linux_old1/drivers/net/wireless/wavelan_cs.c

4714 lines
132 KiB
C

/*
* Wavelan Pcmcia driver
*
* Jean II - HPLB '96
*
* Reorganisation and extension of the driver.
* Original copyright follow. See wavelan_cs.p.h for details.
*
* This code is derived from Anthony D. Joseph's code and all the changes here
* are also under the original copyright below.
*
* This code supports version 2.00 of WaveLAN/PCMCIA cards (2.4GHz), and
* can work on Linux 2.0.36 with support of David Hinds' PCMCIA Card Services
*
* Joe Finney (joe@comp.lancs.ac.uk) at Lancaster University in UK added
* critical code in the routine to initialize the Modem Management Controller.
*
* Thanks to Alan Cox and Bruce Janson for their advice.
*
* -- Yunzhou Li (scip4166@nus.sg)
*
#ifdef WAVELAN_ROAMING
* Roaming support added 07/22/98 by Justin Seger (jseger@media.mit.edu)
* based on patch by Joe Finney from Lancaster University.
#endif
*
* Lucent (formerly AT&T GIS, formerly NCR) WaveLAN PCMCIA card: An
* Ethernet-like radio transceiver controlled by an Intel 82593 coprocessor.
*
* A non-shared memory PCMCIA ethernet driver for linux
*
* ISA version modified to support PCMCIA by Anthony Joseph (adj@lcs.mit.edu)
*
*
* Joseph O'Sullivan & John Langford (josullvn@cs.cmu.edu & jcl@cs.cmu.edu)
*
* Apr 2 '98 made changes to bring the i82593 control/int handling in line
* with offical specs...
*
****************************************************************************
* Copyright 1995
* Anthony D. Joseph
* Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this program
* for any purpose and without fee is hereby granted, provided
* that this copyright and permission notice appear on all copies
* and supporting documentation, the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* program without specific prior permission, and notice be given
* in supporting documentation that copying and distribution is
* by permission of M.I.T. M.I.T. makes no representations about
* the suitability of this software for any purpose. It is pro-
* vided "as is" without express or implied warranty.
****************************************************************************
*
*/
/* Do *NOT* add other headers here, you are guaranteed to be wrong - Jean II */
#include "wavelan_cs.p.h" /* Private header */
#ifdef WAVELAN_ROAMING
static void wl_cell_expiry(unsigned long data);
static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp);
static void wv_nwid_filter(unsigned char mode, net_local *lp);
#endif /* WAVELAN_ROAMING */
/************************* MISC SUBROUTINES **************************/
/*
* Subroutines which won't fit in one of the following category
* (wavelan modem or i82593)
*/
#ifdef STRUCT_CHECK
/*------------------------------------------------------------------*/
/*
* Sanity routine to verify the sizes of the various WaveLAN interface
* structures.
*/
static char *
wv_structuct_check(void)
{
#define SC(t,s,n) if (sizeof(t) != s) return(n);
SC(psa_t, PSA_SIZE, "psa_t");
SC(mmw_t, MMW_SIZE, "mmw_t");
SC(mmr_t, MMR_SIZE, "mmr_t");
#undef SC
return((char *) NULL);
} /* wv_structuct_check */
#endif /* STRUCT_CHECK */
/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
* Useful subroutines to manage the modem of the wavelan
*/
/*------------------------------------------------------------------*/
/*
* Read from card's Host Adaptor Status Register.
*/
static inline u_char
hasr_read(u_long base)
{
return(inb(HASR(base)));
} /* hasr_read */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register.
*/
static inline void
hacr_write(u_long base,
u_char hacr)
{
outb(hacr, HACR(base));
} /* hacr_write */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register. Include a delay for
* those times when it is needed.
*/
static inline void
hacr_write_slow(u_long base,
u_char hacr)
{
hacr_write(base, hacr);
/* delay might only be needed sometimes */
mdelay(1);
} /* hacr_write_slow */
/*------------------------------------------------------------------*/
/*
* Read the Parameter Storage Area from the WaveLAN card's memory
*/
static void
psa_read(struct net_device * dev,
int o, /* offset in PSA */
u_char * b, /* buffer to fill */
int n) /* size to read */
{
net_local *lp = netdev_priv(dev);
u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
while(n-- > 0)
{
*b++ = readb(ptr);
/* Due to a lack of address decode pins, the WaveLAN PCMCIA card
* only supports reading even memory addresses. That means the
* increment here MUST be two.
* Because of that, we can't use memcpy_fromio()...
*/
ptr += 2;
}
} /* psa_read */
/*------------------------------------------------------------------*/
/*
* Write the Paramter Storage Area to the WaveLAN card's memory
*/
static void
psa_write(struct net_device * dev,
int o, /* Offset in psa */
u_char * b, /* Buffer in memory */
int n) /* Length of buffer */
{
net_local *lp = netdev_priv(dev);
u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
int count = 0;
kio_addr_t base = dev->base_addr;
/* As there seem to have no flag PSA_BUSY as in the ISA model, we are
* oblige to verify this address to know when the PSA is ready... */
volatile u_char __iomem *verify = lp->mem + PSA_ADDR +
(psaoff(0, psa_comp_number) << 1);
/* Authorize writing to PSA */
hacr_write(base, HACR_PWR_STAT | HACR_ROM_WEN);
while(n-- > 0)
{
/* write to PSA */
writeb(*b++, ptr);
ptr += 2;
/* I don't have the spec, so I don't know what the correct
* sequence to write is. This hack seem to work for me... */
count = 0;
while((readb(verify) != PSA_COMP_PCMCIA_915) && (count++ < 100))
mdelay(1);
}
/* Put the host interface back in standard state */
hacr_write(base, HACR_DEFAULT);
} /* psa_write */
#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
* Calculate the PSA CRC
* Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
* NOTE: By specifying a length including the CRC position the
* returned value should be zero. (i.e. a correct checksum in the PSA)
*
* The Windows drivers don't use the CRC, but the AP and the PtP tool
* depend on it.
*/
static u_short
psa_crc(unsigned char * psa, /* The PSA */
int size) /* Number of short for CRC */
{
int byte_cnt; /* Loop on the PSA */
u_short crc_bytes = 0; /* Data in the PSA */
int bit_cnt; /* Loop on the bits of the short */
for(byte_cnt = 0; byte_cnt < size; byte_cnt++ )
{
crc_bytes ^= psa[byte_cnt]; /* Its an xor */
for(bit_cnt = 1; bit_cnt < 9; bit_cnt++ )
{
if(crc_bytes & 0x0001)
crc_bytes = (crc_bytes >> 1) ^ 0xA001;
else
crc_bytes >>= 1 ;
}
}
return crc_bytes;
} /* psa_crc */
#endif /* SET_PSA_CRC */
/*------------------------------------------------------------------*/
/*
* update the checksum field in the Wavelan's PSA
*/
static void
update_psa_checksum(struct net_device * dev)
{
#ifdef SET_PSA_CRC
psa_t psa;
u_short crc;
/* read the parameter storage area */
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
/* update the checksum */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc[0]) - sizeof(psa.psa_crc[1])
- sizeof(psa.psa_crc_status));
psa.psa_crc[0] = crc & 0xFF;
psa.psa_crc[1] = (crc & 0xFF00) >> 8;
/* Write it ! */
psa_write(dev, (char *)&psa.psa_crc - (char *)&psa,
(unsigned char *)&psa.psa_crc, 2);
#ifdef DEBUG_IOCTL_INFO
printk (KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
dev->name, psa.psa_crc[0], psa.psa_crc[1]);
/* Check again (luxury !) */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc_status));
if(crc != 0)
printk(KERN_WARNING "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", dev->name);
#endif /* DEBUG_IOCTL_INFO */
#endif /* SET_PSA_CRC */
} /* update_psa_checksum */
/*------------------------------------------------------------------*/
/*
* Write 1 byte to the MMC.
*/
static inline void
mmc_out(u_long base,
u_short o,
u_char d)
{
int count = 0;
/* Wait for MMC to go idle */
while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
udelay(10);
outb((u_char)((o << 1) | MMR_MMI_WR), MMR(base));
outb(d, MMD(base));
}
/*------------------------------------------------------------------*/
/*
* Routine to write bytes to the Modem Management Controller.
* We start by the end because it is the way it should be !
*/
static inline void
mmc_write(u_long base,
u_char o,
u_char * b,
int n)
{
o += n;
b += n;
while(n-- > 0 )
mmc_out(base, --o, *(--b));
} /* mmc_write */
/*------------------------------------------------------------------*/
/*
* Read 1 byte from the MMC.
* Optimised version for 1 byte, avoid using memory...
*/
static inline u_char
mmc_in(u_long base,
u_short o)
{
int count = 0;
while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
udelay(10);
outb(o << 1, MMR(base)); /* Set the read address */
outb(0, MMD(base)); /* Required dummy write */
while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
udelay(10);
return (u_char) (inb(MMD(base))); /* Now do the actual read */
}
/*------------------------------------------------------------------*/
/*
* Routine to read bytes from the Modem Management Controller.
* The implementation is complicated by a lack of address lines,
* which prevents decoding of the low-order bit.
* (code has just been moved in the above function)
* We start by the end because it is the way it should be !
*/
static inline void
mmc_read(u_long base,
u_char o,
u_char * b,
int n)
{
o += n;
b += n;
while(n-- > 0)
*(--b) = mmc_in(base, --o);
} /* mmc_read */
/*------------------------------------------------------------------*/
/*
* Get the type of encryption available...
*/
static inline int
mmc_encr(u_long base) /* i/o port of the card */
{
int temp;
temp = mmc_in(base, mmroff(0, mmr_des_avail));
if((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
return 0;
else
return temp;
}
/*------------------------------------------------------------------*/
/*
* Wait for the frequency EEprom to complete a command...
* I hope this one will be optimally inlined...
*/
static inline void
fee_wait(u_long base, /* i/o port of the card */
int delay, /* Base delay to wait for */
int number) /* Number of time to wait */
{
int count = 0; /* Wait only a limited time */
while((count++ < number) &&
(mmc_in(base, mmroff(0, mmr_fee_status)) & MMR_FEE_STATUS_BUSY))
udelay(delay);
}
/*------------------------------------------------------------------*/
/*
* Read bytes from the Frequency EEprom (frequency select cards).
*/
static void
fee_read(u_long base, /* i/o port of the card */
u_short o, /* destination offset */
u_short * b, /* data buffer */
int n) /* number of registers */
{
b += n; /* Position at the end of the area */
/* Write the address */
mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while(n-- > 0)
{
/* Write the read command */
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ);
/* Wait until EEprom is ready (should be quick !) */
fee_wait(base, 10, 100);
/* Read the value */
*--b = ((mmc_in(base, mmroff(0, mmr_fee_data_h)) << 8) |
mmc_in(base, mmroff(0, mmr_fee_data_l)));
}
}
/*------------------------------------------------------------------*/
/*
* Write bytes from the Frequency EEprom (frequency select cards).
* This is a bit complicated, because the frequency eeprom has to
* be unprotected and the write enabled.
