linux_old1/fs/libfs.c

1274 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/libfs.c
* Library for filesystems writers.
*/
#include <linux/blkdev.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/cred.h>
#include <linux/mount.h>
#include <linux/vfs.h>
#include <linux/quotaops.h>
#include <linux/mutex.h>
#include <linux/namei.h>
#include <linux/exportfs.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h> /* sync_mapping_buffers */
#include <linux/uaccess.h>
#include "internal.h"
int simple_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
generic_fillattr(inode, stat);
stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
return 0;
}
EXPORT_SYMBOL(simple_getattr);
int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
{
buf->f_type = dentry->d_sb->s_magic;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
return 0;
}
EXPORT_SYMBOL(simple_statfs);
/*
* Retaining negative dentries for an in-memory filesystem just wastes
* memory and lookup time: arrange for them to be deleted immediately.
*/
int always_delete_dentry(const struct dentry *dentry)
{
return 1;
}
EXPORT_SYMBOL(always_delete_dentry);
const struct dentry_operations simple_dentry_operations = {
.d_delete = always_delete_dentry,
};
EXPORT_SYMBOL(simple_dentry_operations);
/*
* Lookup the data. This is trivial - if the dentry didn't already
* exist, we know it is negative. Set d_op to delete negative dentries.
*/
struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
if (dentry->d_name.len > NAME_MAX)
return ERR_PTR(-ENAMETOOLONG);
if (!dentry->d_sb->s_d_op)
d_set_d_op(dentry, &simple_dentry_operations);
d_add(dentry, NULL);
return NULL;
}
EXPORT_SYMBOL(simple_lookup);
int dcache_dir_open(struct inode *inode, struct file *file)
{
file->private_data = d_alloc_cursor(file->f_path.dentry);
return file->private_data ? 0 : -ENOMEM;
}
EXPORT_SYMBOL(dcache_dir_open);
int dcache_dir_close(struct inode *inode, struct file *file)
{
dput(file->private_data);
return 0;
}
EXPORT_SYMBOL(dcache_dir_close);
/* parent is locked at least shared */
static struct dentry *next_positive(struct dentry *parent,
struct list_head *from,
int count)
{
unsigned *seq = &parent->d_inode->i_dir_seq, n;
struct dentry *res;
struct list_head *p;
bool skipped;
int i;
retry:
i = count;
skipped = false;
n = smp_load_acquire(seq) & ~1;
res = NULL;
rcu_read_lock();
for (p = from->next; p != &parent->d_subdirs; p = p->next) {
struct dentry *d = list_entry(p, struct dentry, d_child);
if (!simple_positive(d)) {
skipped = true;
} else if (!--i) {
res = d;
break;
}
}
rcu_read_unlock();
if (skipped) {
smp_rmb();
if (unlikely(*seq != n))
goto retry;
}
return res;
}
static void move_cursor(struct dentry *cursor, struct list_head *after)
{
struct dentry *parent = cursor->d_parent;
unsigned n, *seq = &parent->d_inode->i_dir_seq;
spin_lock(&parent->d_lock);
for (;;) {
n = *seq;
if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
break;
cpu_relax();
}
__list_del(cursor->d_child.prev, cursor->d_child.next);
if (after)
list_add(&cursor->d_child, after);
else
list_add_tail(&cursor->d_child, &parent->d_subdirs);
smp_store_release(seq, n + 2);
spin_unlock(&parent->d_lock);
}
loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
{
struct dentry *dentry = file->f_path.dentry;
switch (whence) {
case 1:
offset += file->f_pos;
/* fall through */
case 0:
if (offset >= 0)
break;
/* fall through */
default:
return -EINVAL;
}
if (offset != file->f_pos) {
file->f_pos = offset;
if (file->f_pos >= 2) {
struct dentry *cursor = file->private_data;
struct dentry *to;
loff_t n = file->f_pos - 2;
inode_lock_shared(dentry->d_inode);
to = next_positive(dentry, &dentry->d_subdirs, n);
move_cursor(cursor, to ? &to->d_child : NULL);
inode_unlock_shared(dentry->d_inode);
}
}
return offset;
}
EXPORT_SYMBOL(dcache_dir_lseek);
/* Relationship between i_mode and the DT_xxx types */
static inline unsigned char dt_type(struct inode *inode)
{
return (inode->i_mode >> 12) & 15;
}
/*
* Directory is locked and all positive dentries in it are safe, since
* for ramfs-type trees they can't go away without unlink() or rmdir(),
* both impossible due to the lock on directory.
