linux_old1/drivers/ide/ide-iops.c

1209 lines
31 KiB
C

/*
* Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2003 Red Hat
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/blkpg.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/bitops.h>
#include <linux/nmi.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/*
* Conventional PIO operations for ATA devices
*/
static u8 ide_inb (unsigned long port)
{
return (u8) inb(port);
}
static void ide_outb (u8 val, unsigned long port)
{
outb(val, port);
}
/*
* MMIO operations, typically used for SATA controllers
*/
static u8 ide_mm_inb (unsigned long port)
{
return (u8) readb((void __iomem *) port);
}
static void ide_mm_outb (u8 value, unsigned long port)
{
writeb(value, (void __iomem *) port);
}
void SELECT_DRIVE (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_port_ops *port_ops = hwif->port_ops;
ide_task_t task;
if (port_ops && port_ops->selectproc)
port_ops->selectproc(drive);
memset(&task, 0, sizeof(task));
task.tf_flags = IDE_TFLAG_OUT_DEVICE;
drive->hwif->tp_ops->tf_load(drive, &task);
}
void SELECT_MASK(ide_drive_t *drive, int mask)
{
const struct ide_port_ops *port_ops = drive->hwif->port_ops;
if (port_ops && port_ops->maskproc)
port_ops->maskproc(drive, mask);
}
void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
{
if (hwif->host_flags & IDE_HFLAG_MMIO)
writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
else
outb(cmd, hwif->io_ports.command_addr);
}
EXPORT_SYMBOL_GPL(ide_exec_command);
u8 ide_read_status(ide_hwif_t *hwif)
{
if (hwif->host_flags & IDE_HFLAG_MMIO)
return readb((void __iomem *)hwif->io_ports.status_addr);
else
return inb(hwif->io_ports.status_addr);
}
EXPORT_SYMBOL_GPL(ide_read_status);
u8 ide_read_altstatus(ide_hwif_t *hwif)
{
if (hwif->host_flags & IDE_HFLAG_MMIO)
return readb((void __iomem *)hwif->io_ports.ctl_addr);
else
return inb(hwif->io_ports.ctl_addr);
}
EXPORT_SYMBOL_GPL(ide_read_altstatus);
void ide_set_irq(ide_hwif_t *hwif, int on)
{
u8 ctl = ATA_DEVCTL_OBS;
if (on == 4) { /* hack for SRST */
ctl |= 4;
on &= ~4;
}
ctl |= on ? 0 : 2;
if (hwif->host_flags & IDE_HFLAG_MMIO)
writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
else
outb(ctl, hwif->io_ports.ctl_addr);
}
EXPORT_SYMBOL_GPL(ide_set_irq);
void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
struct ide_taskfile *tf = &task->tf;
void (*tf_outb)(u8 addr, unsigned long port);
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
if (mmio)
tf_outb = ide_mm_outb;
else
tf_outb = ide_outb;
if (task->tf_flags & IDE_TFLAG_FLAGGED)
HIHI = 0xFF;
if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
u16 data = (tf->hob_data << 8) | tf->data;
if (mmio)
writew(data, (void __iomem *)io_ports->data_addr);
else
outw(data, io_ports->data_addr);
}
if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
tf_outb(tf->hob_feature, io_ports->feature_addr);
if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
tf_outb(tf->hob_nsect, io_ports->nsect_addr);
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
tf_outb(tf->hob_lbal, io_ports->lbal_addr);
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
tf_outb(tf->hob_lbam, io_ports->lbam_addr);
if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
tf_outb(tf->hob_lbah, io_ports->lbah_addr);
if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
tf_outb(tf->feature, io_ports->feature_addr);
if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
tf_outb(tf->nsect, io_ports->nsect_addr);
if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
tf_outb(tf->lbal, io_ports->lbal_addr);
if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
tf_outb(tf->lbam, io_ports->lbam_addr);
if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
tf_outb(tf->lbah, io_ports->lbah_addr);
if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
tf_outb((tf->device & HIHI) | drive->select,
io_ports->device_addr);
}
EXPORT_SYMBOL_GPL(ide_tf_load);
void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
struct ide_taskfile *tf = &task->tf;
void (*tf_outb)(u8 addr, unsigned long port);
u8 (*tf_inb)(unsigned long port);