* Jean II
*/
static void
fee_write(u_long base, /* i/o port of the card */
u_short o, /* destination offset */
u_short * b, /* data buffer */
int n) /* number of registers */
{
b += n; /* Position at the end of the area */
#ifdef EEPROM_IS_PROTECTED /* disabled */
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* Ask to read the protected register */
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
fee_wait(base, 10, 100);
/* Read the protected register */
printk("Protected 2 : %02X-%02X\n",
mmc_in(base, mmroff(0, mmr_fee_data_h)),
mmc_in(base, mmroff(0, mmr_fee_data_l)));
#endif /* DOESNT_SEEM_TO_WORK */
/* Enable protected register */
mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
fee_wait(base, 10, 100);
/* Unprotect area */
mmc_out(base, mmwoff(0, mmw_fee_addr), o + n);
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* Or use : */
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif /* DOESNT_SEEM_TO_WORK */
fee_wait(base, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
/* Write enable */
mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
fee_wait(base, 10, 100);
/* Write the EEprom address */
mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while(n-- > 0)
{
/* Write the value */
mmc_out(base, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
mmc_out(base, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
/* Write the write command */
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WRITE);
/* Wavelan doc says : wait at least 10 ms for EEBUSY = 0 */
mdelay(10);
fee_wait(base, 10, 100);
}
/* Write disable */
mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
fee_wait(base, 10, 100);
#ifdef EEPROM_IS_PROTECTED /* disabled */
/* Reprotect EEprom */
mmc_out(base, mmwoff(0, mmw_fee_addr), 0x00);
mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
fee_wait(base, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
}
/******************* WaveLAN Roaming routines... ********************/
#ifdef WAVELAN_ROAMING /* Conditional compile, see wavelan_cs.h */
static unsigned char WAVELAN_BEACON_ADDRESS[] = {0x09,0x00,0x0e,0x20,0x03,0x00};
static void wv_roam_init(struct net_device *dev)
{
net_local *lp= netdev_priv(dev);
/* Do not remove this unless you have a good reason */
printk(KERN_NOTICE "%s: Warning, you have enabled roaming on"
" device %s !\n", dev->name, dev->name);
printk(KERN_NOTICE "Roaming is currently an experimental unsupported feature"
" of the Wavelan driver.\n");
printk(KERN_NOTICE "It may work, but may also make the driver behave in"
" erratic ways or crash.\n");
lp->wavepoint_table.head=NULL; /* Initialise WavePoint table */
lp->wavepoint_table.num_wavepoints=0;
lp->wavepoint_table.locked=0;
lp->curr_point=NULL; /* No default WavePoint */
lp->cell_search=0;
lp->cell_timer.data=(long)lp; /* Start cell expiry timer */
lp->cell_timer.function=wl_cell_expiry;
lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
add_timer(&lp->cell_timer);
wv_nwid_filter(NWID_PROMISC,lp) ; /* Enter NWID promiscuous mode */
/* to build up a good WavePoint */
/* table... */
printk(KERN_DEBUG "WaveLAN: Roaming enabled on device %s\n",dev->name);
}
static void wv_roam_cleanup(struct net_device *dev)
{
wavepoint_history *ptr,*old_ptr;
net_local *lp= netdev_priv(dev);
printk(KERN_DEBUG "WaveLAN: Roaming Disabled on device %s\n",dev->name);
/* Fixme : maybe we should check that the timer exist before deleting it */
del_timer(&lp->cell_timer); /* Remove cell expiry timer */
ptr=lp->wavepoint_table.head; /* Clear device's WavePoint table */
while(ptr!=NULL)
{
old_ptr=ptr;
ptr=ptr->next;
wl_del_wavepoint(old_ptr,lp);
}
}
/* Enable/Disable NWID promiscuous mode on a given device */
static void wv_nwid_filter(unsigned char mode, net_local *lp)
{
mm_t m;
unsigned long flags;
#ifdef WAVELAN_ROAMING_DEBUG
printk(KERN_DEBUG "WaveLAN: NWID promisc %s, device %s\n",(mode==NWID_PROMISC) ? "on" : "off", lp->dev->name);
#endif
/* Disable interrupts & save flags */
spin_lock_irqsave(&lp->spinlock, flags);
m.w.mmw_loopt_sel = (mode==NWID_PROMISC) ? MMW_LOOPT_SEL_DIS_NWID : 0x00;
mmc_write(lp->dev->base_addr, (char *)&m.w.mmw_loopt_sel - (char *)&m, (unsigned char *)&m.w.mmw_loopt_sel, 1);
if(mode==NWID_PROMISC)
lp->cell_search=1;
else
lp->cell_search=0;
/* ReEnable interrupts & restore flags */
spin_unlock_irqrestore(&lp->spinlock, flags);
}
/* Find a record in the WavePoint table matching a given NWID */
static wavepoint_history *wl_roam_check(unsigned short nwid, net_local *lp)
{
wavepoint_history *ptr=lp->wavepoint_table.head;
while(ptr!=NULL){
if(ptr->nwid==nwid)
return ptr;
ptr=ptr->next;
}
return NULL;
}
/* Create a new wavepoint table entry */
static wavepoint_history *wl_new_wavepoint(unsigned short nwid, unsigned char seq, net_local* lp)
{
wavepoint_history *new_wavepoint;
#ifdef WAVELAN_ROAMING_DEBUG
printk(KERN_DEBUG "WaveLAN: New Wavepoint, NWID:%.4X\n",nwid);
#endif
if(lp->wavepoint_table.num_wavepoints==MAX_WAVEPOINTS)
return NULL;
new_wavepoint = kmalloc(sizeof(wavepoint_history),GFP_ATOMIC);
if(new_wavepoint==NULL)
return NULL;
new_wavepoint->nwid=nwid; /* New WavePoints NWID */
new_wavepoint->average_fast=0; /* Running Averages..*/
new_wavepoint->average_slow=0;
new_wavepoint->qualptr=0; /* Start of ringbuffer */
new_wavepoint->last_seq=seq-1; /* Last sequence no.seen */
memset(new_wavepoint->sigqual,0,WAVEPOINT_HISTORY);/* Empty ringbuffer */
new_wavepoint->next=lp->wavepoint_table.head;/* Add to wavepoint table */
new_wavepoint->prev=NULL;
if(lp->wavepoint_table.head!=NULL)
lp->wavepoint_table.head->prev=new_wavepoint;
lp->wavepoint_table.head=new_wavepoint;
lp->wavepoint_table.num_wavepoints++; /* no. of visible wavepoints */
return new_wavepoint;
}
/* Remove a wavepoint entry from WavePoint table */
static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp)
{
if(wavepoint==NULL)
return;
if(lp->curr_point==wavepoint)
lp->curr_point=NULL;
if(wavepoint->prev!=NULL)
wavepoint->prev->next=wavepoint->next;
if(wavepoint->next!=NULL)
wavepoint->next->prev=wavepoint->prev;
if(lp->wavepoint_table.head==wavepoint)
lp->wavepoint_table.head=wavepoint->next;
lp->wavepoint_table.num_wavepoints--;
kfree(wavepoint);
}
/* Timer callback function - checks WavePoint table for stale entries */
static void wl_cell_expiry(unsigned long data)
{
net_local *lp=(net_local *)data;
wavepoint_history *wavepoint=lp->wavepoint_table.head,*old_point;
#if WAVELAN_ROAMING_DEBUG > 1
printk(KERN_DEBUG "WaveLAN: Wavepoint timeout, dev %s\n",lp->dev->name);
#endif
if(lp->wavepoint_table.locked)
{
#if WAVELAN_ROAMING_DEBUG > 1
printk(KERN_DEBUG "WaveLAN: Wavepoint table locked...\n");
#endif
lp->cell_timer.expires=jiffies+1; /* If table in use, come back later */
add_timer(&lp->cell_timer);
return;
}
while(wavepoint!=NULL)
{
if(time_after(jiffies, wavepoint->last_seen + CELL_TIMEOUT))
{
#ifdef WAVELAN_ROAMING_DEBUG
printk(KERN_DEBUG "WaveLAN: Bye bye %.4X\n",wavepoint->nwid);
#endif
old_point=wavepoint;
wavepoint=wavepoint->next;
wl_del_wavepoint(old_point,lp);
}
else
wavepoint=wavepoint->next;
}
lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
add_timer(&lp->cell_timer);
}
/* Update SNR history of a wavepoint */
static void wl_update_history(wavepoint_history *wavepoint, unsigned char sigqual, unsigned char seq)
{
int i=0,num_missed=0,ptr=0;
int average_fast=0,average_slow=0;
num_missed=(seq-wavepoint->last_seq)%WAVEPOINT_HISTORY;/* Have we missed
any beacons? */
if(num_missed)
for(i=0;i<num_missed;i++)
{
wavepoint->sigqual[wavepoint->qualptr++]=0; /* If so, enter them as 0's */
wavepoint->qualptr %=WAVEPOINT_HISTORY; /* in the ringbuffer. */
}
wavepoint->last_seen=jiffies; /* Add beacon to history */
wavepoint->last_seq=seq;
wavepoint->sigqual[wavepoint->qualptr++]=sigqual;
wavepoint->qualptr %=WAVEPOINT_HISTORY;
ptr=(wavepoint->qualptr-WAVEPOINT_FAST_HISTORY+WAVEPOINT_HISTORY)%WAVEPOINT_HISTORY;
for(i=0;i<WAVEPOINT_FAST_HISTORY;i++) /* Update running averages */
{
average_fast+=wavepoint->sigqual[ptr++];
ptr %=WAVEPOINT_HISTORY;
}
average_slow=average_fast;
for(i=WAVEPOINT_FAST_HISTORY;i<WAVEPOINT_HISTORY;i++)
{
average_slow+=wavepoint->sigqual[ptr++];
ptr %=WAVEPOINT_HISTORY;
}
wavepoint->average_fast=average_fast/WAVEPOINT_FAST_HISTORY;
wavepoint->average_slow=average_slow/WAVEPOINT_HISTORY;
}
/* Perform a handover to a new WavePoint */
static void wv_roam_handover(wavepoint_history *wavepoint, net_local *lp)
{
kio_addr_t base = lp->dev->base_addr;
mm_t m;
unsigned long flags;
if(wavepoint==lp->curr_point) /* Sanity check... */
{
wv_nwid_filter(!NWID_PROMISC,lp);
return;
}
#ifdef WAVELAN_ROAMING_DEBUG
printk(KERN_DEBUG "WaveLAN: Doing handover to %.4X, dev %s\n",wavepoint->nwid,lp->dev->name);
#endif
/* Disable interrupts & save flags */
spin_lock_irqsave(&lp->spinlock, flags);
m.w.mmw_netw_id_l = wavepoint->nwid & 0xFF;
m.w.mmw_netw_id_h = (wavepoint->nwid & 0xFF00) >> 8;
mmc_write(base, (char *)&m.w.mmw_netw_id_l - (char *)&m, (unsigned char *)&m.w.mmw_netw_id_l, 2);
/* ReEnable interrupts & restore flags */
spin_unlock_irqrestore(&lp->spinlock, flags);
wv_nwid_filter(!NWID_PROMISC,lp);
lp->curr_point=wavepoint;
}
/* Called when a WavePoint beacon is received */
static inline void wl_roam_gather(struct net_device * dev,
u_char * hdr, /* Beacon header */
u_char * stats) /* SNR, Signal quality
of packet */
{
wavepoint_beacon *beacon= (wavepoint_beacon *)hdr; /* Rcvd. Beacon */
unsigned short nwid=ntohs(beacon->nwid);
unsigned short sigqual=stats[2] & MMR_SGNL_QUAL; /* SNR of beacon */
wavepoint_history *wavepoint=NULL; /* WavePoint table entry */
net_local *lp = netdev_priv(dev); /* Device info */
#ifdef I_NEED_THIS_FEATURE
/* Some people don't need this, some other may need it */
nwid=nwid^ntohs(beacon->domain_id);
#endif
#if WAVELAN_ROAMING_DEBUG > 1
printk(KERN_DEBUG "WaveLAN: beacon, dev %s:\n",dev->name);
printk(KERN_DEBUG "Domain: %.4X NWID: %.4X SigQual=%d\n",ntohs(beacon->domain_id),nwid,sigqual);
#endif
lp->wavepoint_table.locked=1; /* <Mutex> */
wavepoint=wl_roam_check(nwid,lp); /* Find WavePoint table entry */
if(wavepoint==NULL) /* If no entry, Create a new one... */
{
wavepoint=wl_new_wavepoint(nwid,beacon->seq,lp);
if(wavepoint==NULL)
goto out;
}
if(lp->curr_point==NULL) /* If this is the only WavePoint, */
wv_roam_handover(wavepoint, lp); /* Jump on it! */
wl_update_history(wavepoint, sigqual, beacon->seq); /* Update SNR history
stats. */
if(lp->curr_point->average_slow < SEARCH_THRESH_LOW) /* If our current */
if(!lp->cell_search) /* WavePoint is getting faint, */
wv_nwid_filter(NWID_PROMISC,lp); /* start looking for a new one */
if(wavepoint->average_slow >
lp->curr_point->average_slow + WAVELAN_ROAMING_DELTA)
wv_roam_handover(wavepoint, lp); /* Handover to a better WavePoint */
if(lp->curr_point->average_slow > SEARCH_THRESH_HIGH) /* If our SNR is */
if(lp->cell_search) /* getting better, drop out of cell search mode */
wv_nwid_filter(!NWID_PROMISC,lp);
out:
lp->wavepoint_table.locked=0; /* </MUTEX> :-) */
}
/* Test this MAC frame a WavePoint beacon */
static inline int WAVELAN_BEACON(unsigned char *data)
{
wavepoint_beacon *beacon= (wavepoint_beacon *)data;
static wavepoint_beacon beacon_template={0xaa,0xaa,0x03,0x08,0x00,0x0e,0x20,0x03,0x00};
if(memcmp(beacon,&beacon_template,9)==0)
return 1;
else
return 0;
}
#endif /* WAVELAN_ROAMING */
/************************ I82593 SUBROUTINES *************************/
/*
* Useful subroutines to manage the Ethernet controller
*/
/*------------------------------------------------------------------*/
/*
* Routine to synchronously send a command to the i82593 chip.
* Should be called with interrupts disabled.
* (called by wv_packet_write(), wv_ru_stop(), wv_ru_start(),
* wv_82593_config() & wv_diag())
*/
static int
wv_82593_cmd(struct net_device * dev,
char * str,
int cmd,
int result)
{
kio_addr_t base = dev->base_addr;
int status;
int wait_completed;
long spin;
/* Spin until the chip finishes executing its current command (if any) */
spin = 1000;
do
{
/* Time calibration of the loop */
udelay(10);
/* Read the interrupt register */
outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
status = inb(LCSR(base));
}
while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
/* If the interrupt hasn't be posted */
if(spin <= 0)
{
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "wv_82593_cmd: %s timeout (previous command), status 0x%02x\n",
str, status);
#endif
return(FALSE);
}
/* Issue the command to the controller */
outb(cmd, LCCR(base));
/* If we don't have to check the result of the command
* Note : this mean that the irq handler will deal with that */
if(result == SR0_NO_RESULT)
return(TRUE);
/* We are waiting for command completion */
wait_completed = TRUE;
/* Busy wait while the LAN controller executes the command. */
spin = 1000;
do
{
/* Time calibration of the loop */
udelay(10);
/* Read the interrupt register */
outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
status = inb(LCSR(base));
/* Check if there was an interrupt posted */
if((status & SR0_INTERRUPT))
{
/* Acknowledge the interrupt */
outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
/* Check if interrupt is a command completion */
if(((status & SR0_BOTH_RX_TX) != SR0_BOTH_RX_TX) &&
((status & SR0_BOTH_RX_TX) != 0x0) &&
!(status & SR0_RECEPTION))
{
/* Signal command completion */
wait_completed = FALSE;
}
else
{
/* Note : Rx interrupts will be handled later, because we can
* handle multiple Rx packets at once */
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_INFO "wv_82593_cmd: not our interrupt\n");
#endif
}
}
}
while(wait_completed && (spin-- > 0));
/* If the interrupt hasn't be posted */
if(wait_completed)
{
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "wv_82593_cmd: %s timeout, status 0x%02x\n",
str, status);
#endif
return(FALSE);
}
/* Check the return code returned by the card (see above) against
* the expected return code provided by the caller */
if((status & SR0_EVENT_MASK) != result)
{
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "wv_82593_cmd: %s failed, status = 0x%x\n",
str, status);
#endif
return(FALSE);
}
return(TRUE);
} /* wv_82593_cmd */
/*------------------------------------------------------------------*/
/*
* This routine does a 593 op-code number 7, and obtains the diagnose
* status for the WaveLAN.
*/
static inline int
wv_diag(struct net_device * dev)
{
return(wv_82593_cmd(dev, "wv_diag(): diagnose",
OP0_DIAGNOSE, SR0_DIAGNOSE_PASSED));
} /* wv_diag */
/*------------------------------------------------------------------*/
/*
* Routine to read len bytes from the i82593's ring buffer, starting at
* chip address addr. The results read from the chip are stored in buf.
* The return value is the address to use for next the call.
*/
static int
read_ringbuf(struct net_device * dev,
int addr,
char * buf,
int len)
{
kio_addr_t base = dev->base_addr;
int ring_ptr = addr;
int chunk_len;
char * buf_ptr = buf;
/* Get all the buffer */
while(len > 0)
{
/* Position the Program I/O Register at the ring buffer pointer */
outb(ring_ptr & 0xff, PIORL(base));
outb(((ring_ptr >> 8) & PIORH_MASK), PIORH(base));
/* First, determine how much we can read without wrapping around the
ring buffer */
if((addr + len) < (RX_BASE + RX_SIZE))
chunk_len = len;
else
chunk_len = RX_BASE + RX_SIZE - addr;
insb(PIOP(base), buf_ptr, chunk_len);
buf_ptr += chunk_len;
len -= chunk_len;
ring_ptr = (ring_ptr - RX_BASE + chunk_len) % RX_SIZE + RX_BASE;
}
return(ring_ptr);
} /* read_ringbuf */
/*------------------------------------------------------------------*/
/*
* Reconfigure the i82593, or at least ask for it...
* Because wv_82593_config use the transmission buffer, we must do it
* when we are sure that there is no transmission, so we do it now
* or in wavelan_packet_xmit() (I can't find any better place,
* wavelan_interrupt is not an option...), so you may experience
* some delay sometime...