*/
int dcache_readdir(struct file *file, struct dir_context *ctx)
{
struct dentry *dentry = file->f_path.dentry;
struct dentry *cursor = file->private_data;
struct list_head *p = &cursor->d_child;
struct dentry *next;
bool moved = false;
if (!dir_emit_dots(file, ctx))
return 0;
if (ctx->pos == 2)
p = &dentry->d_subdirs;
while ((next = next_positive(dentry, p, 1)) != NULL) {
if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
d_inode(next)->i_ino, dt_type(d_inode(next))))
break;
moved = true;
p = &next->d_child;
ctx->pos++;
}
if (moved)
move_cursor(cursor, p);
return 0;
}
EXPORT_SYMBOL(dcache_readdir);
ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
{
return -EISDIR;
}
EXPORT_SYMBOL(generic_read_dir);
const struct file_operations simple_dir_operations = {
.open = dcache_dir_open,
.release = dcache_dir_close,
.llseek = dcache_dir_lseek,
.read = generic_read_dir,
.iterate_shared = dcache_readdir,
.fsync = noop_fsync,
};
EXPORT_SYMBOL(simple_dir_operations);
const struct inode_operations simple_dir_inode_operations = {
.lookup = simple_lookup,
};
EXPORT_SYMBOL(simple_dir_inode_operations);
static const struct super_operations simple_super_operations = {
.statfs = simple_statfs,
};
/*
* Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
* will never be mountable)
*/
struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
const struct super_operations *ops, const struct xattr_handler **xattr,
const struct dentry_operations *dops, unsigned long magic)
{
struct super_block *s;
struct dentry *dentry;
struct inode *root;
struct qstr d_name = QSTR_INIT(name, strlen(name));
s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
&init_user_ns, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
s->s_maxbytes = MAX_LFS_FILESIZE;
s->s_blocksize = PAGE_SIZE;
s->s_blocksize_bits = PAGE_SHIFT;
s->s_magic = magic;
s->s_op = ops ? ops : &simple_super_operations;
s->s_xattr = xattr;
s->s_time_gran = 1;
root = new_inode(s);
if (!root)
goto Enomem;
/*
* since this is the first inode, make it number 1. New inodes created
* after this must take care not to collide with it (by passing
* max_reserved of 1 to iunique).
*/
root->i_ino = 1;
root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
dentry = __d_alloc(s, &d_name);
if (!dentry) {
iput(root);
goto Enomem;
}
d_instantiate(dentry, root);
s->s_root = dentry;
s->s_d_op = dops;
s->s_flags |= SB_ACTIVE;
return dget(s->s_root);
Enomem:
deactivate_locked_super(s);
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(mount_pseudo_xattr);
int simple_open(struct inode *inode, struct file *file)
{
if (inode->i_private)
file->private_data = inode->i_private;
return 0;
}
EXPORT_SYMBOL(simple_open);
int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
inc_nlink(inode);
ihold(inode);
dget(dentry);
d_instantiate(dentry, inode);
return 0;
}
EXPORT_SYMBOL(simple_link);
int simple_empty(struct dentry *dentry)
{
struct dentry *child;
int ret = 0;
spin_lock(&dentry->d_lock);
list_for_each_entry(child, &dentry->d_subdirs, d_child) {
spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
if (simple_positive(child)) {
spin_unlock(&child->d_lock);
goto out;
}
spin_unlock(&child->d_lock);
}
ret = 1;
out:
spin_unlock(&dentry->d_lock);
return ret;
}
EXPORT_SYMBOL(simple_empty);
int simple_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
drop_nlink(inode);
dput(dentry);
return 0;
}
EXPORT_SYMBOL(simple_unlink);
int simple_rmdir(struct inode *dir, struct dentry *dentry)
{
if (!simple_empty(dentry))
return -ENOTEMPTY;
drop_nlink(d_inode(dentry));
simple_unlink(dir, dentry);
drop_nlink(dir);
return 0;
}
EXPORT_SYMBOL(simple_rmdir);
int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct inode *inode = d_inode(old_dentry);
int they_are_dirs = d_is_dir(old_dentry);
if (flags & ~RENAME_NOREPLACE)
return -EINVAL;
if (!simple_empty(new_dentry))
return -ENOTEMPTY;
if (d_really_is_positive(new_dentry)) {
simple_unlink(new_dir, new_dentry);
if (they_are_dirs) {
drop_nlink(d_inode(new_dentry));
drop_nlink(old_dir);
}
} else if (they_are_dirs) {
drop_nlink(old_dir);
inc_nlink(new_dir);
}
old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
return 0;
}
EXPORT_SYMBOL(simple_rename);
/**
* simple_setattr - setattr for simple filesystem
* @dentry: dentry
* @iattr: iattr structure
*
* Returns 0 on success, -error on failure.