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
if (mmio) {
tf_outb = ide_mm_outb;
tf_inb = ide_mm_inb;
} else {
tf_outb = ide_outb;
tf_inb = ide_inb;
}
if (task->tf_flags & IDE_TFLAG_IN_DATA) {
u16 data;
if (mmio)
data = readw((void __iomem *)io_ports->data_addr);
else
data = inw(io_ports->data_addr);
tf->data = data & 0xff;
tf->hob_data = (data >> 8) & 0xff;
}
/* be sure we're looking at the low order bits */
tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
tf->feature = tf_inb(io_ports->feature_addr);
if (task->tf_flags & IDE_TFLAG_IN_NSECT)
tf->nsect = tf_inb(io_ports->nsect_addr);
if (task->tf_flags & IDE_TFLAG_IN_LBAL)
tf->lbal = tf_inb(io_ports->lbal_addr);
if (task->tf_flags & IDE_TFLAG_IN_LBAM)
tf->lbam = tf_inb(io_ports->lbam_addr);
if (task->tf_flags & IDE_TFLAG_IN_LBAH)
tf->lbah = tf_inb(io_ports->lbah_addr);
if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
tf->device = tf_inb(io_ports->device_addr);
if (task->tf_flags & IDE_TFLAG_LBA48) {
tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
tf->hob_feature = tf_inb(io_ports->feature_addr);
if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
tf->hob_nsect = tf_inb(io_ports->nsect_addr);
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
tf->hob_lbal = tf_inb(io_ports->lbal_addr);
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
tf->hob_lbam = tf_inb(io_ports->lbam_addr);
if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
tf->hob_lbah = tf_inb(io_ports->lbah_addr);
}
}
EXPORT_SYMBOL_GPL(ide_tf_read);
/*
* Some localbus EIDE interfaces require a special access sequence
* when using 32-bit I/O instructions to transfer data. We call this
* the "vlb_sync" sequence, which consists of three successive reads
* of the sector count register location, with interrupts disabled
* to ensure that the reads all happen together.
*/
static void ata_vlb_sync(unsigned long port)
{
(void)inb(port);
(void)inb(port);
(void)inb(port);
}
/*
* This is used for most PIO data transfers *from* the IDE interface
*
* These routines will round up any request for an odd number of bytes,
* so if an odd len is specified, be sure that there's at least one
* extra byte allocated for the buffer.
*/
void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
unsigned int len)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
unsigned long data_addr = io_ports->data_addr;
u8 io_32bit = drive->io_32bit;
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
len++;
if (io_32bit) {
unsigned long uninitialized_var(flags);
if ((io_32bit & 2) && !mmio) {
local_irq_save(flags);
ata_vlb_sync(io_ports->nsect_addr);
}
if (mmio)
__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
else
insl(data_addr, buf, len / 4);
if ((io_32bit & 2) && !mmio)
local_irq_restore(flags);
if ((len & 3) >= 2) {
if (mmio)
__ide_mm_insw((void __iomem *)data_addr,
(u8 *)buf + (len & ~3), 1);
else
insw(data_addr, (u8 *)buf + (len & ~3), 1);
}
} else {
if (mmio)
__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
else
insw(data_addr, buf, len / 2);
}
}
EXPORT_SYMBOL_GPL(ide_input_data);
/*
* This is used for most PIO data transfers *to* the IDE interface
*/
void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
unsigned int len)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
unsigned long data_addr = io_ports->data_addr;
u8 io_32bit = drive->io_32bit;
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
if (io_32bit) {
unsigned long uninitialized_var(flags);
if ((io_32bit & 2) && !mmio) {
local_irq_save(flags);
ata_vlb_sync(io_ports->nsect_addr);
}
if (mmio)
__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
else
outsl(data_addr, buf, len / 4);
if ((io_32bit & 2) && !mmio)
local_irq_restore(flags);
if ((len & 3) >= 2) {
if (mmio)
__ide_mm_outsw((void __iomem *)data_addr,
(u8 *)buf + (len & ~3), 1);
else
outsw(data_addr, (u8 *)buf + (len & ~3), 1);
}
} else {
if (mmio)
__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
else
outsw(data_addr, buf, len / 2);
}
}
EXPORT_SYMBOL_GPL(ide_output_data);
u8 ide_read_error(ide_drive_t *drive)