*/
static inline void
wv_82593_reconfig(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
struct pcmcia_device * link = lp->link;
unsigned long flags;
/* Arm the flag, will be cleard in wv_82593_config() */
lp->reconfig_82593 = TRUE;
/* Check if we can do it now ! */
if((link->open) && (netif_running(dev)) && !(netif_queue_stopped(dev)))
{
spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
wv_82593_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
}
else
{
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG
"%s: wv_82593_reconfig(): delayed (state = %lX, link = %d)\n",
dev->name, dev->state, link->open);
#endif
}
}
/********************* DEBUG & INFO SUBROUTINES *********************/
/*
* This routines are used in the code to show debug informations.
* Most of the time, it dump the content of hardware structures...
*/
#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted contents of the Parameter Storage Area.
*/
static void
wv_psa_show(psa_t * p)
{
DECLARE_MAC_BUF(mac);
printk(KERN_DEBUG "##### wavelan psa contents: #####\n");
printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
p->psa_io_base_addr_1,
p->psa_io_base_addr_2,
p->psa_io_base_addr_3,
p->psa_io_base_addr_4);
printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
p->psa_rem_boot_addr_1,
p->psa_rem_boot_addr_2,
p->psa_rem_boot_addr_3);
printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "psa_unused0[]: %s\n",
print_mac(mac, p->psa_unused0));
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "psa_univ_mac_addr[]: %s\n",
print_mac(mac, p->psa_univ_mac_addr));
printk(KERN_DEBUG "psa_local_mac_addr[]: %s\n",
print_mac(mac, p->psa_local_mac_addr));
printk(KERN_DEBUG "psa_univ_local_sel: %d, ", p->psa_univ_local_sel);
printk("psa_comp_number: %d, ", p->psa_comp_number);
printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
p->psa_feature_select);
printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], p->psa_nwid[1]);
printk("psa_nwid_select: %d\n", p->psa_nwid_select);
printk(KERN_DEBUG "psa_encryption_select: %d, ", p->psa_encryption_select);
printk("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
p->psa_encryption_key[0],
p->psa_encryption_key[1],
p->psa_encryption_key[2],
p->psa_encryption_key[3],
p->psa_encryption_key[4],
p->psa_encryption_key[5],
p->psa_encryption_key[6],
p->psa_encryption_key[7]);
printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
p->psa_call_code[0]);
printk("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
p->psa_call_code[0],
p->psa_call_code[1],
p->psa_call_code[2],
p->psa_call_code[3],
p->psa_call_code[4],
p->psa_call_code[5],
p->psa_call_code[6],
p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
p->psa_reserved[0],
p->psa_reserved[1],
p->psa_reserved[2],
p->psa_reserved[3]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
} /* wv_psa_show */
#endif /* DEBUG_PSA_SHOW */
#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the Modem Management Controller.
* This function need to be completed...
*/
static void
wv_mmc_show(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
mmr_t m;
/* Basic check */
if(hasr_read(base) & HASR_NO_CLK)
{
printk(KERN_WARNING "%s: wv_mmc_show: modem not connected\n",
dev->name);
return;
}
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the mmc */
mmc_out(base, mmwoff(0, mmw_freeze), 1);
mmc_read(base, 0, (u_char *)&m, sizeof(m));
mmc_out(base, mmwoff(0, mmw_freeze), 0);
/* Don't forget to update statistics */
lp->wstats.discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
spin_unlock_irqrestore(&lp->spinlock, flags);
printk(KERN_DEBUG "##### wavelan modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused0[0],
m.mmr_unused0[1],
m.mmr_unused0[2],
m.mmr_unused0[3],
m.mmr_unused0[4],
m.mmr_unused0[5],
m.mmr_unused0[6],
m.mmr_unused0[7]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused1[0],
m.mmr_unused1[1],
m.mmr_unused1[2],
m.mmr_unused1[3],
m.mmr_unused1[4]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
m.mmr_dce_status,
(m.mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? "energy detected,":"",
(m.mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
"loop test indicated," : "",
(m.mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? "transmitter on," : "",
(m.mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
"jabber timer expired," : "");
printk(KERN_DEBUG "Dsp ID: %02X\n",
m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
m.mmr_unused2[0],
m.mmr_unused2[1]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
(m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
m.mmr_thr_pre_set & MMR_THR_PRE_SET,
(m.mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : "below");
printk(KERN_DEBUG "signal_lvl: %d [%s], ",
m.mmr_signal_lvl & MMR_SIGNAL_LVL,
(m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : "no new msg");
printk("silence_lvl: %d [%s], ", m.mmr_silence_lvl & MMR_SILENCE_LVL,
(m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : "no new update");
printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
(m.mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : "Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif /* DEBUG_SHOW_UNUSED */
} /* wv_mmc_show */
#endif /* DEBUG_MMC_SHOW */
#ifdef DEBUG_I82593_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the i82593's receive unit.
*/
static void
wv_ru_show(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
printk(KERN_DEBUG "##### wavelan i82593 receiver status: #####\n");
printk(KERN_DEBUG "ru: rfp %d stop %d", lp->rfp, lp->stop);
/*
* Not implemented yet...
*/
printk("\n");
} /* wv_ru_show */
#endif /* DEBUG_I82593_SHOW */
#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver.
*/
static void
wv_dev_show(struct net_device * dev)
{
printk(KERN_DEBUG "dev:");
printk(" state=%lX,", dev->state);
printk(" trans_start=%ld,", dev->trans_start);
printk(" flags=0x%x,", dev->flags);
printk("\n");
} /* wv_dev_show */
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver's
* private information.
*/
static void
wv_local_show(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
printk(KERN_DEBUG "local:");
/*
* Not implemented yet...
*/
printk("\n");
} /* wv_local_show */
#endif /* DEBUG_DEVICE_SHOW */
#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
* Dump packet header (and content if necessary) on the screen
*/
static inline void
wv_packet_info(u_char * p, /* Packet to dump */
int length, /* Length of the packet */
char * msg1, /* Name of the device */
char * msg2) /* Name of the function */
{
int i;
int maxi;
DECLARE_MAC_BUF(mac);
printk(KERN_DEBUG "%s: %s(): dest %s, length %d\n",
msg1, msg2, print_mac(mac, p), length);
printk(KERN_DEBUG "%s: %s(): src %s, type 0x%02X%02X\n",
msg1, msg2, print_mac(mac, &p[6]), p[12], p[13]);
#ifdef DEBUG_PACKET_DUMP
printk(KERN_DEBUG "data=\"");
if((maxi = length) > DEBUG_PACKET_DUMP)
maxi = DEBUG_PACKET_DUMP;
for(i = 14; i < maxi; i++)
if(p[i] >= ' ' && p[i] <= '~')
printk(" %c", p[i]);
else
printk("%02X", p[i]);
if(maxi < length)
printk("..");
printk("\"\n");
printk(KERN_DEBUG "\n");
#endif /* DEBUG_PACKET_DUMP */
}
#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
/*------------------------------------------------------------------*/
/*
* This is the information which is displayed by the driver at startup
* There is a lot of flag to configure it at your will...
*/
static inline void
wv_init_info(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
psa_t psa;
DECLARE_MAC_BUF(mac);
/* Read the parameter storage area */
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
#ifdef DEBUG_PSA_SHOW
wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82593_SHOW
wv_ru_show(dev);
#endif
#ifdef DEBUG_BASIC_SHOW
/* Now, let's go for the basic stuff */
printk(KERN_NOTICE "%s: WaveLAN: port %#lx, irq %d, "
"hw_addr %s",
dev->name, base, dev->irq,
print_mac(mac, dev->dev_addr));
/* Print current network id */
if(psa.psa_nwid_select)
printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], psa.psa_nwid[1]);
else
printk(", nwid off");
/* If 2.00 card */
if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
{
unsigned short freq;
/* Ask the EEprom to read the frequency from the first area */
fee_read(base, 0x00 /* 1st area - frequency... */,
&freq, 1);
/* Print frequency */
printk(", 2.00, %ld", (freq >> 6) + 2400L);
/* Hack !!! */
if(freq & 0x20)
printk(".5");
}
else
{
printk(", PCMCIA, ");
switch (psa.psa_subband)
{
case PSA_SUBBAND_915:
printk("915");
break;
case PSA_SUBBAND_2425:
printk("2425");
break;
case PSA_SUBBAND_2460:
printk("2460");
break;
case PSA_SUBBAND_2484:
printk("2484");
break;
case PSA_SUBBAND_2430_5:
printk("2430.5");
break;
default:
printk("unknown");
}
}
printk(" MHz\n");
#endif /* DEBUG_BASIC_SHOW */
#ifdef DEBUG_VERSION_SHOW
/* Print version information */
printk(KERN_NOTICE "%s", version);
#endif
} /* wv_init_info */
/********************* IOCTL, STATS & RECONFIG *********************/
/*
* We found here routines that are called by Linux on differents
* occasions after the configuration and not for transmitting data
* These may be called when the user use ifconfig, /proc/net/dev
* or wireless extensions
*/
/*------------------------------------------------------------------*/
/*
* Get the current ethernet statistics. This may be called with the
* card open or closed.
* Used when the user read /proc/net/dev
*/
static en_stats *
wavelan_get_stats(struct net_device * dev)
{
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
#endif
return(&((net_local *)netdev_priv(dev))->stats);
}
/*------------------------------------------------------------------*/
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
wavelan_set_multicast_list(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", dev->name);
#endif
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
dev->name, dev->flags, dev->mc_count);
#endif
if(dev->flags & IFF_PROMISC)
{
/*
* Enable promiscuous mode: receive all packets.
*/
if(!lp->promiscuous)
{
lp->promiscuous = 1;
lp->allmulticast = 0;
lp->mc_count = 0;
wv_82593_reconfig(dev);
/* Tell the kernel that we are doing a really bad job... */
dev->flags |= IFF_PROMISC;
}
}
else
/* If all multicast addresses
* or too much multicast addresses for the hardware filter */
if((dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > I82593_MAX_MULTICAST_ADDRESSES))
{
/*
* Disable promiscuous mode, but active the all multicast mode
*/
if(!lp->allmulticast)
{
lp->promiscuous = 0;
lp->allmulticast = 1;
lp->mc_count = 0;
wv_82593_reconfig(dev);
/* Tell the kernel that we are doing a really bad job... */
dev->flags |= IFF_ALLMULTI;
}
}
else
/* If there is some multicast addresses to send */
if(dev->mc_list != (struct dev_mc_list *) NULL)
{
/*
* Disable promiscuous mode, but receive all packets
* in multicast list
*/
#ifdef MULTICAST_AVOID
if(lp->promiscuous || lp->allmulticast ||
(dev->mc_count != lp->mc_count))
#endif
{
lp->promiscuous = 0;
lp->allmulticast = 0;
lp->mc_count = dev->mc_count;
wv_82593_reconfig(dev);
}
}
else
{
/*
* Switch to normal mode: disable promiscuous mode and
* clear the multicast list.
*/
if(lp->promiscuous || lp->mc_count == 0)
{
lp->promiscuous = 0;
lp->allmulticast = 0;
lp->mc_count = 0;
wv_82593_reconfig(dev);
}
}
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This function doesn't exist...
* (Note : it was a nice way to test the reconfigure stuff...)
*/
#ifdef SET_MAC_ADDRESS
static int
wavelan_set_mac_address(struct net_device * dev,
void * addr)
{
struct sockaddr * mac = addr;
/* Copy the address */
memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
/* Reconfig the beast */
wv_82593_reconfig(dev);
return 0;
}
#endif /* SET_MAC_ADDRESS */
/*------------------------------------------------------------------*/
/*
* Frequency setting (for hardware able of it)
* It's a bit complicated and you don't really want to look into it...
*/
static inline int
wv_set_frequency(u_long base, /* i/o port of the card */
iw_freq * frequency)
{
const int BAND_NUM = 10; /* Number of bands */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
int i;
#endif
/* Setting by frequency */
/* Theoritically, you may set any frequency between
* the two limits with a 0.5 MHz precision. In practice,
* I don't want you to have trouble with local
* regulations... */
if((frequency->e == 1) &&
(frequency->m >= (int) 2.412e8) && (frequency->m <= (int) 2.487e8))
{
freq = ((frequency->m / 10000) - 24000L) / 5;
}
/* Setting by channel (same as wfreqsel) */
/* Warning : each channel is 22MHz wide, so some of the channels
* will interfere... */
if((frequency->e == 0) &&
(frequency->m >= 0) && (frequency->m < BAND_NUM))
{
/* Get frequency offset. */
freq = channel_bands[frequency->m] >> 1;
}
/* Verify if the frequency is allowed */
if(freq != 0L)
{
u_short table[10]; /* Authorized frequency table */
/* Read the frequency table */
fee_read(base, 0x71 /* frequency table */,
table, 10);
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "Frequency table :");
for(i = 0; i < 10; i++)
{
printk(" %04X",
table[i]);
}
printk("\n");
#endif
/* Look in the table if the frequency is allowed */
if(!(table[9 - ((freq - 24) / 16)] &
(1 << ((freq - 24) % 16))))
return -EINVAL; /* not allowed */
}
else
return -EINVAL;
/* If we get a usable frequency */
if(freq != 0L)
{
unsigned short area[16];
unsigned short dac[2];
unsigned short area_verify[16];
unsigned short dac_verify[2];
/* Corresponding gain (in the power adjust value table)
* see AT&T Wavelan Data Manual, REF 407-024689/E, page 3-8
* & WCIN062D.DOC, page 6.2.9 */
unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
int power_band = 0; /* Selected band */
unsigned short power_adjust; /* Correct value */
/* Search for the gain */
power_band = 0;
while((freq > power_limit[power_band]) &&
(power_limit[++power_band] != 0))
;
/* Read the first area */
fee_read(base, 0x00,
area, 16);
/* Read the DAC */
fee_read(base, 0x60,
dac, 2);
/* Read the new power adjust value */
fee_read(base, 0x6B - (power_band >> 1),
&power_adjust, 1);
if(power_band & 0x1)
power_adjust >>= 8;
else
power_adjust &= 0xFF;
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
for(i = 0; i < 16; i++)
{
printk(" %04X",
area[i]);
}
printk("\n");
printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
dac[0], dac[1]);
#endif
/* Frequency offset (for info only...) */
area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
/* Receiver Principle main divider coefficient */
area[3] = (freq >> 1) + 2400L - 352L;
area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Transmitter Main divider coefficient */
area[13] = (freq >> 1) + 2400L;
area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Others part of the area are flags, bit streams or unused... */
/* Set the value in the DAC */
dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
/* Write the first area */
fee_write(base, 0x00,
area, 16);
/* Write the DAC */
fee_write(base, 0x60,
dac, 2);
/* We now should verify here that the EEprom writing was ok */
/* ReRead the first area */
fee_read(base, 0x00,
area_verify, 16);
/* ReRead the DAC */
fee_read(base, 0x60,
dac_verify, 2);
/* Compare */
if(memcmp(area, area_verify, 16 * 2) ||
memcmp(dac, dac_verify, 2 * 2))
{
#ifdef DEBUG_IOCTL_ERROR
printk(KERN_INFO "Wavelan: wv_set_frequency : unable to write new frequency to EEprom (?)\n");
#endif
return -EOPNOTSUPP;
}
/* We must download the frequency parameters to the
* synthetisers (from the EEprom - area 1)
* Note : as the EEprom is auto decremented, we set the end
* if the area... */
mmc_out(base, mmwoff(0, mmw_fee_addr), 0x0F);
mmc_out(base, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait until the download is finished */
fee_wait(base, 100, 100);
/* We must now download the power adjust value (gain) to
* the synthetisers (from the EEprom - area 7 - DAC) */
mmc_out(base, mmwoff(0, mmw_fee_addr), 0x61);
mmc_out(base, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait until the download is finished */
fee_wait(base, 100, 100);
#ifdef DEBUG_IOCTL_INFO
/* Verification of what we have done... */
printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
for(i = 0; i < 16; i++)
{
printk(" %04X",
area_verify[i]);
}
printk("\n");
printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
dac_verify[0], dac_verify[1]);
#endif
return 0;
}
else
return -EINVAL; /* Bah, never get there... */
}
/*------------------------------------------------------------------*/
/*
* Give the list of available frequencies
*/
static inline int
wv_frequency_list(u_long base, /* i/o port of the card */
iw_freq * list, /* List of frequency to fill */
int max) /* Maximum number of frequencies */
{
u_short table[10]; /* Authorized frequency table */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
int i; /* index in the table */
const int BAND_NUM = 10; /* Number of bands */
int c = 0; /* Channel number */
/* Read the frequency table */
fee_read(base, 0x71 /* frequency table */,
table, 10);
/* Look all frequencies */
i = 0;
for(freq = 0; freq < 150; freq++)
/* Look in the table if the frequency is allowed */
if(table[9 - (freq / 16)] & (1 << (freq % 16)))
{
/* Compute approximate channel number */
while((((channel_bands[c] >> 1) - 24) < freq) &&
(c < BAND_NUM))
c++;
list[i].i = c; /* Set the list index */
/* put in the list */
list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
list[i++].e = 1;
/* Check number */
if(i >= max)
return(i);
}
return(i);
}
#ifdef IW_WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
* Gather wireless spy statistics : for each packet, compare the source
* address with out list, and if match, get the stats...