*
* simple_setattr is a simple ->setattr implementation without a proper
* implementation of size changes.
*
* It can either be used for in-memory filesystems or special files
* on simple regular filesystems. Anything that needs to change on-disk
* or wire state on size changes needs its own setattr method.
*/
int simple_setattr(struct dentry *dentry, struct iattr *iattr)
{
struct inode *inode = d_inode(dentry);
int error;
error = setattr_prepare(dentry, iattr);
if (error)
return error;
if (iattr->ia_valid & ATTR_SIZE)
truncate_setsize(inode, iattr->ia_size);
setattr_copy(inode, iattr);
mark_inode_dirty(inode);
return 0;
}
EXPORT_SYMBOL(simple_setattr);
int simple_readpage(struct file *file, struct page *page)
{
clear_highpage(page);
flush_dcache_page(page);
SetPageUptodate(page);
unlock_page(page);
return 0;
}
EXPORT_SYMBOL(simple_readpage);
int simple_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct page *page;
pgoff_t index;
index = pos >> PAGE_SHIFT;
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
*pagep = page;
if (!PageUptodate(page) && (len != PAGE_SIZE)) {
unsigned from = pos & (PAGE_SIZE - 1);
zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
}
return 0;
}
EXPORT_SYMBOL(simple_write_begin);
/**
* simple_write_end - .write_end helper for non-block-device FSes
* @available: See .write_end of address_space_operations
* @file: "
* @mapping: "
* @pos: "
* @len: "
* @copied: "
* @page: "
* @fsdata: "
*
* simple_write_end does the minimum needed for updating a page after writing is
* done. It has the same API signature as the .write_end of
* address_space_operations vector. So it can just be set onto .write_end for
* FSes that don't need any other processing. i_mutex is assumed to be held.
* Block based filesystems should use generic_write_end().
* NOTE: Even though i_size might get updated by this function, mark_inode_dirty
* is not called, so a filesystem that actually does store data in .write_inode
* should extend on what's done here with a call to mark_inode_dirty() in the
* case that i_size has changed.
*
* Use *ONLY* with simple_readpage()
*/
int simple_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
loff_t last_pos = pos + copied;
/* zero the stale part of the page if we did a short copy */
if (!PageUptodate(page)) {
if (copied < len) {
unsigned from = pos & (PAGE_SIZE - 1);
zero_user(page, from + copied, len - copied);
}
SetPageUptodate(page);
}
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold the i_mutex.
*/
if (last_pos > inode->i_size)
i_size_write(inode, last_pos);
set_page_dirty(page);
unlock_page(page);
put_page(page);
return copied;
}
EXPORT_SYMBOL(simple_write_end);
/*
* the inodes created here are not hashed. If you use iunique to generate
* unique inode values later for this filesystem, then you must take care
* to pass it an appropriate max_reserved value to avoid collisions.
