linux_old1/drivers/gpu/drm/i915/i915_gem_request.h

477 lines
15 KiB
C

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef I915_GEM_REQUEST_H
#define I915_GEM_REQUEST_H
#include <linux/fence.h>
#include "i915_gem.h"
/**
* Request queue structure.
*
* The request queue allows us to note sequence numbers that have been emitted
* and may be associated with active buffers to be retired.
*
* By keeping this list, we can avoid having to do questionable sequence
* number comparisons on buffer last_read|write_seqno. It also allows an
* emission time to be associated with the request for tracking how far ahead
* of the GPU the submission is.
*
* The requests are reference counted.
*/
struct drm_i915_gem_request {
struct fence fence;
spinlock_t lock;
/** On Which ring this request was generated */
struct drm_i915_private *i915;
/**
* Context and ring buffer related to this request
* Contexts are refcounted, so when this request is associated with a
* context, we must increment the context's refcount, to guarantee that
* it persists while any request is linked to it. Requests themselves
* are also refcounted, so the request will only be freed when the last
* reference to it is dismissed, and the code in
* i915_gem_request_free() will then decrement the refcount on the
* context.
*/
struct i915_gem_context *ctx;
struct intel_engine_cs *engine;
struct intel_ring *ring;
struct intel_signal_node signaling;
/** GEM sequence number associated with the previous request,
* when the HWS breadcrumb is equal to this the GPU is processing
* this request.
*/
u32 previous_seqno;
/** Position in the ringbuffer of the start of the request */
u32 head;
/**
* Position in the ringbuffer of the start of the postfix.
* This is required to calculate the maximum available ringbuffer
* space without overwriting the postfix.
*/
u32 postfix;
/** Position in the ringbuffer of the end of the whole request */
u32 tail;
/** Preallocate space in the ringbuffer for the emitting the request */
u32 reserved_space;
/**
* Context related to the previous request.
* As the contexts are accessed by the hardware until the switch is
* completed to a new context, the hardware may still be writing
* to the context object after the breadcrumb is visible. We must
* not unpin/unbind/prune that object whilst still active and so
* we keep the previous context pinned until the following (this)
* request is retired.
*/
struct i915_gem_context *previous_context;
/** Batch buffer related to this request if any (used for
* error state dump only).
*/
struct drm_i915_gem_object *batch_obj;
struct list_head active_list;
/** Time at which this request was emitted, in jiffies. */
unsigned long emitted_jiffies;
/** engine->request_list entry for this request */
struct list_head link;
/** ring->request_list entry for this request */
struct list_head ring_link;
struct drm_i915_file_private *file_priv;
/** file_priv list entry for this request */
struct list_head client_list;
/** process identifier submitting this request */
struct pid *pid;
/**
* The ELSP only accepts two elements at a time, so we queue
* context/tail pairs on a given queue (ring->execlist_queue) until the
* hardware is available. The queue serves a double purpose: we also use
* it to keep track of the up to 2 contexts currently in the hardware
* (usually one in execution and the other queued up by the GPU): We
* only remove elements from the head of the queue when the hardware
* informs us that an element has been completed.
*
* All accesses to the queue are mediated by a spinlock
* (ring->execlist_lock).
