded (the consensus is that the VLAN
* device should look completely like an Ethernet device when the
* REORDER_HEADER flag is set) The drawback to this is some extra
* header shuffling in the hard_start_xmit. Users can turn off this
* REORDER behaviour with the vconfig tool.
*/
build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
if (build_vlan_header) {
vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
/* build the four bytes that make this a VLAN header. */
/* Now, construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
vhdr->h_vlan_TCI = htons(veth_TCI);
/*
* Set the protocol type.
* For a packet of type ETH_P_802_3 we put the length in here instead.
* It is up to the 802.2 layer to carry protocol information.
*/
if (type != ETH_P_802_3) {
vhdr->h_vlan_encapsulated_proto = htons(type);
} else {
vhdr->h_vlan_encapsulated_proto = htons(len);
}
}
/* Before delegating work to the lower layer, enter our MAC-address */
if (saddr == NULL)
saddr = dev->dev_addr;
dev = VLAN_DEV_INFO(dev)->real_dev;
/* MPLS can send us skbuffs w/out enough space. This check will grow the
* skb if it doesn't have enough headroom. Not a beautiful solution, so
* I'll tick a counter so that users can know it's happening... If they
* care...
*/
/* NOTE: This may still break if the underlying device is not the final
* device (and thus there are more headers to add...) It should work for
* good-ole-ethernet though.
*/
if (skb_headroom(skb) < dev->hard_header_len) {
struct sk_buff *sk_tmp = skb;
skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
kfree_skb(sk_tmp);
if (skb == NULL) {
struct net_device_stats *stats = vlan_dev_get_stats(vdev);
stats->tx_dropped++;
return -ENOMEM;
}
VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
#endif
}
if (build_vlan_header) {
/* Now make the underlying real hard header */
rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
if (rc > 0) {
rc += VLAN_HLEN;
} else if (rc < 0) {
rc -= VLAN_HLEN;
}
} else {
/* If here, then we'll just make a normal looking ethernet frame,
* but, the hard_start_xmit method will insert the tag (it has to
* be able to do this for bridged and other skbs that don't come
* down the protocol stack in an orderly manner.
*/
rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
}
return rc;
}
int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct net_device_stats *stats = vlan_dev_get_stats(dev);
struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
*
* NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
* OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
*/
if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
int orig_headroom = skb_headroom(skb);
unsigned short veth_TCI;
/* This is not a VLAN frame...but we can fix that! */
VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
__FUNCTION__, htons(veth->h_vlan_proto));
#endif
/* Construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
skb = __vlan_put_tag(skb, veth_TCI);
if (!skb) {
stats->tx_dropped++;
return 0;
}
if (orig_headroom < VLAN_HLEN) {
VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
}
}
#ifdef VLAN_DEBUG
printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
__FUNCTION__, skb, skb->dev->name);
printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
#endif
stats->tx_packets++; /* for statics only */
stats->tx_bytes += skb->len;
skb->dev = VLAN_DEV_INFO(dev)->real_dev;
dev_queue_xmit(skb);
return 0;
}
int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct net_device_stats *stats = vlan_dev_get_stats(dev);
unsigned short veth_TCI;
/* Construct the second two bytes. This field looks something
* like:
* usr_priority: 3 bits (high bits)
* CFI 1 bit
* VLAN ID 12 bits (low bits)
*/
veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
stats->tx_packets++;
stats->tx_bytes += skb->len;
skb->dev = VLAN_DEV_INFO(dev)->real_dev;
dev_queue_xmit(skb);
return 0;
}
int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
{
/* TODO: gotta make sure the underlying layer can handle it,
* maybe an IFF_VLAN_CAPABLE flag for devices?