{
ide_task_t task;
memset(&task, 0, sizeof(task));
task.tf_flags = IDE_TFLAG_IN_FEATURE;
drive->hwif->tp_ops->tf_read(drive, &task);
return task.tf.error;
}
EXPORT_SYMBOL_GPL(ide_read_error);
void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
{
ide_task_t task;
memset(&task, 0, sizeof(task));
task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
IDE_TFLAG_IN_NSECT;
drive->hwif->tp_ops->tf_read(drive, &task);
*bcount = (task.tf.lbah << 8) | task.tf.lbam;
*ireason = task.tf.nsect & 3;
}
EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
const struct ide_tp_ops default_tp_ops = {
.exec_command = ide_exec_command,
.read_status = ide_read_status,
.read_altstatus = ide_read_altstatus,
.set_irq = ide_set_irq,
.tf_load = ide_tf_load,
.tf_read = ide_tf_read,
.input_data = ide_input_data,
.output_data = ide_output_data,
};
void ide_fix_driveid(u16 *id)
{
#ifndef __LITTLE_ENDIAN
# ifdef __BIG_ENDIAN
int i;
for (i = 0; i < 256; i++)
id[i] = __le16_to_cpu(id[i]);
# else
# error "Please fix <asm/byteorder.h>"
# endif
#endif
}
/*
* ide_fixstring() cleans up and (optionally) byte-swaps a text string,
* removing leading/trailing blanks and compressing internal blanks.
* It is primarily used to tidy up the model name/number fields as
* returned by the ATA_CMD_ID_ATA[PI] commands.
*/
void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
{
u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
if (byteswap) {
/* convert from big-endian to host byte order */
for (p = s ; p != end ; p += 2)
be16_to_cpus((u16 *) p);
}
/* strip leading blanks */
p = s;
while (s != end && *s == ' ')
++s;
/* compress internal blanks and strip trailing blanks */
while (s != end && *s) {
if (*s++ != ' ' || (s != end && *s && *s != ' '))
*p++ = *(s-1);
}
/* wipe out trailing garbage */
while (p != end)
*p++ = '\0';
}
EXPORT_SYMBOL(ide_fixstring);
/*
* Needed for PCI irq sharing
*/
int drive_is_ready (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 stat = 0;
if (drive->waiting_for_dma)
return hwif->dma_ops->dma_test_irq(drive);
/*
* We do a passive status test under shared PCI interrupts on
* cards that truly share the ATA side interrupt, but may also share
* an interrupt with another pci card/device. We make no assumptions
* about possible isa-pnp and pci-pnp issues yet.
*/
if (hwif->io_ports.ctl_addr &&
(hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
stat = hwif->tp_ops->read_altstatus(hwif);
else
/* Note: this may clear a pending IRQ!! */
stat = hwif->tp_ops->read_status(hwif);
if (stat & ATA_BUSY)
/* drive busy: definitely not interrupting */
return 0;
/* drive ready: *might* be interrupting */
return 1;
}
EXPORT_SYMBOL(drive_is_ready);
/*
* This routine busy-waits for the drive status to be not "busy".
* It then checks the status for all of the "good" bits and none
* of the "bad" bits, and if all is okay it returns 0. All other
* cases return error -- caller may then invoke ide_error().
*
* This routine should get fixed to not hog the cpu during extra long waits..
* That could be done by busy-waiting for the first jiffy or two, and then
* setting a timer to wake up at half second intervals thereafter,
* until timeout is achieved, before timing out.
*/
static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
unsigned long flags;
int i;
u8 stat;
udelay(1); /* spec allows drive 400ns to assert "BUSY" */
stat = tp_ops->read_status(hwif);
if (stat & ATA_BUSY) {
local_irq_save(flags);
local_irq_enable_in_hardirq();
timeout += jiffies;
while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
if (time_after(jiffies, timeout)) {
/*
* One last read after the timeout in case
* heavy interrupt load made us not make any
* progress during the timeout..
*/
stat = tp_ops->read_status(hwif);
if ((stat & ATA_BUSY) == 0)
break;
local_irq_restore(flags);
*rstat = stat;
return -EBUSY;
}
}
local_irq_restore(flags);
}
/*
* Allow status to settle, then read it again.
* A few rare drives vastly violate the 400ns spec here,
* so we'll wait up to 10usec for a "good" status
* rather than expensively fail things immediately.