*/
int simple_fill_super(struct super_block *s, unsigned long magic,
const struct tree_descr *files)
{
struct inode *inode;
struct dentry *root;
struct dentry *dentry;
int i;
s->s_blocksize = PAGE_SIZE;
s->s_blocksize_bits = PAGE_SHIFT;
s->s_magic = magic;
s->s_op = &simple_super_operations;
s->s_time_gran = 1;
inode = new_inode(s);
if (!inode)
return -ENOMEM;
/*
* because the root inode is 1, the files array must not contain an
* entry at index 1
*/
inode->i_ino = 1;
inode->i_mode = S_IFDIR | 0755;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
set_nlink(inode, 2);
root = d_make_root(inode);
if (!root)
return -ENOMEM;
for (i = 0; !files->name || files->name[0]; i++, files++) {
if (!files->name)
continue;
/* warn if it tries to conflict with the root inode */
if (unlikely(i == 1))
printk(KERN_WARNING "%s: %s passed in a files array"
"with an index of 1!\n", __func__,
s->s_type->name);
dentry = d_alloc_name(root, files->name);
if (!dentry)
goto out;
inode = new_inode(s);
if (!inode) {
dput(dentry);
goto out;
}
inode->i_mode = S_IFREG | files->mode;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inode->i_fop = files->ops;
inode->i_ino = i;
d_add(dentry, inode);
}
s->s_root = root;
return 0;
out:
d_genocide(root);
shrink_dcache_parent(root);
dput(root);
return -ENOMEM;
}
EXPORT_SYMBOL(simple_fill_super);
static DEFINE_SPINLOCK(pin_fs_lock);
int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
{
struct vfsmount *mnt = NULL;
spin_lock(&pin_fs_lock);
if (unlikely(!*mount)) {
spin_unlock(&pin_fs_lock);
mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
if (IS_ERR(mnt))
return PTR_ERR(mnt);
spin_lock(&pin_fs_lock);
if (!*mount)
*mount = mnt;
}
mntget(*mount);
++*count;
spin_unlock(&pin_fs_lock);
mntput(mnt);
return 0;
}
EXPORT_SYMBOL(simple_pin_fs);
void simple_release_fs(struct vfsmount **mount, int *count)
{
struct vfsmount *mnt;
spin_lock(&pin_fs_lock);
mnt = *mount;
if (!--*count)
*mount = NULL;
spin_unlock(&pin_fs_lock);
mntput(mnt);
}
EXPORT_SYMBOL(simple_release_fs);
/**
* simple_read_from_buffer - copy data from the buffer to user space
* @to: the user space buffer to read to
* @count: the maximum number of bytes to read
* @ppos: the current position in the buffer
* @from: the buffer to read from
* @available: the size of the buffer
*
* The simple_read_from_buffer() function reads up to @count bytes from the
* buffer @from at offset @ppos into the user space address starting at @to.
*
* On success, the number of bytes read is returned and the offset @ppos is
* advanced by this number, or negative value is returned on error.
**/
ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
const void *from, size_t available)
{
loff_t pos = *ppos;
size_t ret;
if (pos < 0)
return -EINVAL;
if (pos >= available || !count)
return 0;
if (count > available - pos)
count = available - pos;
ret = copy_to_user(to, from + pos, count);
if (ret == count)
return -EFAULT;
count -= ret;
*ppos = pos + count;
return count;
}
EXPORT_SYMBOL(simple_read_from_buffer);
/**
* simple_write_to_buffer - copy data from user space to the buffer
* @to: the buffer to write to
* @available: the size of the buffer
* @ppos: the current position in the buffer
* @from: the user space buffer to read from
* @count: the maximum number of bytes to read
*
* The simple_write_to_buffer() function reads up to @count bytes from the user
* space address starting at @from into the buffer @to at offset @ppos.
*
* On success, the number of bytes written is returned and the offset @ppos is
* advanced by this number, or negative value is returned on error.
**/
ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
const void __user *from, size_t count)
{
loff_t pos = *ppos;
size_t res;
if (pos < 0)
return -EINVAL;
if (pos >= available || !count)
return 0;
if (count > available - pos)
count = available - pos;
res = copy_from_user(to + pos, from, count);
if (res == count)
return -EFAULT;
count -= res;
*ppos = pos + count;
return count;
}
EXPORT_SYMBOL(simple_write_to_buffer);
/**
* memory_read_from_buffer - copy data from the buffer
* @to: the kernel space buffer to read to
* @count: the maximum number of bytes to read
* @ppos: the current position in the buffer
* @from: the buffer to read from
* @available: the size of the buffer
*
* The memory_read_from_buffer() function reads up to @count bytes from the
* buffer @from at offset @ppos into the kernel space address starting at @to.
*
* On success, the number of bytes read is returned and the offset @ppos is
* advanced by this number, or negative value is returned on error.
**/
ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
const void *from, size_t available)
{
loff_t pos = *ppos;
if (pos < 0)
return -EINVAL;
if (pos >= available)
return 0;
if (count > available - pos)
count = available - pos;
memcpy(to, from + pos, count);
*ppos = pos + count;
return count;
}
EXPORT_SYMBOL(memory_read_from_buffer);
/*
* Transaction based IO.
* The file expects a single write which triggers the transaction, and then
* possibly a read which collects the result - which is stored in a
* file-local buffer.