*/
if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
return -ERANGE;
dev->mtu = new_mtu;
return 0;
}
int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
{
struct net_device *dev = dev_get_by_name(dev_name);
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* see if a priority mapping exists.. */
VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
dev_put(dev);
return 0;
}
dev_put(dev);
}
return -EINVAL;
}
int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
{
struct net_device *dev = dev_get_by_name(dev_name);
struct vlan_priority_tci_mapping *mp = NULL;
struct vlan_priority_tci_mapping *np;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* See if a priority mapping exists.. */
mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
while (mp) {
if (mp->priority == skb_prio) {
mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
dev_put(dev);
return 0;
}
mp = mp->next;
}
/* Create a new mapping then. */
mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
if (np) {
np->next = mp;
np->priority = skb_prio;
np->vlan_qos = ((vlan_prio << 13) & 0xE000);
VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
dev_put(dev);
return 0;
} else {
dev_put(dev);
return -ENOBUFS;
}
}
dev_put(dev);
}
return -EINVAL;
}
/* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
{
struct net_device *dev = dev_get_by_name(dev_name);
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
/* verify flag is supported */
if (flag == 1) {
if (flag_val) {
VLAN_DEV_INFO(dev)->flags |= 1;
} else {
VLAN_DEV_INFO(dev)->flags &= ~1;
}
dev_put(dev);
return 0;
} else {
printk(KERN_ERR "%s: flag %i is not valid.\n",
__FUNCTION__, (int)(flag));
dev_put(dev);
return -EINVAL;
}
} else {
printk(KERN_ERR
"%s: %s is not a vlan device, priv_flags: %hX.\n",
__FUNCTION__, dev->name, dev->priv_flags);
dev_put(dev);
}
} else {
printk(KERN_ERR "%s: Could not find device: %s\n",
__FUNCTION__, dev_name);
}
return -EINVAL;
}
int vlan_dev_get_realdev_name(const char *dev_name, char* result)
{
struct net_device *dev = dev_get_by_name(dev_name);
int rv = 0;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
rv = 0;
} else {
rv = -EINVAL;
}
dev_put(dev);
} else {
rv = -ENODEV;
}
return rv;
}
int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
{
struct net_device *dev = dev_get_by_name(dev_name);
int rv = 0;
if (dev) {
if (dev->priv_flags & IFF_802_1Q_VLAN) {
*result = VLAN_DEV_INFO(dev)->vlan_id;
rv = 0;
} else {
rv = -EINVAL;
}
dev_put(dev);
} else {
rv = -ENODEV;
}
return rv;
}
int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
{
struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
int i;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
printk("%s: Setting MAC address to ", dev->name);
for (i = 0; i < 6; i++)
printk(" %2.2x", dev->dev_addr[i]);
printk(".\n");
if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
dev->dev_addr,
dev->addr_len) != 0) {
if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
/* Increment our in-use promiscuity counter */
dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
/* Make PROMISC visible to the user. */
flgs |= IFF_PROMISC;
printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n",
dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
}
} else {
printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n",
dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
}
return 0;
}
static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
struct dev_mc_list *dmi2)
{
return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
}
/** dmi is a single entry into a dev_mc_list, a single node. mc_list is
* an entire list, and we'll iterate through it.
*/
static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
{
struct dev_mc_list *idmi;
for (idmi = mc_list; idmi != NULL; ) {
if (vlan_dmi_equals(dmi, idmi)) {
if (dmi->dmi_users > idmi->dmi_users)
return 1;
else
return 0;
} else {
idmi = idmi->next;
}
}
return 1;
}
static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
{
struct dev_mc_list *dmi = mc_list;
struct dev_mc_list *next;
while(dmi) {
next = dmi->next;
kfree(dmi);
dmi = next;
}
}
static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
{
struct dev_mc_list *dmi, *new_dmi;
vlan_destroy_mc_list(vlan_info->old_mc_list);
vlan_info->old_mc_list = NULL;
for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
if (new_dmi == NULL) {
printk(KERN_ERR "vlan: cannot allocate memory. "
"Multicast may not work properly from now.\n");
return;
}
/* Copy whole structure, then make new 'next' pointer */
*new_dmi = *dmi;
new_dmi->next = vlan_info->old_mc_list;
vlan_info->old_mc_list = new_dmi;
}
}
static void vlan_flush_mc_list(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
while (dmi) {
printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
dmi = dev->mc_list;
}
/* dev->mc_list is NULL by the time we get here. */
vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
VLAN_DEV_INFO(dev)->old_mc_list = NULL;
}
int vlan_dev_open(struct net_device *dev)
{
if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
return -ENETDOWN;
return 0;
}
int vlan_dev_stop(struct net_device *dev)
{
vlan_flush_mc_list(dev);
return 0;
}
int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
struct ifreq ifrr;
int err = -EOPNOTSUPP;
strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
ifrr.ifr_ifru = ifr->ifr_ifru;
switch(cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
if (real_dev->do_ioctl && netif_device_present(real_dev))
err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
break;
case SIOCETHTOOL:
err = dev_ethtool(&ifrr);
}
if (!err)
ifr->ifr_ifru = ifrr.ifr_ifru;
return err;
}
/** Taken from Gleb + Lennert's VLAN code, and modified... */
void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
{
struct dev_mc_list *dmi;
struct net_device *real_dev;
int inc;
if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
/* Then it's a real vlan device, as far as we can tell.. */
real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
/* compare the current promiscuity to the last promisc we had.. */
inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
if (inc) {
printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
vlan_dev->name, inc);
dev_set_promiscuity(real_dev, inc); /* found in dev.c */
VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
}
inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
if (inc) {
printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
vlan_dev->name, inc);
dev_set_allmulti(real_dev, inc); /* dev.c */
VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
}
/* looking for addresses to add to master's list */
for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
vlan_dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
}
}
/* looking for addresses to delete from master's list */
for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
/* if we think we should add it to the new list, then we should really
* delete it from the real list on the underlying device.
*/
dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
vlan_dev->name,
dmi->dmi_addr[0],
dmi->dmi_addr[1],
dmi->dmi_addr[2],
dmi->dmi_addr[3],
dmi->dmi_addr[4],
dmi->dmi_addr[5]);
}
}
/* save multicast list */
vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
}
}