* This fix courtesy of Matthew Faupel & Niccolo Rigacci.
*/
for (i = 0; i < 10; i++) {
udelay(1);
stat = tp_ops->read_status(hwif);
if (OK_STAT(stat, good, bad)) {
*rstat = stat;
return 0;
}
}
*rstat = stat;
return -EFAULT;
}
/*
* In case of error returns error value after doing "*startstop = ide_error()".
* The caller should return the updated value of "startstop" in this case,
* "startstop" is unchanged when the function returns 0.
*/
int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
{
int err;
u8 stat;
/* bail early if we've exceeded max_failures */
if (drive->max_failures && (drive->failures > drive->max_failures)) {
*startstop = ide_stopped;
return 1;
}
err = __ide_wait_stat(drive, good, bad, timeout, &stat);
if (err) {
char *s = (err == -EBUSY) ? "status timeout" : "status error";
*startstop = ide_error(drive, s, stat);
}
return err;
}
EXPORT_SYMBOL(ide_wait_stat);
/**
* ide_in_drive_list - look for drive in black/white list
* @id: drive identifier
* @table: list to inspect
*
* Look for a drive in the blacklist and the whitelist tables
* Returns 1 if the drive is found in the table.
*/
int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
{
for ( ; table->id_model; table++)
if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
(!table->id_firmware ||
strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(ide_in_drive_list);
/*
* Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
* We list them here and depend on the device side cable detection for them.
*
* Some optical devices with the buggy firmwares have the same problem.
*/
static const struct drive_list_entry ivb_list[] = {
{ "QUANTUM FIREBALLlct10 05" , "A03.0900" },
{ "TSSTcorp CDDVDW SH-S202J" , "SB00" },
{ "TSSTcorp CDDVDW SH-S202J" , "SB01" },
{ "TSSTcorp CDDVDW SH-S202N" , "SB00" },
{ "TSSTcorp CDDVDW SH-S202N" , "SB01" },
{ "TSSTcorp CDDVDW SH-S202H" , "SB00" },
{ "TSSTcorp CDDVDW SH-S202H" , "SB01" },
{ "SAMSUNG SP0822N" , "WA100-10" },
{ NULL , NULL }
};
/*
* All hosts that use the 80c ribbon must use!
* The name is derived from upper byte of word 93 and the 80c ribbon.
*/
u8 eighty_ninty_three (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u16 *id = drive->id;
int ivb = ide_in_drive_list(id, ivb_list);
if (hwif->cbl == ATA_CBL_PATA40_SHORT)
return 1;
if (ivb)
printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
drive->name);
if (ata_id_is_sata(id) && !ivb)
return 1;
if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
goto no_80w;
/*
* FIXME:
* - change master/slave IDENTIFY order
* - force bit13 (80c cable present) check also for !ivb devices
* (unless the slave device is pre-ATA3)
*/
if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
(ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
return 1;
no_80w:
if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
return 0;
printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
"limiting max speed to UDMA33\n",
drive->name,
hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
return 0;
}
int ide_driveid_update(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
u16 *id;
unsigned long flags;
u8 stat;
/*
* Re-read drive->id for possible DMA mode
* change (copied from ide-probe.c)
*/
SELECT_MASK(drive, 1);
tp_ops->set_irq(hwif, 0);
msleep(50);
tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
SELECT_MASK(drive, 0);
return 0;
}
msleep(50); /* wait for IRQ and ATA_DRQ */
stat = tp_ops->read_status(hwif);
if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
SELECT_MASK(drive, 0);
printk("%s: CHECK for good STATUS\n", drive->name);
return 0;
}
local_irq_save(flags);
SELECT_MASK(drive, 0);
id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
if (!id) {
local_irq_restore(flags);
return 0;
}
tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
(void)tp_ops->read_status(hwif); /* clear drive IRQ */
local_irq_enable();
local_irq_restore(flags);
ide_fix_driveid(id);
drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
/* anything more ? */
kfree(id);
if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
ide_dma_off(drive);
return 1;
}
int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
u16 *id = drive->id, i;
int error = 0;
u8 stat;
ide_task_t task;
#ifdef CONFIG_BLK_DEV_IDEDMA
if (hwif->dma_ops) /* check if host supports DMA */
hwif->dma_ops->dma_host_set(drive, 0);
#endif
/* Skip setting PIO flow-control modes on pre-EIDE drives */
if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
goto skip;
/*
* Don't use ide_wait_cmd here - it will
* attempt to set_geometry and recalibrate,
* but for some reason these don't work at
* this point (lost interrupt).