*/
/** Execlist link in the submission queue.*/
struct list_head execlist_link;
/** Execlists no. of times this request has been sent to the ELSP */
int elsp_submitted;
/** Execlists context hardware id. */
unsigned int ctx_hw_id;
};
extern const struct fence_ops i915_fence_ops;
static inline bool fence_is_i915(struct fence *fence)
{
return fence->ops == &i915_fence_ops;
}
struct drm_i915_gem_request * __must_check
i915_gem_request_alloc(struct intel_engine_cs *engine,
struct i915_gem_context *ctx);
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
struct drm_file *file);
void i915_gem_request_retire_upto(struct drm_i915_gem_request *req);
static inline u32
i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
{
return req ? req->fence.seqno : 0;
}
static inline struct intel_engine_cs *
i915_gem_request_get_engine(struct drm_i915_gem_request *req)
{
return req ? req->engine : NULL;
}
static inline struct drm_i915_gem_request *
to_request(struct fence *fence)
{
/* We assume that NULL fence/request are interoperable */
BUILD_BUG_ON(offsetof(struct drm_i915_gem_request, fence) != 0);
GEM_BUG_ON(fence && !fence_is_i915(fence));
return container_of(fence, struct drm_i915_gem_request, fence);
}
static inline struct drm_i915_gem_request *
i915_gem_request_get(struct drm_i915_gem_request *req)
{
return to_request(fence_get(&req->fence));
}
static inline void
i915_gem_request_put(struct drm_i915_gem_request *req)
{
fence_put(&req->fence);
}
static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
struct drm_i915_gem_request *src)
{
if (src)
i915_gem_request_get(src);
if (*pdst)
i915_gem_request_put(*pdst);
*pdst = src;
}
void __i915_add_request(struct drm_i915_gem_request *req,
struct drm_i915_gem_object *batch_obj,
bool flush_caches);
#define i915_add_request(req) \
__i915_add_request(req, NULL, true)
#define i915_add_request_no_flush(req) \
__i915_add_request(req, NULL, false)
struct intel_rps_client;
#define NO_WAITBOOST ERR_PTR(-1)
#define IS_RPS_CLIENT(p) (!IS_ERR(p))
#define IS_RPS_USER(p) (!IS_ERR_OR_NULL(p))
int i915_wait_request(struct drm_i915_gem_request *req,
bool interruptible,
s64 *timeout,
struct intel_rps_client *rps)
__attribute__((nonnull(1)));
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine);
/**
* Returns true if seq1 is later than seq2.
*/
static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
{
return (s32)(seq1 - seq2) >= 0;
}
static inline bool
i915_gem_request_started(const struct drm_i915_gem_request *req)
{
return i915_seqno_passed(intel_engine_get_seqno(req->engine),
req->previous_seqno);
}
static inline bool
i915_gem_request_completed(const struct drm_i915_gem_request *req)
{
return i915_seqno_passed(intel_engine_get_seqno(req->engine),
req->fence.seqno);
}
bool __i915_spin_request(const struct drm_i915_gem_request *request,
int state, unsigned long timeout_us);
static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
int state, unsigned long timeout_us)
{
return (i915_gem_request_started(request) &&
__i915_spin_request(request, state, timeout_us));
}
/* We treat requests as fences. This is not be to confused with our
* "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
* We use the fences to synchronize access from the CPU with activity on the
* GPU, for example, we should not rewrite an object's PTE whilst the GPU
* is reading them. We also track fences at a higher level to provide
* implicit synchronisation around GEM objects, e.g. set-domain will wait
* for outstanding GPU rendering before marking the object ready for CPU
* access, or a pageflip will wait until the GPU is complete before showing
* the frame on the scanout.
*
* In order to use a fence, the object must track the fence it needs to
* serialise with. For example, GEM objects want to track both read and
* write access so that we can perform concurrent read operations between
* the CPU and GPU engines, as well as waiting for all rendering to
* complete, or waiting for the last GPU user of a "fence register". The
* object then embeds a #i915_gem_active to track the most recent (in
* retirement order) request relevant for the desired mode of access.
* The #i915_gem_active is updated with i915_gem_active_set() to track the
* most recent fence request, typically this is done as part of
* i915_vma_move_to_active().
*
* When the #i915_gem_active completes (is retired), it will
* signal its completion to the owner through a callback as well as mark
* itself as idle (i915_gem_active.request == NULL). The owner
* can then perform any action, such as delayed freeing of an active
* resource including itself.