*/
void simple_transaction_set(struct file *file, size_t n)
{
struct simple_transaction_argresp *ar = file->private_data;
BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
/*
* The barrier ensures that ar->size will really remain zero until
* ar->data is ready for reading.
*/
smp_mb();
ar->size = n;
}
EXPORT_SYMBOL(simple_transaction_set);
char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
{
struct simple_transaction_argresp *ar;
static DEFINE_SPINLOCK(simple_transaction_lock);
if (size > SIMPLE_TRANSACTION_LIMIT - 1)
return ERR_PTR(-EFBIG);
ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
if (!ar)
return ERR_PTR(-ENOMEM);
spin_lock(&simple_transaction_lock);
/* only one write allowed per open */
if (file->private_data) {
spin_unlock(&simple_transaction_lock);
free_page((unsigned long)ar);
return ERR_PTR(-EBUSY);
}
file->private_data = ar;
spin_unlock(&simple_transaction_lock);
if (copy_from_user(ar->data, buf, size))
return ERR_PTR(-EFAULT);
return ar->data;
}
EXPORT_SYMBOL(simple_transaction_get);
ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
{
struct simple_transaction_argresp *ar = file->private_data;
if (!ar)
return 0;
return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
}
EXPORT_SYMBOL(simple_transaction_read);
int simple_transaction_release(struct inode *inode, struct file *file)
{
free_page((unsigned long)file->private_data);
return 0;
}
EXPORT_SYMBOL(simple_transaction_release);
/* Simple attribute files */
struct simple_attr {
int (*get)(void *, u64 *);
int (*set)(void *, u64);
char get_buf[24]; /* enough to store a u64 and "\n\0" */
char set_buf[24];
void *data;
const char *fmt; /* format for read operation */
struct mutex mutex; /* protects access to these buffers */
};
/* simple_attr_open is called by an actual attribute open file operation
* to set the attribute specific access operations. */
int simple_attr_open(struct inode *inode, struct file *file,
int (*get)(void *, u64 *), int (*set)(void *, u64),
const char *fmt)
{
struct simple_attr *attr;
attr = kmalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->get = get;
attr->set = set;
attr->data = inode->i_private;
attr->fmt = fmt;
mutex_init(&attr->mutex);
file->private_data = attr;
return nonseekable_open(inode, file);
}
EXPORT_SYMBOL_GPL(simple_attr_open);
int simple_attr_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
/* read from the buffer that is filled with the get function */
ssize_t simple_attr_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
struct simple_attr *attr;
size_t size;
ssize_t ret;
attr = file->private_data;
if (!attr->get)
return -EACCES;
ret = mutex_lock_interruptible(&attr->mutex);
if (ret)
return ret;
if (*ppos) { /* continued read */
size = strlen(attr->get_buf);
} else { /* first read */
u64 val;
ret = attr->get(attr->data, &val);
if (ret)
goto out;
size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
attr->fmt, (unsigned long long)val);
}
ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
mutex_unlock(&attr->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(simple_attr_read);
/* interpret the buffer as a number to call the set function with */
ssize_t simple_attr_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos)
{
struct simple_attr *attr;
u64 val;
size_t size;
ssize_t ret;
attr = file->private_data;
if (!attr->set)
return -EACCES;
ret = mutex_lock_interruptible(&attr->mutex);
if (ret)
return ret;
ret = -EFAULT;
size = min(sizeof(attr->set_buf) - 1, len);
if (copy_from_user(attr->set_buf, buf, size))
goto out;
attr->set_buf[size] = '\0';
val = simple_strtoll(attr->set_buf, NULL, 0);
ret = attr->set(attr->data, val);
if (ret == 0)
ret = len; /* on success, claim we got the whole input */
out:
mutex_unlock(&attr->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(simple_attr_write);
/**
* generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
* @sb: filesystem to do the file handle conversion on
* @fid: file handle to convert
* @fh_len: length of the file handle in bytes
* @fh_type: type of file handle
* @get_inode: filesystem callback to retrieve inode
*
* This function decodes @fid as long as it has one of the well-known
* Linux filehandle types and calls @get_inode on it to retrieve the
* inode for the object specified in the file handle.