*/
/*
* Select the drive, and issue the SETFEATURES command
*/
disable_irq_nosync(hwif->irq);
/*
* FIXME: we race against the running IRQ here if
* this is called from non IRQ context. If we use
* disable_irq() we hang on the error path. Work
* is needed.
*/
udelay(1);
SELECT_DRIVE(drive);
SELECT_MASK(drive, 1);
udelay(1);
tp_ops->set_irq(hwif, 0);
memset(&task, 0, sizeof(task));
task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
task.tf.feature = SETFEATURES_XFER;
task.tf.nsect = speed;
tp_ops->tf_load(drive, &task);
tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
if (drive->quirk_list == 2)
tp_ops->set_irq(hwif, 1);
error = __ide_wait_stat(drive, drive->ready_stat,
ATA_BUSY | ATA_DRQ | ATA_ERR,
WAIT_CMD, &stat);
SELECT_MASK(drive, 0);
enable_irq(hwif->irq);
if (error) {
(void) ide_dump_status(drive, "set_drive_speed_status", stat);
return error;
}
id[ATA_ID_UDMA_MODES] &= ~0xFF00;
id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
skip:
#ifdef CONFIG_BLK_DEV_IDEDMA
if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
hwif->dma_ops->dma_host_set(drive, 1);
else if (hwif->dma_ops) /* check if host supports DMA */
ide_dma_off_quietly(drive);
#endif
if (speed >= XFER_UDMA_0) {
i = 1 << (speed - XFER_UDMA_0);
id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
} else if (speed >= XFER_MW_DMA_0) {
i = 1 << (speed - XFER_MW_DMA_0);
id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
} else if (speed >= XFER_SW_DMA_0) {
i = 1 << (speed - XFER_SW_DMA_0);
id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
}
if (!drive->init_speed)
drive->init_speed = speed;
drive->current_speed = speed;
return error;
}
/*
* This should get invoked any time we exit the driver to
* wait for an interrupt response from a drive. handler() points
* at the appropriate code to handle the next interrupt, and a
* timer is started to prevent us from waiting forever in case
* something goes wrong (see the ide_timer_expiry() handler later on).
*
* See also ide_execute_command
*/
static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
unsigned int timeout, ide_expiry_t *expiry)
{
ide_hwif_t *hwif = drive->hwif;
BUG_ON(hwif->handler);
hwif->handler = handler;
hwif->expiry = expiry;
hwif->timer.expires = jiffies + timeout;
hwif->req_gen_timer = hwif->req_gen;
add_timer(&hwif->timer);
}
void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
unsigned int timeout, ide_expiry_t *expiry)
{
ide_hwif_t *hwif = drive->hwif;
unsigned long flags;
spin_lock_irqsave(&hwif->lock, flags);
__ide_set_handler(drive, handler, timeout, expiry);
spin_unlock_irqrestore(&hwif->lock, flags);
}
EXPORT_SYMBOL(ide_set_handler);
/**
* ide_execute_command - execute an IDE command
* @drive: IDE drive to issue the command against
* @command: command byte to write
* @handler: handler for next phase
* @timeout: timeout for command
* @expiry: handler to run on timeout
*
* Helper function to issue an IDE command. This handles the
* atomicity requirements, command timing and ensures that the
* handler and IRQ setup do not race. All IDE command kick off
* should go via this function or do equivalent locking.
*/
void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
unsigned timeout, ide_expiry_t *expiry)
{
ide_hwif_t *hwif = drive->hwif;
unsigned long flags;
spin_lock_irqsave(&hwif->lock, flags);
__ide_set_handler(drive, handler, timeout, expiry);
hwif->tp_ops->exec_command(hwif, cmd);
/*
* Drive takes 400nS to respond, we must avoid the IRQ being
* serviced before that.