* Sorry, but this function really need wireless extensions...
*/
static inline void
wl_spy_gather(struct net_device * dev,
u_char * mac, /* MAC address */
u_char * stats) /* Statistics to gather */
{
struct iw_quality wstats;
wstats.qual = stats[2] & MMR_SGNL_QUAL;
wstats.level = stats[0] & MMR_SIGNAL_LVL;
wstats.noise = stats[1] & MMR_SILENCE_LVL;
wstats.updated = 0x7;
/* Update spy records */
wireless_spy_update(dev, mac, &wstats);
}
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* This function calculate an histogram on the signal level.
* As the noise is quite constant, it's like doing it on the SNR.
* We have defined a set of interval (lp->his_range), and each time
* the level goes in that interval, we increment the count (lp->his_sum).
* With this histogram you may detect if one wavelan is really weak,
* or you may also calculate the mean and standard deviation of the level...
*/
static inline void
wl_his_gather(struct net_device * dev,
u_char * stats) /* Statistics to gather */
{
net_local * lp = netdev_priv(dev);
u_char level = stats[0] & MMR_SIGNAL_LVL;
int i;
/* Find the correct interval */
i = 0;
while((i < (lp->his_number - 1)) && (level >= lp->his_range[i++]))
;
/* Increment interval counter */
(lp->his_sum[i])++;
}
#endif /* HISTOGRAM */
static void wl_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strncpy(info->driver, "wavelan_cs", sizeof(info->driver)-1);
}
static const struct ethtool_ops ops = {
.get_drvinfo = wl_get_drvinfo
};
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get protocol name
*/
static int wavelan_get_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
strcpy(wrqu->name, "WaveLAN");
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set NWID
*/
static int wavelan_set_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
mm_t m;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set NWID in WaveLAN. */
if (!wrqu->nwid.disabled) {
/* Set NWID in psa */
psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
psa.psa_nwid_select = 0x01;
psa_write(dev,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
/* Set NWID in mmc. */
m.w.mmw_netw_id_l = psa.psa_nwid[1];
m.w.mmw_netw_id_h = psa.psa_nwid[0];
mmc_write(base,
(char *) &m.w.mmw_netw_id_l -
(char *) &m,
(unsigned char *) &m.w.mmw_netw_id_l, 2);
mmc_out(base, mmwoff(0, mmw_loopt_sel), 0x00);
} else {
/* Disable NWID in the psa. */
psa.psa_nwid_select = 0x00;
psa_write(dev,
(char *) &psa.psa_nwid_select -
(char *) &psa,
(unsigned char *) &psa.psa_nwid_select,
1);
/* Disable NWID in the mmc (no filtering). */
mmc_out(base, mmwoff(0, mmw_loopt_sel),
MMW_LOOPT_SEL_DIS_NWID);
}
/* update the Wavelan checksum */
update_psa_checksum(dev);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get NWID
*/
static int wavelan_get_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the NWID. */
psa_read(dev,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
wrqu->nwid.disabled = !(psa.psa_nwid_select);
wrqu->nwid.fixed = 1; /* Superfluous */
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set frequency
*/
static int wavelan_set_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
unsigned long flags;
int ret;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
ret = wv_set_frequency(base, &(wrqu->freq));
else
ret = -EOPNOTSUPP;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get frequency
*/
static int wavelan_get_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
* Does it work for everybody, especially old cards? */
if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
unsigned short freq;
/* Ask the EEPROM to read the frequency from the first area. */
fee_read(base, 0x00, &freq, 1);
wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
wrqu->freq.e = 1;
} else {
psa_read(dev,
(char *) &psa.psa_subband - (char *) &psa,
(unsigned char *) &psa.psa_subband, 1);
if (psa.psa_subband <= 4) {
wrqu->freq.m = fixed_bands[psa.psa_subband];
wrqu->freq.e = (psa.psa_subband != 0);
} else
ret = -EOPNOTSUPP;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set level threshold
*/
static int wavelan_set_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set the level threshold. */
/* We should complain loudly if wrqu->sens.fixed = 0, because we
* can't set auto mode... */
psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
psa_write(dev,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev);
mmc_out(base, mmwoff(0, mmw_thr_pre_set),
psa.psa_thr_pre_set);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get level threshold
*/
static int wavelan_get_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the level threshold. */
psa_read(dev,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
wrqu->sens.fixed = 1;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set encryption key
*/
static int wavelan_set_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
unsigned long flags;
psa_t psa;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if capable of encryption */
if (!mmc_encr(base)) {
ret = -EOPNOTSUPP;
}
/* Check the size of the key */
if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
ret = -EINVAL;
}
if(!ret) {
/* Basic checking... */
if (wrqu->encoding.length == 8) {
/* Copy the key in the driver */
memcpy(psa.psa_encryption_key, extra,
wrqu->encoding.length);
psa.psa_encryption_select = 1;
psa_write(dev,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 8 + 1);
mmc_out(base, mmwoff(0, mmw_encr_enable),
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
mmc_write(base, mmwoff(0, mmw_encr_key),
(unsigned char *) &psa.
psa_encryption_key, 8);
}
/* disable encryption */
if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
psa.psa_encryption_select = 0;
psa_write(dev,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1);
mmc_out(base, mmwoff(0, mmw_encr_enable), 0);
}
/* update the Wavelan checksum */
update_psa_checksum(dev);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get encryption key
*/
static int wavelan_get_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if encryption is available */
if (!mmc_encr(base)) {
ret = -EOPNOTSUPP;
} else {
/* Read the encryption key */
psa_read(dev,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1 + 8);
/* encryption is enabled ? */
if (psa.psa_encryption_select)
wrqu->encoding.flags = IW_ENCODE_ENABLED;
else
wrqu->encoding.flags = IW_ENCODE_DISABLED;
wrqu->encoding.flags |= mmc_encr(base);
/* Copy the key to the user buffer */
wrqu->encoding.length = 8;
memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
#ifdef WAVELAN_ROAMING_EXT
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set ESSID (domain)
*/
static int wavelan_set_essid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if disable */
if(wrqu->data.flags == 0)
lp->filter_domains = 0;
else {
char essid[IW_ESSID_MAX_SIZE + 1];
char * endp;
/* Terminate the string */
memcpy(essid, extra, wrqu->data.length);
essid[IW_ESSID_MAX_SIZE] = '\0';
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "SetEssid : ``%s''\n", essid);
#endif /* DEBUG_IOCTL_INFO */
/* Convert to a number (note : Wavelan specific) */
lp->domain_id = simple_strtoul(essid, &endp, 16);
/* Has it worked ? */
if(endp > essid)
lp->filter_domains = 1;
else {
lp->filter_domains = 0;
ret = -EINVAL;
}
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get ESSID (domain)
*/
static int wavelan_get_essid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
/* Is the domain ID active ? */
wrqu->data.flags = lp->filter_domains;
/* Copy Domain ID into a string (Wavelan specific) */
/* Sound crazy, be we can't have a snprintf in the kernel !!! */
sprintf(extra, "%lX", lp->domain_id);
extra[IW_ESSID_MAX_SIZE] = '\0';
/* Set the length */
wrqu->data.length = strlen(extra);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set AP address
*/
static int wavelan_set_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "Set AP to : %02X:%02X:%02X:%02X:%02X:%02X\n",
wrqu->ap_addr.sa_data[0],
wrqu->ap_addr.sa_data[1],
wrqu->ap_addr.sa_data[2],
wrqu->ap_addr.sa_data[3],
wrqu->ap_addr.sa_data[4],
wrqu->ap_addr.sa_data[5]);
#endif /* DEBUG_IOCTL_INFO */
return -EOPNOTSUPP;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get AP address
*/
static int wavelan_get_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
/* Should get the real McCoy instead of own Ethernet address */
memcpy(wrqu->ap_addr.sa_data, dev->dev_addr, WAVELAN_ADDR_SIZE);
wrqu->ap_addr.sa_family = ARPHRD_ETHER;
return -EOPNOTSUPP;
}
#endif /* WAVELAN_ROAMING_EXT */
#ifdef WAVELAN_ROAMING
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set mode
*/
static int wavelan_set_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check mode */
switch(wrqu->mode) {
case IW_MODE_ADHOC:
if(do_roaming) {
wv_roam_cleanup(dev);
do_roaming = 0;
}
break;
case IW_MODE_INFRA:
if(!do_roaming) {
wv_roam_init(dev);
do_roaming = 1;
}
break;
default:
ret = -EINVAL;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get mode
*/
static int wavelan_get_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
if(do_roaming)
wrqu->mode = IW_MODE_INFRA;
else
wrqu->mode = IW_MODE_ADHOC;
return 0;
}
#endif /* WAVELAN_ROAMING */
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get range info
*/
static int wavelan_get_range(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
struct iw_range *range = (struct iw_range *) extra;
unsigned long flags;
int ret = 0;
/* Set the length (very important for backward compatibility) */
wrqu->data.length = sizeof(struct iw_range);
/* Set all the info we don't care or don't know about to zero */
memset(range, 0, sizeof(struct iw_range));
/* Set the Wireless Extension versions */
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 9;
/* Set information in the range struct. */
range->throughput = 1.4 * 1000 * 1000; /* don't argue on this ! */
range->min_nwid = 0x0000;
range->max_nwid = 0xFFFF;
range->sensitivity = 0x3F;
range->max_qual.qual = MMR_SGNL_QUAL;
range->max_qual.level = MMR_SIGNAL_LVL;
range->max_qual.noise = MMR_SILENCE_LVL;
range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
/* Need to get better values for those two */
range->avg_qual.level = 30;
range->avg_qual.noise = 8;
range->num_bitrates = 1;
range->bitrate[0] = 2000000; /* 2 Mb/s */
/* Event capability (kernel + driver) */
range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
IW_EVENT_CAPA_MASK(0x8B04) |
IW_EVENT_CAPA_MASK(0x8B06));
range->event_capa[1] = IW_EVENT_CAPA_K_1;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
range->num_channels = 10;
range->num_frequency = wv_frequency_list(base, range->freq,
IW_MAX_FREQUENCIES);
} else
range->num_channels = range->num_frequency = 0;
/* Encryption supported ? */
if (mmc_encr(base)) {
range->encoding_size[0] = 8; /* DES = 64 bits key */
range->num_encoding_sizes = 1;
range->max_encoding_tokens = 1; /* Only one key possible */
} else {
range->num_encoding_sizes = 0;
range->max_encoding_tokens = 0;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set quality threshold
*/
static int wavelan_set_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
kio_addr_t base = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa.psa_quality_thr = *(extra) & 0x0F;
psa_write(dev,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev);
mmc_out(base, mmwoff(0, mmw_quality_thr),
psa.psa_quality_thr);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get quality threshold
*/
static int wavelan_get_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa_read(dev,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
*(extra) = psa.psa_quality_thr & 0x0F;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
#ifdef WAVELAN_ROAMING
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set roaming
*/
static int wavelan_set_roam(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Note : should check if user == root */
if(do_roaming && (*extra)==0)
wv_roam_cleanup(dev);
else if(do_roaming==0 && (*extra)!=0)
wv_roam_init(dev);
do_roaming = (*extra);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get quality threshold
*/
static int wavelan_get_roam(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
*(extra) = do_roaming;
return 0;
}
#endif /* WAVELAN_ROAMING */
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set histogram
*/
static int wavelan_set_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
/* Check the number of intervals. */
if (wrqu->data.length > 16) {
return(-E2BIG);
}
/* Disable histo while we copy the addresses.