*/
struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type, struct inode *(*get_inode)
(struct super_block *sb, u64 ino, u32 gen))
{
struct inode *inode = NULL;
if (fh_len < 2)
return NULL;
switch (fh_type) {
case FILEID_INO32_GEN:
case FILEID_INO32_GEN_PARENT:
inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
break;
}
return d_obtain_alias(inode);
}
EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
/**
* generic_fh_to_parent - generic helper for the fh_to_parent export operation
* @sb: filesystem to do the file handle conversion on
* @fid: file handle to convert
* @fh_len: length of the file handle in bytes
* @fh_type: type of file handle
* @get_inode: filesystem callback to retrieve inode
*
* This function decodes @fid as long as it has one of the well-known
* Linux filehandle types and calls @get_inode on it to retrieve the
* inode for the _parent_ object specified in the file handle if it
* is specified in the file handle, or NULL otherwise.
*/
struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type, struct inode *(*get_inode)
(struct super_block *sb, u64 ino, u32 gen))
{
struct inode *inode = NULL;
if (fh_len <= 2)
return NULL;
switch (fh_type) {
case FILEID_INO32_GEN_PARENT:
inode = get_inode(sb, fid->i32.parent_ino,
(fh_len > 3 ? fid->i32.parent_gen : 0));
break;
}
return d_obtain_alias(inode);
}
EXPORT_SYMBOL_GPL(generic_fh_to_parent);
/**
* __generic_file_fsync - generic fsync implementation for simple filesystems
*
* @file: file to synchronize
* @start: start offset in bytes
* @end: end offset in bytes (inclusive)
* @datasync: only synchronize essential metadata if true
*
* This is a generic implementation of the fsync method for simple
* filesystems which track all non-inode metadata in the buffers list
* hanging off the address_space structure.
*/
int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
int err;
int ret;
err = file_write_and_wait_range(file, start, end);
if (err)
return err;
inode_lock(inode);
ret = sync_mapping_buffers(inode->i_mapping);
if (!(inode->i_state & I_DIRTY_ALL))
goto out;
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
goto out;
err = sync_inode_metadata(inode, 1);
if (ret == 0)
ret = err;
out:
inode_unlock(inode);
/* check and advance again to catch errors after syncing out buffers */
err = file_check_and_advance_wb_err(file);
if (ret == 0)
ret = err;
return ret;
}
EXPORT_SYMBOL(__generic_file_fsync);
/**
* generic_file_fsync - generic fsync implementation for simple filesystems
* with flush
* @file: file to synchronize
* @start: start offset in bytes
* @end: end offset in bytes (inclusive)
* @datasync: only synchronize essential metadata if true
*
*/
int generic_file_fsync(struct file *file, loff_t start, loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
int err;
err = __generic_file_fsync(file, start, end, datasync);
if (err)
return err;
return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
}
EXPORT_SYMBOL(generic_file_fsync);
/**
* generic_check_addressable - Check addressability of file system
* @blocksize_bits: log of file system block size
* @num_blocks: number of blocks in file system
*
* Determine whether a file system with @num_blocks blocks (and a
* block size of 2**@blocksize_bits) is addressable by the sector_t
* and page cache of the system. Return 0 if so and -EFBIG otherwise.
*/
int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
{
u64 last_fs_block = num_blocks - 1;
u64 last_fs_page =
last_fs_block >> (PAGE_SHIFT - blocksize_bits);
if (unlikely(num_blocks == 0))
return 0;
if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
return -EINVAL;
if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
(last_fs_page > (pgoff_t)(~0ULL))) {
return -EFBIG;
}
return 0;
}
EXPORT_SYMBOL(generic_check_addressable);
/*
* No-op implementation of ->fsync for in-memory filesystems.
*/
int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
return 0;
}
EXPORT_SYMBOL(noop_fsync);
int noop_set_page_dirty(struct page *page)
{
/*
* Unlike __set_page_dirty_no_writeback that handles dirty page
* tracking in the page object, dax does all dirty tracking in
* the inode address_space in response to mkwrite faults. In the
* dax case we only need to worry about potentially dirty CPU
* caches, not dirty page cache pages to write back.
*
* This callback is defined to prevent fallback to
* __set_page_dirty_buffers() in set_page_dirty().
*/
return 0;
}
EXPORT_SYMBOL_GPL(noop_set_page_dirty);
void noop_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
/*
* There is no page cache to invalidate in the dax case, however
* we need this callback defined to prevent falling back to
* block_invalidatepage() in do_invalidatepage().