*
* FIXME: we could skip this delay with care on non shared devices
*/
ndelay(400);
spin_unlock_irqrestore(&hwif->lock, flags);
}
EXPORT_SYMBOL(ide_execute_command);
void ide_execute_pkt_cmd(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
unsigned long flags;
spin_lock_irqsave(&hwif->lock, flags);
hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
ndelay(400);
spin_unlock_irqrestore(&hwif->lock, flags);
}
EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
{
struct request *rq = drive->hwif->rq;
if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
ide_end_request(drive, err ? err : 1, 0);
}
/* needed below */
static ide_startstop_t do_reset1 (ide_drive_t *, int);
/*
* atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
* during an atapi drive reset operation. If the drive has not yet responded,
* and we have not yet hit our maximum waiting time, then the timer is restarted
* for another 50ms.
*/
static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 stat;
SELECT_DRIVE(drive);
udelay (10);
stat = hwif->tp_ops->read_status(hwif);
if (OK_STAT(stat, 0, ATA_BUSY))
printk("%s: ATAPI reset complete\n", drive->name);
else {
if (time_before(jiffies, hwif->poll_timeout)) {
ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
/* continue polling */
return ide_started;
}
/* end of polling */
hwif->polling = 0;
printk("%s: ATAPI reset timed-out, status=0x%02x\n",
drive->name, stat);
/* do it the old fashioned way */
return do_reset1(drive, 1);
}
/* done polling */
hwif->polling = 0;
ide_complete_drive_reset(drive, 0);
return ide_stopped;
}
static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
{
static const char *err_master_vals[] =
{ NULL, "passed", "formatter device error",
"sector buffer error", "ECC circuitry error",
"controlling MPU error" };
u8 err_master = err & 0x7f;
printk(KERN_ERR "%s: reset: master: ", hwif->name);
if (err_master && err_master < 6)
printk(KERN_CONT "%s", err_master_vals[err_master]);
else
printk(KERN_CONT "error (0x%02x?)", err);
if (err & 0x80)
printk(KERN_CONT "; slave: failed");
printk(KERN_CONT "\n");
}
/*
* reset_pollfunc() gets invoked to poll the interface for completion every 50ms
* during an ide reset operation. If the drives have not yet responded,
* and we have not yet hit our maximum waiting time, then the timer is restarted
* for another 50ms.
*/
static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_port_ops *port_ops = hwif->port_ops;
u8 tmp;
int err = 0;
if (port_ops && port_ops->reset_poll) {
err = port_ops->reset_poll(drive);
if (err) {
printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
hwif->name, drive->name);
goto out;
}
}
tmp = hwif->tp_ops->read_status(hwif);
if (!OK_STAT(tmp, 0, ATA_BUSY)) {
if (time_before(jiffies, hwif->poll_timeout)) {
ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
/* continue polling */
return ide_started;
}
printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
drive->failures++;
err = -EIO;
} else {
tmp = ide_read_error(drive);
if (tmp == 1) {
printk(KERN_INFO "%s: reset: success\n", hwif->name);
drive->failures = 0;
} else {
ide_reset_report_error(hwif, tmp);
drive->failures++;
err = -EIO;
}
}
out:
hwif->polling = 0; /* done polling */
ide_complete_drive_reset(drive, err);
return ide_stopped;
}
static void ide_disk_pre_reset(ide_drive_t *drive)
{
int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
drive->special.all = 0;
drive->special.b.set_geometry = legacy;
drive->special.b.recalibrate = legacy;
drive->mult_count = 0;
drive->dev_flags &= ~IDE_DFLAG_PARKED;
if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
(drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
drive->mult_req = 0;
if (drive->mult_req != drive->mult_count)
drive->special.b.set_multmode = 1;
}
static void pre_reset(ide_drive_t *drive)
{
const struct ide_port_ops *port_ops = drive->hwif->port_ops;
if (drive->media == ide_disk)
ide_disk_pre_reset(drive);
else
drive->dev_flags |= IDE_DFLAG_POST_RESET;
if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
if (drive->crc_count)
ide_check_dma_crc(drive);
else
ide_dma_off(drive);
}
if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
drive->dev_flags &= ~IDE_DFLAG_UNMASK;
drive->io_32bit = 0;
}
return;
}
if (port_ops && port_ops->pre_reset)
port_ops->pre_reset(drive);
if (drive->current_speed != 0xff)
drive->desired_speed = drive->current_speed;
drive->current_speed = 0xff;
}
/*
* do_reset1() attempts to recover a confused drive by resetting it.