* As we don't disable interrupts, we need to do this */
lp->his_number = 0;
/* Are there ranges to copy? */
if (wrqu->data.length > 0) {
/* Copy interval ranges to the driver */
memcpy(lp->his_range, extra, wrqu->data.length);
{
int i;
printk(KERN_DEBUG "Histo :");
for(i = 0; i < wrqu->data.length; i++)
printk(" %d", lp->his_range[i]);
printk("\n");
}
/* Reset result structure. */
memset(lp->his_sum, 0x00, sizeof(long) * 16);
}
/* Now we can set the number of ranges */
lp->his_number = wrqu->data.length;
return(0);
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get histogram
*/
static int wavelan_get_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev);
/* Set the number of intervals. */
wrqu->data.length = lp->his_number;
/* Give back the distribution statistics */
if(lp->his_number > 0)
memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
return(0);
}
#endif /* HISTOGRAM */
/*------------------------------------------------------------------*/
/*
* Structures to export the Wireless Handlers
*/
static const struct iw_priv_args wavelan_private_args[] = {
/*{ cmd, set_args, get_args, name } */
{ SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
{ SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
{ SIOCSIPROAM, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setroam" },
{ SIOCGIPROAM, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getroam" },
{ SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
{ SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
};
static const iw_handler wavelan_handler[] =
{
NULL, /* SIOCSIWNAME */
wavelan_get_name, /* SIOCGIWNAME */
wavelan_set_nwid, /* SIOCSIWNWID */
wavelan_get_nwid, /* SIOCGIWNWID */
wavelan_set_freq, /* SIOCSIWFREQ */
wavelan_get_freq, /* SIOCGIWFREQ */
#ifdef WAVELAN_ROAMING
wavelan_set_mode, /* SIOCSIWMODE */
wavelan_get_mode, /* SIOCGIWMODE */
#else /* WAVELAN_ROAMING */
NULL, /* SIOCSIWMODE */
NULL, /* SIOCGIWMODE */
#endif /* WAVELAN_ROAMING */
wavelan_set_sens, /* SIOCSIWSENS */
wavelan_get_sens, /* SIOCGIWSENS */
NULL, /* SIOCSIWRANGE */
wavelan_get_range, /* SIOCGIWRANGE */
NULL, /* SIOCSIWPRIV */
NULL, /* SIOCGIWPRIV */
NULL, /* SIOCSIWSTATS */
NULL, /* SIOCGIWSTATS */
iw_handler_set_spy, /* SIOCSIWSPY */
iw_handler_get_spy, /* SIOCGIWSPY */
iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
#ifdef WAVELAN_ROAMING_EXT
wavelan_set_wap, /* SIOCSIWAP */
wavelan_get_wap, /* SIOCGIWAP */
NULL, /* -- hole -- */
NULL, /* SIOCGIWAPLIST */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
wavelan_set_essid, /* SIOCSIWESSID */
wavelan_get_essid, /* SIOCGIWESSID */
#else /* WAVELAN_ROAMING_EXT */
NULL, /* SIOCSIWAP */
NULL, /* SIOCGIWAP */
NULL, /* -- hole -- */
NULL, /* SIOCGIWAPLIST */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWESSID */
NULL, /* SIOCGIWESSID */
#endif /* WAVELAN_ROAMING_EXT */
NULL, /* SIOCSIWNICKN */
NULL, /* SIOCGIWNICKN */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWRATE */
NULL, /* SIOCGIWRATE */
NULL, /* SIOCSIWRTS */
NULL, /* SIOCGIWRTS */
NULL, /* SIOCSIWFRAG */
NULL, /* SIOCGIWFRAG */
NULL, /* SIOCSIWTXPOW */
NULL, /* SIOCGIWTXPOW */
NULL, /* SIOCSIWRETRY */
NULL, /* SIOCGIWRETRY */
wavelan_set_encode, /* SIOCSIWENCODE */
wavelan_get_encode, /* SIOCGIWENCODE */
};
static const iw_handler wavelan_private_handler[] =
{
wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
#ifdef WAVELAN_ROAMING
wavelan_set_roam, /* SIOCIWFIRSTPRIV + 2 */
wavelan_get_roam, /* SIOCIWFIRSTPRIV + 3 */
#else /* WAVELAN_ROAMING */
NULL, /* SIOCIWFIRSTPRIV + 2 */
NULL, /* SIOCIWFIRSTPRIV + 3 */
#endif /* WAVELAN_ROAMING */
#ifdef HISTOGRAM
wavelan_set_histo, /* SIOCIWFIRSTPRIV + 4 */
wavelan_get_histo, /* SIOCIWFIRSTPRIV + 5 */
#endif /* HISTOGRAM */
};
static const struct iw_handler_def wavelan_handler_def =
{
.num_standard = ARRAY_SIZE(wavelan_handler),
.num_private = ARRAY_SIZE(wavelan_private_handler),
.num_private_args = ARRAY_SIZE(wavelan_private_args),
.standard = wavelan_handler,
.private = wavelan_private_handler,
.private_args = wavelan_private_args,
.get_wireless_stats = wavelan_get_wireless_stats,
};
/*------------------------------------------------------------------*/
/*
* Get wireless statistics
* Called by /proc/net/wireless...
*/
static iw_stats *
wavelan_get_wireless_stats(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
mmr_t m;
iw_stats * wstats;
unsigned long flags;
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", dev->name);
#endif
/* Disable interrupts & save flags */
spin_lock_irqsave(&lp->spinlock, flags);
wstats = &lp->wstats;
/* Get data from the mmc */
mmc_out(base, mmwoff(0, mmw_freeze), 1);
mmc_read(base, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
mmc_read(base, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, 2);
mmc_read(base, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, 4);
mmc_out(base, mmwoff(0, mmw_freeze), 0);
/* Copy data to wireless stuff */
wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
wstats->qual.updated = (((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) |
((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) |
((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
wstats->discard.code = 0L;
wstats->discard.misc = 0L;
/* ReEnable interrupts & restore flags */
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", dev->name);
#endif
return &lp->wstats;
}
/************************* PACKET RECEPTION *************************/
/*
* This part deal with receiving the packets.
* The interrupt handler get an interrupt when a packet has been
* successfully received and called this part...
*/
/*------------------------------------------------------------------*/
/*
* Calculate the starting address of the frame pointed to by the receive
* frame pointer and verify that the frame seem correct
* (called by wv_packet_rcv())
*/
static inline int
wv_start_of_frame(struct net_device * dev,
int rfp, /* end of frame */
int wrap) /* start of buffer */
{
kio_addr_t base = dev->base_addr;
int rp;
int len;
rp = (rfp - 5 + RX_SIZE) % RX_SIZE;
outb(rp & 0xff, PIORL(base));
outb(((rp >> 8) & PIORH_MASK), PIORH(base));
len = inb(PIOP(base));
len |= inb(PIOP(base)) << 8;
/* Sanity checks on size */
/* Frame too big */
if(len > MAXDATAZ + 100)
{
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO "%s: wv_start_of_frame: Received frame too large, rfp %d len 0x%x\n",
dev->name, rfp, len);
#endif
return(-1);
}
/* Frame too short */
if(len < 7)
{
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO "%s: wv_start_of_frame: Received null frame, rfp %d len 0x%x\n",
dev->name, rfp, len);
#endif
return(-1);
}
/* Wrap around buffer */
if(len > ((wrap - (rfp - len) + RX_SIZE) % RX_SIZE)) /* magic formula ! */
{
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO "%s: wv_start_of_frame: wrap around buffer, wrap %d rfp %d len 0x%x\n",
dev->name, wrap, rfp, len);
#endif
return(-1);
}
return((rp - len + RX_SIZE) % RX_SIZE);
} /* wv_start_of_frame */
/*------------------------------------------------------------------*/
/*
* This routine does the actual copy of data (including the ethernet
* header structure) from the WaveLAN card to an sk_buff chain that
* will be passed up to the network interface layer. NOTE: We
* currently don't handle trailer protocols (neither does the rest of
* the network interface), so if that is needed, it will (at least in
* part) be added here. The contents of the receive ring buffer are
* copied to a message chain that is then passed to the kernel.
*
* Note: if any errors occur, the packet is "dropped on the floor"
* (called by wv_packet_rcv())
*/
static inline void
wv_packet_read(struct net_device * dev,
int fd_p,
int sksize)
{
net_local * lp = netdev_priv(dev);
struct sk_buff * skb;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
dev->name, fd_p, sksize);
#endif
/* Allocate some buffer for the new packet */
if((skb = dev_alloc_skb(sksize+2)) == (struct sk_buff *) NULL)
{
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC)\n",
dev->name, sksize);
#endif
lp->stats.rx_dropped++;
/*
* Not only do we want to return here, but we also need to drop the
* packet on the floor to clear the interrupt.
*/
return;
}
skb_reserve(skb, 2);
fd_p = read_ringbuf(dev, fd_p, (char *) skb_put(skb, sksize), sksize);
skb->protocol = eth_type_trans(skb, dev);
#ifdef DEBUG_RX_INFO
wv_packet_info(skb_mac_header(skb), sksize, dev->name, "wv_packet_read");
#endif /* DEBUG_RX_INFO */
/* Statistics gathering & stuff associated.
* It seem a bit messy with all the define, but it's really simple... */
if(
#ifdef IW_WIRELESS_SPY
(lp->spy_data.spy_number > 0) ||
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
(lp->his_number > 0) ||
#endif /* HISTOGRAM */
#ifdef WAVELAN_ROAMING
(do_roaming) ||
#endif /* WAVELAN_ROAMING */
0)
{
u_char stats[3]; /* Signal level, Noise level, Signal quality */
/* read signal level, silence level and signal quality bytes */
fd_p = read_ringbuf(dev, (fd_p + 4) % RX_SIZE + RX_BASE,
stats, 3);
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
dev->name, stats[0] & 0x3F, stats[1] & 0x3F, stats[2] & 0x0F);
#endif
#ifdef WAVELAN_ROAMING
if(do_roaming)
if(WAVELAN_BEACON(skb->data))
wl_roam_gather(dev, skb->data, stats);
#endif /* WAVELAN_ROAMING */
#ifdef WIRELESS_SPY
wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE, stats);
#endif /* WIRELESS_SPY */
#ifdef HISTOGRAM
wl_his_gather(dev, stats);
#endif /* HISTOGRAM */
}
/*
* Hand the packet to the Network Module
*/
netif_rx(skb);
/* Keep stats up to date */
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += sksize;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
return;
}
/*------------------------------------------------------------------*/
/*
* This routine is called by the interrupt handler to initiate a
* packet transfer from the card to the network interface layer above
* this driver. This routine checks if a buffer has been successfully
* received by the WaveLAN card. If so, the routine wv_packet_read is
* called to do the actual transfer of the card's data including the
* ethernet header into a packet consisting of an sk_buff chain.
* (called by wavelan_interrupt())
* Note : the spinlock is already grabbed for us and irq are disabled.
*/
static inline void
wv_packet_rcv(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
int newrfp;
int rp;
int len;
int f_start;
int status;
int i593_rfp;
int stat_ptr;
u_char c[4];
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_rcv()\n", dev->name);
#endif
/* Get the new receive frame pointer from the i82593 chip */
outb(CR0_STATUS_2 | OP0_NOP, LCCR(base));
i593_rfp = inb(LCSR(base));
i593_rfp |= inb(LCSR(base)) << 8;
i593_rfp %= RX_SIZE;
/* Get the new receive frame pointer from the WaveLAN card.
* It is 3 bytes more than the increment of the i82593 receive
* frame pointer, for each packet. This is because it includes the
* 3 roaming bytes added by the mmc.
*/
newrfp = inb(RPLL(base));
newrfp |= inb(RPLH(base)) << 8;
newrfp %= RX_SIZE;
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG "%s: wv_packet_rcv(): i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
#endif
#ifdef DEBUG_RX_ERROR
/* If no new frame pointer... */
if(lp->overrunning || newrfp == lp->rfp)
printk(KERN_INFO "%s: wv_packet_rcv(): no new frame: i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
#endif
/* Read all frames (packets) received */
while(newrfp != lp->rfp)
{
/* A frame is composed of the packet, followed by a status word,
* the length of the frame (word) and the mmc info (SNR & qual).
* It's because the length is at the end that we can only scan
* frames backward. */
/* Find the first frame by skipping backwards over the frames */
rp = newrfp; /* End of last frame */
while(((f_start = wv_start_of_frame(dev, rp, newrfp)) != lp->rfp) &&
(f_start != -1))
rp = f_start;
/* If we had a problem */
if(f_start == -1)
{
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO "wavelan_cs: cannot find start of frame ");
printk(" i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
i593_rfp, lp->stop, newrfp, lp->rfp);
#endif
lp->rfp = rp; /* Get to the last usable frame */
continue;
}
/* f_start point to the beggining of the first frame received
* and rp to the beggining of the next one */
/* Read status & length of the frame */
stat_ptr = (rp - 7 + RX_SIZE) % RX_SIZE;
stat_ptr = read_ringbuf(dev, stat_ptr, c, 4);
status = c[0] | (c[1] << 8);
len = c[2] | (c[3] << 8);
/* Check status */
if((status & RX_RCV_OK) != RX_RCV_OK)
{
lp->stats.rx_errors++;
if(status & RX_NO_SFD)
lp->stats.rx_frame_errors++;
if(status & RX_CRC_ERR)
lp->stats.rx_crc_errors++;
if(status & RX_OVRRUN)
lp->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG "%s: wv_packet_rcv(): packet not received ok, status = 0x%x\n",
dev->name, status);
#endif
}
else
/* Read the packet and transmit to Linux */
wv_packet_read(dev, f_start, len - 2);
/* One frame has been processed, skip it */
lp->rfp = rp;
}
/*
* Update the frame stop register, but set it to less than
* the full 8K to allow space for 3 bytes of signal strength
* per packet.
*/
lp->stop = (i593_rfp + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
outb(OP1_SWIT_TO_PORT_0, LCCR(base));
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_rcv()\n", dev->name);
#endif
}
/*********************** PACKET TRANSMISSION ***********************/
/*
* This part deal with sending packet through the wavelan
* We copy the packet to the send buffer and then issue the send
* command to the i82593. The result of this operation will be
* checked in wavelan_interrupt()
*/
/*------------------------------------------------------------------*/
/*
* This routine fills in the appropriate registers and memory
* locations on the WaveLAN card and starts the card off on
* the transmit.
* (called in wavelan_packet_xmit())
*/
static inline void
wv_packet_write(struct net_device * dev,
void * buf,
short length)
{
net_local * lp = netdev_priv(dev);
kio_addr_t base = dev->base_addr;
unsigned long flags;
int clen = length;
register u_short xmtdata_base = TX_BASE;
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, length);
#endif
spin_lock_irqsave(&lp->spinlock, flags);
/* Write the length of data buffer followed by the buffer */
outb(xmtdata_base & 0xff, PIORL(base));
outb(((xmtdata_base >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
outb(clen & 0xff, PIOP(base)); /* lsb */
outb(clen >> 8, PIOP(base)); /* msb */
/* Send the data */
outsb(PIOP(base), buf, clen);
/* Indicate end of transmit chain */
outb(OP0_NOP, PIOP(base));
/* josullvn@cs.cmu.edu: need to send a second NOP for alignment... */
outb(OP0_NOP, PIOP(base));
/* Reset the transmit DMA pointer */
hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
hacr_write(base, HACR_DEFAULT);
/* Send the transmit command */
wv_82593_cmd(dev, "wv_packet_write(): transmit",
OP0_TRANSMIT, SR0_NO_RESULT);
/* Make sure the watchdog will keep quiet for a while */
dev->trans_start = jiffies;
/* Keep stats up to date */
lp->stats.tx_bytes += length;
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_TX_INFO
wv_packet_info((u_char *) buf, length, dev->name, "wv_packet_write");
#endif /* DEBUG_TX_INFO */
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This routine is called when we want to send a packet (NET3 callback)
* In this routine, we check if the harware is ready to accept
* the packet. We also prevent reentrance. Then, we call the function
* to send the packet...