*/
}
EXPORT_SYMBOL_GPL(noop_invalidatepage);
ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
/*
* iomap based filesystems support direct I/O without need for
* this callback. However, it still needs to be set in
* inode->a_ops so that open/fcntl know that direct I/O is
* generally supported.
*/
return -EINVAL;
}
EXPORT_SYMBOL_GPL(noop_direct_IO);
/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
void kfree_link(void *p)
{
kfree(p);
}
EXPORT_SYMBOL(kfree_link);
/*
* nop .set_page_dirty method so that people can use .page_mkwrite on
* anon inodes.
*/
static int anon_set_page_dirty(struct page *page)
{
return 0;
};
/*
* A single inode exists for all anon_inode files. Contrary to pipes,
* anon_inode inodes have no associated per-instance data, so we need
* only allocate one of them.
*/
struct inode *alloc_anon_inode(struct super_block *s)
{
static const struct address_space_operations anon_aops = {
.set_page_dirty = anon_set_page_dirty,
};
struct inode *inode = new_inode_pseudo(s);
if (!inode)
return ERR_PTR(-ENOMEM);
inode->i_ino = get_next_ino();
inode->i_mapping->a_ops = &anon_aops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because mark_inode_dirty() will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IRUSR | S_IWUSR;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_flags |= S_PRIVATE;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
return inode;
}
EXPORT_SYMBOL(alloc_anon_inode);
/**
* simple_nosetlease - generic helper for prohibiting leases
* @filp: file pointer
* @arg: type of lease to obtain
* @flp: new lease supplied for insertion
* @priv: private data for lm_setup operation
*
* Generic helper for filesystems that do not wish to allow leases to be set.
* All arguments are ignored and it just returns -EINVAL.
*/
int
simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
void **priv)
{
return -EINVAL;
}
EXPORT_SYMBOL(simple_nosetlease);
/**
* simple_get_link - generic helper to get the target of "fast" symlinks
* @dentry: not used here
* @inode: the symlink inode
* @done: not used here
*
* Generic helper for filesystems to use for symlink inodes where a pointer to
* the symlink target is stored in ->i_link. NOTE: this isn't normally called,
* since as an optimization the path lookup code uses any non-NULL ->i_link
* directly, without calling ->get_link(). But ->get_link() still must be set,
* to mark the inode_operations as being for a symlink.
*
* Return: the symlink target
*/
const char *simple_get_link(struct dentry *dentry, struct inode *inode,
struct delayed_call *done)
{
return inode->i_link;
}
EXPORT_SYMBOL(simple_get_link);
const struct inode_operations simple_symlink_inode_operations = {
.get_link = simple_get_link,
};
EXPORT_SYMBOL(simple_symlink_inode_operations);
/*
* Operations for a permanently empty directory.
*/
static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
return ERR_PTR(-ENOENT);
}
static int empty_dir_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
generic_fillattr(inode, stat);
return 0;
}
static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
{
return -EPERM;
}
static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
{
return -EOPNOTSUPP;
}
static const struct inode_operations empty_dir_inode_operations = {
.lookup = empty_dir_lookup,
.permission = generic_permission,
.setattr = empty_dir_setattr,
.getattr = empty_dir_getattr,
.listxattr = empty_dir_listxattr,
};
static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
{
/* An empty directory has two entries . and .. at offsets 0 and 1 */
return generic_file_llseek_size(file, offset, whence, 2, 2);
}
static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
{
dir_emit_dots(file, ctx);
return 0;
}
static const struct file_operations empty_dir_operations = {
.llseek = empty_dir_llseek,
.read = generic_read_dir,
.iterate_shared = empty_dir_readdir,
.fsync = noop_fsync,
};
void make_empty_dir_inode(struct inode *inode)
{
set_nlink(inode, 2);
inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
inode->i_uid = GLOBAL_ROOT_UID;
inode->i_gid = GLOBAL_ROOT_GID;
inode->i_rdev = 0;
inode->i_size = 0;
inode->i_blkbits = PAGE_SHIFT;
inode->i_blocks = 0;
inode->i_op = &empty_dir_inode_operations;
inode->i_opflags &= ~IOP_XATTR;
inode->i_fop = &empty_dir_operations;
}
bool is_empty_dir_inode(struct inode *inode)
{
return (inode->i_fop == &empty_dir_operations) &&
(inode->i_op == &empty_dir_inode_operations);
}