* Unfortunately, resetting a disk drive actually resets all devices on
* the same interface, so it can really be thought of as resetting the
* interface rather than resetting the drive.
*
* ATAPI devices have their own reset mechanism which allows them to be
* individually reset without clobbering other devices on the same interface.
*
* Unfortunately, the IDE interface does not generate an interrupt to let
* us know when the reset operation has finished, so we must poll for this.
* Equally poor, though, is the fact that this may a very long time to complete,
* (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
* we set a timer to poll at 50ms intervals.
*/
static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
const struct ide_port_ops *port_ops;
ide_drive_t *tdrive;
unsigned long flags, timeout;
int i;
DEFINE_WAIT(wait);
spin_lock_irqsave(&hwif->lock, flags);
/* We must not reset with running handlers */
BUG_ON(hwif->handler != NULL);
/* For an ATAPI device, first try an ATAPI SRST. */
if (drive->media != ide_disk && !do_not_try_atapi) {
pre_reset(drive);
SELECT_DRIVE(drive);
udelay (20);
tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
ndelay(400);
hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
hwif->polling = 1;
__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
spin_unlock_irqrestore(&hwif->lock, flags);
return ide_started;
}
/* We must not disturb devices in the IDE_DFLAG_PARKED state. */
do {
unsigned long now;
prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
timeout = jiffies;
ide_port_for_each_dev(i, tdrive, hwif) {
if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
tdrive->dev_flags & IDE_DFLAG_PARKED &&
time_after(tdrive->sleep, timeout))
timeout = tdrive->sleep;
}
now = jiffies;
if (time_before_eq(timeout, now))
break;
spin_unlock_irqrestore(&hwif->lock, flags);
timeout = schedule_timeout_uninterruptible(timeout - now);
spin_lock_irqsave(&hwif->lock, flags);
} while (timeout);
finish_wait(&ide_park_wq, &wait);
/*
* First, reset any device state data we were maintaining
* for any of the drives on this interface.
*/
ide_port_for_each_dev(i, tdrive, hwif)
pre_reset(tdrive);
if (io_ports->ctl_addr == 0) {
spin_unlock_irqrestore(&hwif->lock, flags);
ide_complete_drive_reset(drive, -ENXIO);
return ide_stopped;
}
/*
* Note that we also set nIEN while resetting the device,
* to mask unwanted interrupts from the interface during the reset.
* However, due to the design of PC hardware, this will cause an
* immediate interrupt due to the edge transition it produces.
* This single interrupt gives us a "fast poll" for drives that
* recover from reset very quickly, saving us the first 50ms wait time.
*
* TODO: add ->softreset method and stop abusing ->set_irq
*/
/* set SRST and nIEN */
tp_ops->set_irq(hwif, 4);
/* more than enough time */
udelay(10);
/* clear SRST, leave nIEN (unless device is on the quirk list) */
tp_ops->set_irq(hwif, drive->quirk_list == 2);
/* more than enough time */
udelay(10);
hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
hwif->polling = 1;
__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
/*
* Some weird controller like resetting themselves to a strange
* state when the disks are reset this way. At least, the Winbond
* 553 documentation says that
*/
port_ops = hwif->port_ops;
if (port_ops && port_ops->resetproc)
port_ops->resetproc(drive);
spin_unlock_irqrestore(&hwif->lock, flags);
return ide_started;
}
/*
* ide_do_reset() is the entry point to the drive/interface reset code.
*/
ide_startstop_t ide_do_reset (ide_drive_t *drive)
{
return do_reset1(drive, 0);
}
EXPORT_SYMBOL(ide_do_reset);
/*
* ide_wait_not_busy() waits for the currently selected device on the hwif
* to report a non-busy status, see comments in ide_probe_port().
*/
int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
{
u8 stat = 0;
while(timeout--) {
/*
* Turn this into a schedule() sleep once I'm sure
* about locking issues (2.5 work ?).
*/
mdelay(1);
stat = hwif->tp_ops->read_status(hwif);
if ((stat & ATA_BUSY) == 0)
return 0;
/*
* Assume a value of 0xff means nothing is connected to
* the interface and it doesn't implement the pull-down
* resistor on D7.
*/
if (stat == 0xff)
return -ENODEV;
touch_softlockup_watchdog();
touch_nmi_watchdog();
}
return -EBUSY;
}