*/
static int
wavelan_packet_xmit(struct sk_buff * skb,
struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
unsigned long flags;
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
(unsigned) skb);
#endif
/*
* Block a timer-based transmit from overlapping a previous transmit.
* In other words, prevent reentering this routine.
*/
netif_stop_queue(dev);
/* If somebody has asked to reconfigure the controller,
* we can do it now */
if(lp->reconfig_82593)
{
spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
wv_82593_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
/* Note : the configure procedure was totally synchronous,
* so the Tx buffer is now free */
}
#ifdef DEBUG_TX_ERROR
if (skb->next)
printk(KERN_INFO "skb has next\n");
#endif
/* Check if we need some padding */
/* Note : on wireless the propagation time is in the order of 1us,
* and we don't have the Ethernet specific requirement of beeing
* able to detect collisions, therefore in theory we don't really
* need to pad. Jean II */
if (skb_padto(skb, ETH_ZLEN))
return 0;
wv_packet_write(dev, skb->data, skb->len);
dev_kfree_skb(skb);
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
return(0);
}
/********************** HARDWARE CONFIGURATION **********************/
/*
* This part do the real job of starting and configuring the hardware.
*/
/*------------------------------------------------------------------*/
/*
* Routine to initialize the Modem Management Controller.
* (called by wv_hw_config())
*/
static inline int
wv_mmc_init(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
psa_t psa;
mmw_t m;
int configured;
int i; /* Loop counter */
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif
/* Read the parameter storage area */
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
/*
* Check the first three octets of the MAC addr for the manufacturer's code.
* Note: If you get the error message below, you've got a
* non-NCR/AT&T/Lucent PCMCIA cards, see wavelan_cs.h for detail on
* how to configure your card...
*/
for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
if ((psa.psa_univ_mac_addr[0] == MAC_ADDRESSES[i][0]) &&
(psa.psa_univ_mac_addr[1] == MAC_ADDRESSES[i][1]) &&
(psa.psa_univ_mac_addr[2] == MAC_ADDRESSES[i][2]))
break;
/* If we have not found it... */
if (i == ARRAY_SIZE(MAC_ADDRESSES))
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_WARNING "%s: wv_mmc_init(): Invalid MAC address: %02X:%02X:%02X:...\n",
dev->name, psa.psa_univ_mac_addr[0],
psa.psa_univ_mac_addr[1], psa.psa_univ_mac_addr[2]);
#endif
return FALSE;
}
/* Get the MAC address */
memcpy(&dev->dev_addr[0], &psa.psa_univ_mac_addr[0], WAVELAN_ADDR_SIZE);
#ifdef USE_PSA_CONFIG
configured = psa.psa_conf_status & 1;
#else
configured = 0;
#endif
/* Is the PSA is not configured */
if(!configured)
{
/* User will be able to configure NWID after (with iwconfig) */
psa.psa_nwid[0] = 0;
psa.psa_nwid[1] = 0;
/* As NWID is not set : no NWID checking */
psa.psa_nwid_select = 0;
/* Disable encryption */
psa.psa_encryption_select = 0;
/* Set to standard values
* 0x04 for AT,
* 0x01 for MCA,
* 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
*/
if (psa.psa_comp_number & 1)
psa.psa_thr_pre_set = 0x01;
else
psa.psa_thr_pre_set = 0x04;
psa.psa_quality_thr = 0x03;
/* It is configured */
psa.psa_conf_status |= 1;
#ifdef USE_PSA_CONFIG
/* Write the psa */
psa_write(dev, (char *)psa.psa_nwid - (char *)&psa,
(unsigned char *)psa.psa_nwid, 4);
psa_write(dev, (char *)&psa.psa_thr_pre_set - (char *)&psa,
(unsigned char *)&psa.psa_thr_pre_set, 1);
psa_write(dev, (char *)&psa.psa_quality_thr - (char *)&psa,
(unsigned char *)&psa.psa_quality_thr, 1);
psa_write(dev, (char *)&psa.psa_conf_status - (char *)&psa,
(unsigned char *)&psa.psa_conf_status, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev);
#endif /* USE_PSA_CONFIG */
}
/* Zero the mmc structure */
memset(&m, 0x00, sizeof(m));
/* Copy PSA info to the mmc */
m.mmw_netw_id_l = psa.psa_nwid[1];
m.mmw_netw_id_h = psa.psa_nwid[0];
if(psa.psa_nwid_select & 1)
m.mmw_loopt_sel = 0x00;
else
m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
sizeof(m.mmw_encr_key));
if(psa.psa_encryption_select)
m.mmw_encr_enable = MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
else
m.mmw_encr_enable = 0;
m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
/*
* Set default modem control parameters.
* See NCR document 407-0024326 Rev. A.
*/
m.mmw_jabber_enable = 0x01;
m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
m.mmw_ifs = 0x20;
m.mmw_mod_delay = 0x04;
m.mmw_jam_time = 0x38;
m.mmw_des_io_invert = 0;
m.mmw_freeze = 0;
m.mmw_decay_prm = 0;
m.mmw_decay_updat_prm = 0;
/* Write all info to mmc */
mmc_write(base, 0, (u_char *)&m, sizeof(m));
/* The following code start the modem of the 2.00 frequency
* selectable cards at power on. It's not strictly needed for the
* following boots...
* The original patch was by Joe Finney for the PCMCIA driver, but
* I've cleaned it a bit and add documentation.
* Thanks to Loeke Brederveld from Lucent for the info.
*/
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
* (does it work for everybody ? - especially old cards...) */
/* Note : WFREQSEL verify that it is able to read from EEprom
* a sensible frequency (address 0x00) + that MMR_FEE_STATUS_ID
* is 0xA (Xilinx version) or 0xB (Ariadne version).
* My test is more crude but do work... */
if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
{
/* We must download the frequency parameters to the
* synthetisers (from the EEprom - area 1)
* Note : as the EEprom is auto decremented, we set the end
* if the area... */
m.mmw_fee_addr = 0x0F;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
(unsigned char *)&m.mmw_fee_ctrl, 2);
/* Wait until the download is finished */
fee_wait(base, 100, 100);
#ifdef DEBUG_CONFIG_INFO
/* The frequency was in the last word downloaded... */
mmc_read(base, (char *)&m.mmw_fee_data_l - (char *)&m,
(unsigned char *)&m.mmw_fee_data_l, 2);
/* Print some info for the user */
printk(KERN_DEBUG "%s: Wavelan 2.00 recognised (frequency select) : Current frequency = %ld\n",
dev->name,
((m.mmw_fee_data_h << 4) |
(m.mmw_fee_data_l >> 4)) * 5 / 2 + 24000L);
#endif
/* We must now download the power adjust value (gain) to
* the synthetisers (from the EEprom - area 7 - DAC) */
m.mmw_fee_addr = 0x61;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
(unsigned char *)&m.mmw_fee_ctrl, 2);
/* Wait until the download is finished */
} /* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
return TRUE;
}
/*------------------------------------------------------------------*/
/*
* Routine to gracefully turn off reception, and wait for any commands
* to complete.
* (called in wv_ru_start() and wavelan_close() and wavelan_event())
*/
static int
wv_ru_stop(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
unsigned long flags;
int status;
int spin;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_ru_stop()\n", dev->name);
#endif
spin_lock_irqsave(&lp->spinlock, flags);
/* First, send the LAN controller a stop receive command */
wv_82593_cmd(dev, "wv_graceful_shutdown(): stop-rcv",
OP0_STOP_RCV, SR0_NO_RESULT);
/* Then, spin until the receive unit goes idle */
spin = 300;
do
{
udelay(10);
outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
status = inb(LCSR(base));
}
while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_IDLE) && (spin-- > 0));
/* Now, spin until the chip finishes executing its current command */
do
{
udelay(10);
outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
status = inb(LCSR(base));
}
while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
spin_unlock_irqrestore(&lp->spinlock, flags);
/* If there was a problem */
if(spin <= 0)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_INFO "%s: wv_ru_stop(): The chip doesn't want to stop...\n",
dev->name);
#endif
return FALSE;
}
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_ru_stop()\n", dev->name);
#endif
return TRUE;
} /* wv_ru_stop */
/*------------------------------------------------------------------*/
/*
* This routine starts the receive unit running. First, it checks if
* the card is actually ready. Then the card is instructed to receive
* packets again.
* (called in wv_hw_reset() & wavelan_open())
*/
static int
wv_ru_start(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
unsigned long flags;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif
/*
* We need to start from a quiescent state. To do so, we could check
* if the card is already running, but instead we just try to shut
* it down. First, we disable reception (in case it was already enabled).
*/
if(!wv_ru_stop(dev))
return FALSE;
spin_lock_irqsave(&lp->spinlock, flags);
/* Now we know that no command is being executed. */
/* Set the receive frame pointer and stop pointer */
lp->rfp = 0;
outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
/* Reset ring management. This sets the receive frame pointer to 1 */
outb(OP1_RESET_RING_MNGMT, LCCR(base));
#if 0
/* XXX the i82593 manual page 6-4 seems to indicate that the stop register
should be set as below */
/* outb(CR1_STOP_REG_UPDATE|((RX_SIZE - 0x40)>> RX_SIZE_SHIFT),LCCR(base));*/
#elif 0
/* but I set it 0 instead */
lp->stop = 0;
#else
/* but I set it to 3 bytes per packet less than 8K */
lp->stop = (0 + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
#endif
outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
outb(OP1_INT_ENABLE, LCCR(base));
outb(OP1_SWIT_TO_PORT_0, LCCR(base));
/* Reset receive DMA pointer */
hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
hacr_write_slow(base, HACR_DEFAULT);
/* Receive DMA on channel 1 */
wv_82593_cmd(dev, "wv_ru_start(): rcv-enable",
CR0_CHNL | OP0_RCV_ENABLE, SR0_NO_RESULT);
#ifdef DEBUG_I82593_SHOW
{
int status;
int opri;
int spin = 10000;
/* spin until the chip starts receiving */
do
{
outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
status = inb(LCSR(base));
if(spin-- <= 0)
break;
}
while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_ACTIVE) &&
((status & SR3_RCV_STATE_MASK) != SR3_RCV_READY));
printk(KERN_DEBUG "rcv status is 0x%x [i:%d]\n",
(status & SR3_RCV_STATE_MASK), i);
}
#endif
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
return TRUE;
}
/*------------------------------------------------------------------*/
/*
* This routine does a standard config of the WaveLAN controller (i82593).
* In the ISA driver, this is integrated in wavelan_hardware_reset()
* (called by wv_hw_config(), wv_82593_reconfig() & wavelan_packet_xmit())
*/
static int
wv_82593_config(struct net_device * dev)
{
kio_addr_t base = dev->base_addr;
net_local * lp = netdev_priv(dev);
struct i82593_conf_block cfblk;
int ret = TRUE;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82593_config()\n", dev->name);
#endif
/* Create & fill i82593 config block
*
* Now conform to Wavelan document WCIN085B
*/
memset(&cfblk, 0x00, sizeof(struct i82593_conf_block));
cfblk.d6mod = FALSE; /* Run in i82593 advanced mode */
cfblk.fifo_limit = 5; /* = 56 B rx and 40 B tx fifo thresholds */
cfblk.forgnesi = FALSE; /* 0=82C501, 1=AMD7992B compatibility */
cfblk.fifo_32 = 1;
cfblk.throttle_enb = FALSE;
cfblk.contin = TRUE; /* enable continuous mode */
cfblk.cntrxint = FALSE; /* enable continuous mode receive interrupts */
cfblk.addr_len = WAVELAN_ADDR_SIZE;
cfblk.acloc = TRUE; /* Disable source addr insertion by i82593 */
cfblk.preamb_len = 0; /* 2 bytes preamble (SFD) */
cfblk.loopback = FALSE;
cfblk.lin_prio = 0; /* conform to 802.3 backoff algorithm */
cfblk.exp_prio = 5; /* conform to 802.3 backoff algorithm */
cfblk.bof_met = 1; /* conform to 802.3 backoff algorithm */
cfblk.ifrm_spc = 0x20 >> 4; /* 32 bit times interframe spacing */
cfblk.slottim_low = 0x20 >> 5; /* 32 bit times slot time */
cfblk.slottim_hi = 0x0;
cfblk.max_retr = 15;
cfblk.prmisc = ((lp->promiscuous) ? TRUE: FALSE); /* Promiscuous mode */
cfblk.bc_dis = FALSE; /* Enable broadcast reception */
cfblk.crs_1 = TRUE; /* Transmit without carrier sense */
cfblk.nocrc_ins = FALSE; /* i82593 generates CRC */
cfblk.crc_1632 = FALSE; /* 32-bit Autodin-II CRC */
cfblk.crs_cdt = FALSE; /* CD not to be interpreted as CS */
cfblk.cs_filter = 0; /* CS is recognized immediately */
cfblk.crs_src = FALSE; /* External carrier sense */
cfblk.cd_filter = 0; /* CD is recognized immediately */
cfblk.min_fr_len = ETH_ZLEN >> 2; /* Minimum frame length 64 bytes */
cfblk.lng_typ = FALSE; /* Length field > 1500 = type field */
cfblk.lng_fld = TRUE; /* Disable 802.3 length field check */
cfblk.rxcrc_xf = TRUE; /* Don't transfer CRC to memory */
cfblk.artx = TRUE; /* Disable automatic retransmission */
cfblk.sarec = TRUE; /* Disable source addr trig of CD */
cfblk.tx_jabber = TRUE; /* Disable jabber jam sequence */
cfblk.hash_1 = FALSE; /* Use bits 0-5 in mc address hash */
cfblk.lbpkpol = TRUE; /* Loopback pin active high */
cfblk.fdx = FALSE; /* Disable full duplex operation */
cfblk.dummy_6 = 0x3f; /* all ones */
cfblk.mult_ia = FALSE; /* No multiple individual addresses */
cfblk.dis_bof = FALSE; /* Disable the backoff algorithm ?! */
cfblk.dummy_1 = TRUE; /* set to 1 */
cfblk.tx_ifs_retrig = 3; /* Hmm... Disabled */
#ifdef MULTICAST_ALL
cfblk.mc_all = (lp->allmulticast ? TRUE: FALSE); /* Allow all multicasts */
#else
cfblk.mc_all = FALSE; /* No multicast all mode */
#endif
cfblk.rcv_mon = 0; /* Monitor mode disabled */
cfblk.frag_acpt = TRUE; /* Do not accept fragments */
cfblk.tstrttrs = FALSE; /* No start transmission threshold */
cfblk.fretx = TRUE; /* FIFO automatic retransmission */
cfblk.syncrqs = FALSE; /* Synchronous DRQ deassertion... */
cfblk.sttlen = TRUE; /* 6 byte status registers */
cfblk.rx_eop = TRUE; /* Signal EOP on packet reception */
cfblk.tx_eop = TRUE; /* Signal EOP on packet transmission */
cfblk.rbuf_size = RX_SIZE>>11; /* Set receive buffer size */
cfblk.rcvstop = TRUE; /* Enable Receive Stop Register */
#ifdef DEBUG_I82593_SHOW
{
u_char *c = (u_char *) &cfblk;
int i;
printk(KERN_DEBUG "wavelan_cs: config block:");
for(i = 0; i < sizeof(struct i82593_conf_block); i++,c++)
{
if((i % 16) == 0) printk("\n" KERN_DEBUG);
printk("%02x ", *c);
}
printk("\n");
}
#endif
/* Copy the config block to the i82593 */
outb(TX_BASE & 0xff, PIORL(base));
outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
outb(sizeof(struct i82593_conf_block) & 0xff, PIOP(base)); /* lsb */
outb(sizeof(struct i82593_conf_block) >> 8, PIOP(base)); /* msb */
outsb(PIOP(base), (char *) &cfblk, sizeof(struct i82593_conf_block));
/* reset transmit DMA pointer */
hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
hacr_write(base, HACR_DEFAULT);
if(!wv_82593_cmd(dev, "wv_82593_config(): configure",
OP0_CONFIGURE, SR0_CONFIGURE_DONE))
ret = FALSE;
/* Initialize adapter's ethernet MAC address */
outb(TX_BASE & 0xff, PIORL(base));
outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
outb(WAVELAN_ADDR_SIZE, PIOP(base)); /* byte count lsb */
outb(0, PIOP(base)); /* byte count msb */
outsb(PIOP(base), &dev->dev_addr[0], WAVELAN_ADDR_SIZE);
/* reset transmit DMA pointer */
hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
hacr_write(base, HACR_DEFAULT);
if(!wv_82593_cmd(dev, "wv_82593_config(): ia-setup",
OP0_IA_SETUP, SR0_IA_SETUP_DONE))
ret = FALSE;
#ifdef WAVELAN_ROAMING
/* If roaming is enabled, join the "Beacon Request" multicast group... */
/* But only if it's not in there already! */
if(do_roaming)
dev_mc_add(dev,WAVELAN_BEACON_ADDRESS, WAVELAN_ADDR_SIZE, 1);
#endif /* WAVELAN_ROAMING */
/* If any multicast address to set */
if(lp->mc_count)
{
struct dev_mc_list * dmi;
int addrs_len = WAVELAN_ADDR_SIZE * lp->mc_count;
#ifdef DEBUG_CONFIG_INFO
DECLARE_MAC_BUF(mac);
printk(KERN_DEBUG "%s: wv_hw_config(): set %d multicast addresses:\n",
dev->name, lp->mc_count);
for(dmi=dev->mc_list; dmi; dmi=dmi->next)
printk(KERN_DEBUG " %s\n",
print_mac(mac, dmi->dmi_addr));
#endif
/* Initialize adapter's ethernet multicast addresses */
outb(TX_BASE & 0xff, PIORL(base));
outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
outb(addrs_len & 0xff, PIOP(base)); /* byte count lsb */
outb((addrs_len >> 8), PIOP(base)); /* byte count msb */
for(dmi=dev->mc_list; dmi; dmi=dmi->next)
outsb(PIOP(base), dmi->dmi_addr, dmi->dmi_addrlen);
/* reset transmit DMA pointer */
hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
hacr_write(base, HACR_DEFAULT);
if(!wv_82593_cmd(dev, "wv_82593_config(): mc-setup",
OP0_MC_SETUP, SR0_MC_SETUP_DONE))
ret = FALSE;
lp->mc_count = dev->mc_count; /* remember to avoid repeated reset */
}
/* Job done, clear the flag */
lp->reconfig_82593 = FALSE;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82593_config()\n", dev->name);
#endif
return(ret);
}
/*------------------------------------------------------------------*/
/*
* Read the Access Configuration Register, perform a software reset,
* and then re-enable the card's software.
*
* If I understand correctly : reset the pcmcia interface of the
* wavelan.
* (called by wv_config())
*/
static inline int
wv_pcmcia_reset(struct net_device * dev)
{
int i;
conf_reg_t reg = { 0, CS_READ, CISREG_COR, 0 };
struct pcmcia_device * link = ((net_local *)netdev_priv(dev))->link;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_pcmcia_reset()\n", dev->name);
#endif
i = pcmcia_access_configuration_register(link, &reg);
if(i != CS_SUCCESS)
{
cs_error(link, AccessConfigurationRegister, i);
return FALSE;
}
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG "%s: wavelan_pcmcia_reset(): Config reg is 0x%x\n",
dev->name, (u_int) reg.Value);
#endif
reg.Action = CS_WRITE;
reg.Value = reg.Value | COR_SW_RESET;
i = pcmcia_access_configuration_register(link, &reg);
if(i != CS_SUCCESS)
{
cs_error(link, AccessConfigurationRegister, i);
return FALSE;
}
reg.Action = CS_WRITE;
reg.Value = COR_LEVEL_IRQ | COR_CONFIG;
i = pcmcia_access_configuration_register(link, &reg);
if(i != CS_SUCCESS)
{
cs_error(link, AccessConfigurationRegister, i);
return FALSE;
}
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_pcmcia_reset()\n", dev->name);
#endif
return TRUE;
}
/*------------------------------------------------------------------*/
/*
* wavelan_hw_config() is called after a CARD_INSERTION event is
* received, to configure the wavelan hardware.
* Note that the reception will be enabled in wavelan->open(), so the
* device is configured but idle...
* Performs the following actions:
* 1. A pcmcia software reset (using wv_pcmcia_reset())
* 2. A power reset (reset DMA)
* 3. Reset the LAN controller
* 4. Initialize the radio modem (using wv_mmc_init)
* 5. Configure LAN controller (using wv_82593_config)
* 6. Perform a diagnostic on the LAN controller
* (called by wavelan_event() & wv_hw_reset())
*/
static int
wv_hw_config(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
kio_addr_t base = dev->base_addr;
unsigned long flags;
int ret = FALSE;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_hw_config()\n", dev->name);
#endif
#ifdef STRUCT_CHECK
if(wv_structuct_check() != (char *) NULL)
{
printk(KERN_WARNING "%s: wv_hw_config: structure/compiler botch: \"%s\"\n",
dev->name, wv_structuct_check());
return FALSE;
}
#endif /* STRUCT_CHECK == 1 */
/* Reset the pcmcia interface */
if(wv_pcmcia_reset(dev) == FALSE)
return FALSE;
/* Disable interrupts */
spin_lock_irqsave(&lp->spinlock, flags);
/* Disguised goto ;-) */
do
{
/* Power UP the module + reset the modem + reset host adapter
* (in fact, reset DMA channels) */
hacr_write_slow(base, HACR_RESET);
hacr_write(base, HACR_DEFAULT);
/* Check if the module has been powered up... */
if(hasr_read(base) & HASR_NO_CLK)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_WARNING "%s: wv_hw_config(): modem not connected or not a wavelan card\n",
dev->name);
#endif
break;
}
/* initialize the modem */
if(wv_mmc_init(dev) == FALSE)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_WARNING "%s: wv_hw_config(): Can't configure the modem\n",
dev->name);
#endif
break;
}
/* reset the LAN controller (i82593) */
outb(OP0_RESET, LCCR(base));
mdelay(1); /* A bit crude ! */
/* Initialize the LAN controller */
if(wv_82593_config(dev) == FALSE)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_INFO "%s: wv_hw_config(): i82593 init failed\n",
dev->name);
#endif
break;
}
/* Diagnostic */
if(wv_diag(dev) == FALSE)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_INFO "%s: wv_hw_config(): i82593 diagnostic failed\n",
dev->name);
#endif
break;
}
/*
* insert code for loopback test here
*/
/* The device is now configured */
lp->configured = 1;
ret = TRUE;
}
while(0);
/* Re-enable interrupts */
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_hw_config()\n", dev->name);
#endif
return(ret);
}
/*------------------------------------------------------------------*/
/*
* Totally reset the wavelan and restart it.
* Performs the following actions:
* 1. Call wv_hw_config()
* 2. Start the LAN controller's receive unit
* (called by wavelan_event(), wavelan_watchdog() and wavelan_open())
*/
static inline void
wv_hw_reset(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_hw_reset()\n", dev->name);
#endif
lp->nresets++;
lp->configured = 0;
/* Call wv_hw_config() for most of the reset & init stuff */
if(wv_hw_config(dev) == FALSE)
return;
/* start receive unit */
wv_ru_start(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* wv_pcmcia_config() is called after a CARD_INSERTION event is
* received, to configure the PCMCIA socket, and to make the ethernet
* device available to the system.
* (called by wavelan_event())
*/
static inline int
wv_pcmcia_config(struct pcmcia_device * link)
{
struct net_device * dev = (struct net_device *) link->priv;
int i;
win_req_t req;
memreq_t mem;
net_local * lp = netdev_priv(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "->wv_pcmcia_config(0x%p)\n", link);
#endif
do
{
i = pcmcia_request_io(link, &link->io);
if(i != CS_SUCCESS)
{
cs_error(link, RequestIO, i);
break;
}
/*
* Now allocate an interrupt line. Note that this does not
* actually assign a handler to the interrupt.
*/
i = pcmcia_request_irq(link, &link->irq);
if(i != CS_SUCCESS)
{
cs_error(link, RequestIRQ, i);
break;
}
/*
* This actually configures the PCMCIA socket -- setting up
* the I/O windows and the interrupt mapping.
*/
link->conf.ConfigIndex = 1;
i = pcmcia_request_configuration(link, &link->conf);
if(i != CS_SUCCESS)
{
cs_error(link, RequestConfiguration, i);
break;
}
/*
* Allocate a small memory window. Note that the struct pcmcia_device
* structure provides space for one window handle -- if your
* device needs several windows, you'll need to keep track of
* the handles in your private data structure, link->priv.
*/
req.Attributes = WIN_DATA_WIDTH_8|WIN_MEMORY_TYPE_AM|WIN_ENABLE;
req.Base = req.Size = 0;
req.AccessSpeed = mem_speed;
i = pcmcia_request_window(&link, &req, &link->win);
if(i != CS_SUCCESS)
{
cs_error(link, RequestWindow, i);
break;
}
lp->mem = ioremap(req.Base, req.Size);
dev->mem_start = (u_long)lp->mem;
dev->mem_end = dev->mem_start + req.Size;
mem.CardOffset = 0; mem.Page = 0;
i = pcmcia_map_mem_page(link->win, &mem);
if(i != CS_SUCCESS)
{
cs_error(link, MapMemPage, i);
break;
}
/* Feed device with this info... */
dev->irq = link->irq.AssignedIRQ;
dev->base_addr = link->io.BasePort1;
netif_start_queue(dev);
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG "wv_pcmcia_config: MEMSTART %p IRQ %d IOPORT 0x%x\n",
lp->mem, dev->irq, (u_int) dev->base_addr);
#endif
SET_NETDEV_DEV(dev, &handle_to_dev(link));
i = register_netdev(dev);
if(i != 0)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_INFO "wv_pcmcia_config(): register_netdev() failed\n");
#endif
break;
}
}
while(0); /* Humm... Disguised goto !!! */
/* If any step failed, release any partially configured state */
if(i != 0)
{
wv_pcmcia_release(link);
return FALSE;
}
strcpy(((net_local *) netdev_priv(dev))->node.dev_name, dev->name);
link->dev_node = &((net_local *) netdev_priv(dev))->node;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "<-wv_pcmcia_config()\n");
#endif
return TRUE;
}
/*------------------------------------------------------------------*/
/*
* After a card is removed, wv_pcmcia_release() will unregister the net
* device, and release the PCMCIA configuration. If the device is
* still open, this will be postponed until it is closed.
*/
static void
wv_pcmcia_release(struct pcmcia_device *link)
{
struct net_device * dev = (struct net_device *) link->priv;
net_local * lp = netdev_priv(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: -> wv_pcmcia_release(0x%p)\n", dev->name, link);
#endif
iounmap(lp->mem);
pcmcia_disable_device(link);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <- wv_pcmcia_release()\n", dev->name);
#endif
}
/************************ INTERRUPT HANDLING ************************/
/*
* This function is the interrupt handler for the WaveLAN card. This
* routine will be called whenever:
* 1. A packet is received.
* 2. A packet has successfully been transferred and the unit is
* ready to transmit another packet.
* 3. A command has completed execution.
*/
static irqreturn_t
wavelan_interrupt(int irq,
void * dev_id)
{
struct net_device * dev = dev_id;
net_local * lp;
kio_addr_t base;
int status0;
u_int tx_status;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif
lp = netdev_priv(dev);
base = dev->base_addr;
#ifdef DEBUG_INTERRUPT_INFO
/* Check state of our spinlock (it should be cleared) */
if(spin_is_locked(&lp->spinlock))
printk(KERN_DEBUG
"%s: wavelan_interrupt(): spinlock is already locked !!!\n",
dev->name);
#endif
/* Prevent reentrancy. We need to do that because we may have
* multiple interrupt handler running concurently.
* It is safe because interrupts are disabled before aquiring
* the spinlock. */
spin_lock(&lp->spinlock);
/* Treat all pending interrupts */
while(1)
{
/* ---------------- INTERRUPT CHECKING ---------------- */
/*
* Look for the interrupt and verify the validity
*/
outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
status0 = inb(LCSR(base));
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG "status0 0x%x [%s => 0x%x]", status0,
(status0&SR0_INTERRUPT)?"int":"no int",status0&~SR0_INTERRUPT);
if(status0&SR0_INTERRUPT)
{
printk(" [%s => %d]\n", (status0 & SR0_CHNL) ? "chnl" :
((status0 & SR0_EXECUTION) ? "cmd" :
((status0 & SR0_RECEPTION) ? "recv" : "unknown")),
(status0 & SR0_EVENT_MASK));
}
else
printk("\n");
#endif
/* Return if no actual interrupt from i82593 (normal exit) */
if(!(status0 & SR0_INTERRUPT))
break;
/* If interrupt is both Rx and Tx or none...
* This code in fact is there to catch the spurious interrupt
* when you remove the wavelan pcmcia card from the socket */
if(((status0 & SR0_BOTH_RX_TX) == SR0_BOTH_RX_TX) ||
((status0 & SR0_BOTH_RX_TX) == 0x0))
{
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_INFO "%s: wv_interrupt(): bogus interrupt (or from dead card) : %X\n",
dev->name, status0);
#endif
/* Acknowledge the interrupt */
outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
break;
}
/* ----------------- RECEIVING PACKET ----------------- */
/*
* When the wavelan signal the reception of a new packet,
* we call wv_packet_rcv() to copy if from the buffer and
* send it to NET3
*/
if(status0 & SR0_RECEPTION)
{
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG "%s: wv_interrupt(): receive\n", dev->name);
#endif
if((status0 & SR0_EVENT_MASK) == SR0_STOP_REG_HIT)
{
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "%s: wv_interrupt(): receive buffer overflow\n",
dev->name);
#endif
lp->stats.rx_over_errors++;
lp->overrunning = 1;
}
/* Get the packet */
wv_packet_rcv(dev);
lp->overrunning = 0;
/* Acknowledge the interrupt */
outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
continue;
}
/* ---------------- COMMAND COMPLETION ---------------- */
/*
* Interrupts issued when the i82593 has completed a command.
* Most likely : transmission done
*/
/* If a transmission has been done */
if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_DONE ||
(status0 & SR0_EVENT_MASK) == SR0_RETRANSMIT_DONE ||
(status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
{
#ifdef DEBUG_TX_ERROR
if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
printk(KERN_INFO "%s: wv_interrupt(): packet transmitted without CRC.\n",
dev->name);
#endif
/* Get transmission status */
tx_status = inb(LCSR(base));
tx_status |= (inb(LCSR(base)) << 8);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG "%s: wv_interrupt(): transmission done\n",
dev->name);
{
u_int rcv_bytes;
u_char status3;
rcv_bytes = inb(LCSR(base));
rcv_bytes |= (inb(LCSR(base)) << 8);
status3 = inb(LCSR(base));
printk(KERN_DEBUG "tx_status 0x%02x rcv_bytes 0x%02x status3 0x%x\n",
tx_status, rcv_bytes, (u_int) status3);
}
#endif
/* Check for possible errors */
if((tx_status & TX_OK) != TX_OK)
{
lp->stats.tx_errors++;
if(tx_status & TX_FRTL)
{
#ifdef DEBUG_TX_ERROR
printk(KERN_INFO "%s: wv_interrupt(): frame too long\n",
dev->name);
#endif
}
if(tx_status & TX_UND_RUN)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): DMA underrun\n",
dev->name);
#endif
lp->stats.tx_aborted_errors++;
}
if(tx_status & TX_LOST_CTS)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): no CTS\n", dev->name);
#endif
lp->stats.tx_carrier_errors++;
}
if(tx_status & TX_LOST_CRS)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): no carrier\n",
dev->name);
#endif
lp->stats.tx_carrier_errors++;
}
if(tx_status & TX_HRT_BEAT)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): heart beat\n", dev->name);
#endif
lp->stats.tx_heartbeat_errors++;
}
if(tx_status & TX_DEFER)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): channel jammed\n",
dev->name);
#endif
}
/* Ignore late collisions since they're more likely to happen
* here (the WaveLAN design prevents the LAN controller from
* receiving while it is transmitting). We take action only when
* the maximum retransmit attempts is exceeded.
*/
if(tx_status & TX_COLL)
{
if(tx_status & TX_MAX_COL)
{
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG "%s: wv_interrupt(): channel congestion\n",
dev->name);
#endif
if(!(tx_status & TX_NCOL_MASK))
{
lp->stats.collisions += 0x10;
}
}
}
} /* if(!(tx_status & TX_OK)) */
lp->stats.collisions += (tx_status & TX_NCOL_MASK);
lp->stats.tx_packets++;
netif_wake_queue(dev);
outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
}
else /* if interrupt = transmit done or retransmit done */
{
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "wavelan_cs: unknown interrupt, status0 = %02x\n",
status0);
#endif
outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
}
} /* while(1) */
spin_unlock(&lp->spinlock);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
/* We always return IRQ_HANDLED, because we will receive empty
* interrupts under normal operations. Anyway, it doesn't matter
* as we are dealing with an ISA interrupt that can't be shared.
*
* Explanation : under heavy receive, the following happens :
* ->wavelan_interrupt()
* (status0 & SR0_INTERRUPT) != 0
* ->wv_packet_rcv()
* (status0 & SR0_INTERRUPT) != 0
* ->wv_packet_rcv()
* (status0 & SR0_INTERRUPT) == 0 // i.e. no more event
* <-wavelan_interrupt()
* ->wavelan_interrupt()
* (status0 & SR0_INTERRUPT) == 0 // i.e. empty interrupt
* <-wavelan_interrupt()
* Jean II */
return IRQ_HANDLED;
} /* wv_interrupt */
/*------------------------------------------------------------------*/
/*
* Watchdog: when we start a transmission, a timer is set for us in the
* kernel. If the transmission completes, this timer is disabled. If
* the timer expires, we are called and we try to unlock the hardware.
*
* Note : This watchdog is move clever than the one in the ISA driver,
* because it try to abort the current command before reseting
* everything...
* On the other hand, it's a bit simpler, because we don't have to
* deal with the multiple Tx buffers...
*/
static void
wavelan_watchdog(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
kio_addr_t base = dev->base_addr;
unsigned long flags;
int aborted = FALSE;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
dev->name);
#endif
spin_lock_irqsave(&lp->spinlock, flags);
/* Ask to abort the current command */
outb(OP0_ABORT, LCCR(base));
/* Wait for the end of the command (a bit hackish) */
if(wv_82593_cmd(dev, "wavelan_watchdog(): abort",
OP0_NOP | CR0_STATUS_3, SR0_EXECUTION_ABORTED))
aborted = TRUE;
/* Release spinlock here so that wv_hw_reset() can grab it */
spin_unlock_irqrestore(&lp->spinlock, flags);
/* Check if we were successful in aborting it */
if(!aborted)
{
/* It seem that it wasn't enough */
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "%s: wavelan_watchdog: abort failed, trying reset\n",
dev->name);
#endif
wv_hw_reset(dev);
}
#ifdef DEBUG_PSA_SHOW
{
psa_t psa;
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
wv_psa_show(&psa);
}
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82593_SHOW
wv_ru_show(dev);
#endif
/* We are no more waiting for something... */
netif_wake_queue(dev);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}
/********************* CONFIGURATION CALLBACKS *********************/
/*
* Here are the functions called by the pcmcia package (cardmgr) and
* linux networking (NET3) for initialization, configuration and
* deinstallations of the Wavelan Pcmcia Hardware.
*/
/*------------------------------------------------------------------*/
/*
* Configure and start up the WaveLAN PCMCIA adaptor.
* Called by NET3 when it "open" the device.
*/
static int
wavelan_open(struct net_device * dev)
{
net_local * lp = netdev_priv(dev);
struct pcmcia_device * link = lp->link;
kio_addr_t base = dev->base_addr;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* Check if the modem is powered up (wavelan_close() power it down */
if(hasr_read(base) & HASR_NO_CLK)
{
/* Power up (power up time is 250us) */
hacr_write(base, HACR_DEFAULT);
/* Check if the module has been powered up... */
if(hasr_read(base) & HASR_NO_CLK)
{
#ifdef DEBUG_CONFIG_ERRORS
printk(KERN_WARNING "%s: wavelan_open(): modem not connected\n",
dev->name);
#endif
return FALSE;
}
}
/* Start reception and declare the driver ready */
if(!lp->configured)
return FALSE;
if(!wv_ru_start(dev))
wv_hw_reset(dev); /* If problem : reset */
netif_start_queue(dev);
/* Mark the device as used */
link->open++;
#ifdef WAVELAN_ROAMING
if(do_roaming)
wv_roam_init(dev);
#endif /* WAVELAN_ROAMING */
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Shutdown the WaveLAN PCMCIA adaptor.
* Called by NET3 when it "close" the device.
*/
static int
wavelan_close(struct net_device * dev)
{
struct pcmcia_device * link = ((net_local *)netdev_priv(dev))->link;
kio_addr_t base = dev->base_addr;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* If the device isn't open, then nothing to do */
if(!link->open)
{
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG "%s: wavelan_close(): device not open\n", dev->name);
#endif
return 0;
}
#ifdef WAVELAN_ROAMING
/* Cleanup of roaming stuff... */
if(do_roaming)
wv_roam_cleanup(dev);
#endif /* WAVELAN_ROAMING */
link->open--;
/* If the card is still present */
if(netif_running(dev))
{
netif_stop_queue(dev);
/* Stop receiving new messages and wait end of transmission */
wv_ru_stop(dev);
/* Power down the module */
hacr_write(base, HACR_DEFAULT & (~HACR_PWR_STAT));
}
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* wavelan_attach() creates an "instance" of the driver, allocating
* local data structures for one device (one interface). The device
* is registered with Card Services.
*
* The dev_link structure is initialized, but we don't actually
* configure the card at this point -- we wait until we receive a
* card insertion event.
*/
static int
wavelan_probe(struct pcmcia_device *p_dev)
{
struct net_device * dev; /* Interface generic data */
net_local * lp; /* Interface specific data */
int ret;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "-> wavelan_attach()\n");
#endif
/* The io structure describes IO port mapping */
p_dev->io.NumPorts1 = 8;
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
p_dev->io.IOAddrLines = 3;
/* Interrupt setup */
p_dev->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
p_dev->irq.IRQInfo1 = IRQ_LEVEL_ID;
p_dev->irq.Handler = wavelan_interrupt;
/* General socket configuration */
p_dev->conf.Attributes = CONF_ENABLE_IRQ;
p_dev->conf.IntType = INT_MEMORY_AND_IO;
/* Allocate the generic data structure */
dev = alloc_etherdev(sizeof(net_local));
if (!dev)
return -ENOMEM;
p_dev->priv = p_dev->irq.Instance = dev;
lp = netdev_priv(dev);
/* Init specific data */
lp->configured = 0;
lp->reconfig_82593 = FALSE;
lp->nresets = 0;
/* Multicast stuff */
lp->promiscuous = 0;
lp->allmulticast = 0;
lp->mc_count = 0;
/* Init spinlock */
spin_lock_init(&lp->spinlock);
/* back links */
lp->dev = dev;
/* wavelan NET3 callbacks */
dev->open = &wavelan_open;
dev->stop = &wavelan_close;
dev->hard_start_xmit = &wavelan_packet_xmit;
dev->get_stats = &wavelan_get_stats;
dev->set_multicast_list = &wavelan_set_multicast_list;
#ifdef SET_MAC_ADDRESS
dev->set_mac_address = &wavelan_set_mac_address;
#endif /* SET_MAC_ADDRESS */
/* Set the watchdog timer */
dev->tx_timeout = &wavelan_watchdog;
dev->watchdog_timeo = WATCHDOG_JIFFIES;
SET_ETHTOOL_OPS(dev, &ops);
dev->wireless_handlers = &wavelan_handler_def;
lp->wireless_data.spy_data = &lp->spy_data;
dev->wireless_data = &lp->wireless_data;
/* Other specific data */
dev->mtu = WAVELAN_MTU;
ret = wv_pcmcia_config(p_dev);
if (ret)
return ret;
ret = wv_hw_config(dev);
if (ret) {
dev->irq = 0;
pcmcia_disable_device(p_dev);
return ret;
}
wv_init_info(dev);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "<- wavelan_attach()\n");
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This deletes a driver "instance". The device is de-registered with
* Card Services. If it has been released, all local data structures
* are freed. Otherwise, the structures will be freed when the device
* is released.
*/
static void
wavelan_detach(struct pcmcia_device *link)
{
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "-> wavelan_detach(0x%p)\n", link);
#endif
/* Some others haven't done their job : give them another chance */
wv_pcmcia_release(link);
/* Free pieces */
if(link->priv)
{
struct net_device * dev = (struct net_device *) link->priv;
/* Remove ourselves from the kernel list of ethernet devices */
/* Warning : can't be called from interrupt, timer or wavelan_close() */
if (link->dev_node)
unregister_netdev(dev);
link->dev_node = NULL;
((net_local *)netdev_priv(dev))->link = NULL;
((net_local *)netdev_priv(dev))->dev = NULL;
free_netdev(dev);
}
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "<- wavelan_detach()\n");
#endif
}
static int wavelan_suspend(struct pcmcia_device *link)
{
struct net_device * dev = (struct net_device *) link->priv;
/* NB: wavelan_close will be called, but too late, so we are
* obliged to close nicely the wavelan here. David, could you
* close the device before suspending them ? And, by the way,
* could you, on resume, add a "route add -net ..." after the
* ifconfig up ? Thanks... */
/* Stop receiving new messages and wait end of transmission */
wv_ru_stop(dev);
if (link->open)
netif_device_detach(dev);
/* Power down the module */
hacr_write(dev->base_addr, HACR_DEFAULT & (~HACR_PWR_STAT));
return 0;
}
static int wavelan_resume(struct pcmcia_device *link)
{
struct net_device * dev = (struct net_device *) link->priv;
if (link->open) {
wv_hw_reset(dev);
netif_device_attach(dev);
}
return 0;
}
static struct pcmcia_device_id wavelan_ids[] = {
PCMCIA_DEVICE_PROD_ID12("AT&T","WaveLAN/PCMCIA", 0xe7c5affd, 0x1bc50975),
PCMCIA_DEVICE_PROD_ID12("Digital", "RoamAbout/DS", 0x9999ab35, 0x00d05e06),
PCMCIA_DEVICE_PROD_ID12("Lucent Technologies", "WaveLAN/PCMCIA", 0x23eb9949, 0x1bc50975),
PCMCIA_DEVICE_PROD_ID12("NCR", "WaveLAN/PCMCIA", 0x24358cd4, 0x1bc50975),
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, wavelan_ids);
static struct pcmcia_driver wavelan_driver = {
.owner = THIS_MODULE,
.drv = {
.name = "wavelan_cs",
},
.probe = wavelan_probe,
.remove = wavelan_detach,
.id_table = wavelan_ids,
.suspend = wavelan_suspend,
.resume = wavelan_resume,
};
static int __init
init_wavelan_cs(void)
{
return pcmcia_register_driver(&wavelan_driver);
}
static void __exit
exit_wavelan_cs(void)
{
pcmcia_unregister_driver(&wavelan_driver);
}
module_init(init_wavelan_cs);
module_exit(exit_wavelan_cs);