*/
struct i915_gem_active;
typedef void (*i915_gem_retire_fn)(struct i915_gem_active *,
struct drm_i915_gem_request *);
struct i915_gem_active {
struct drm_i915_gem_request *request;
struct list_head link;
i915_gem_retire_fn retire;
};
void i915_gem_retire_noop(struct i915_gem_active *,
struct drm_i915_gem_request *request);
/**
* init_request_active - prepares the activity tracker for use
* @active - the active tracker
* @func - a callback when then the tracker is retired (becomes idle),
* can be NULL
*
* init_request_active() prepares the embedded @active struct for use as
* an activity tracker, that is for tracking the last known active request
* associated with it. When the last request becomes idle, when it is retired
* after completion, the optional callback @func is invoked.
*/
static inline void
init_request_active(struct i915_gem_active *active,
i915_gem_retire_fn retire)
{
INIT_LIST_HEAD(&active->link);
active->retire = retire ?: i915_gem_retire_noop;
}
/**
* i915_gem_active_set - updates the tracker to watch the current request
* @active - the active tracker
* @request - the request to watch
*
* i915_gem_active_set() watches the given @request for completion. Whilst
* that @request is busy, the @active reports busy. When that @request is
* retired, the @active tracker is updated to report idle.
*/
static inline void
i915_gem_active_set(struct i915_gem_active *active,
struct drm_i915_gem_request *request)
{
list_move(&active->link, &request->active_list);
active->request = request;
}
static inline struct drm_i915_gem_request *
__i915_gem_active_peek(const struct i915_gem_active *active)
{
return active->request;
}
/**
* i915_gem_active_peek - report the active request being monitored
* @active - the active tracker
*
* i915_gem_active_peek() returns the current request being tracked if
* still active, or NULL. It does not obtain a reference on the request
* for the caller, so the caller must hold struct_mutex.
*/
static inline struct drm_i915_gem_request *
i915_gem_active_peek(const struct i915_gem_active *active, struct mutex *mutex)
{
struct drm_i915_gem_request *request;
request = active->request;
if (!request || i915_gem_request_completed(request))
return NULL;
return request;
}
/**
* i915_gem_active_get - return a reference to the active request
* @active - the active tracker
*
* i915_gem_active_get() returns a reference to the active request, or NULL
* if the active tracker is idle. The caller must hold struct_mutex.
*/
static inline struct drm_i915_gem_request *
i915_gem_active_get(const struct i915_gem_active *active, struct mutex *mutex)
{
return i915_gem_request_get(i915_gem_active_peek(active, mutex));
}
/**
* i915_gem_active_isset - report whether the active tracker is assigned
* @active - the active tracker
*
* i915_gem_active_isset() returns true if the active tracker is currently
* assigned to a request. Due to the lazy retiring, that request may be idle
* and this may report stale information.
*/
static inline bool
i915_gem_active_isset(const struct i915_gem_active *active)
{
return active->request;
}
/**
* i915_gem_active_is_idle - report whether the active tracker is idle
* @active - the active tracker
*
* i915_gem_active_is_idle() returns true if the active tracker is currently
* unassigned or if the request is complete (but not yet retired). Requires
* the caller to hold struct_mutex (but that can be relaxed if desired).
*/
static inline bool
i915_gem_active_is_idle(const struct i915_gem_active *active,
struct mutex *mutex)
{
return !i915_gem_active_peek(active, mutex);
}
/**
* i915_gem_active_wait - waits until the request is completed
* @active - the active request on which to wait
*
* i915_gem_active_wait() waits until the request is completed before
* returning. Note that it does not guarantee that the request is
* retired first, see i915_gem_active_retire().
*
* i915_gem_active_wait() returns immediately if the active
* request is already complete.
*/
static inline int __must_check
i915_gem_active_wait(const struct i915_gem_active *active, struct mutex *mutex)
{
struct drm_i915_gem_request *request;
request = i915_gem_active_peek(active, mutex);
if (!request)
return 0;
return i915_wait_request(request, true, NULL, NULL);
}
/**
* i915_gem_active_retire - waits until the request is retired
* @active - the active request on which to wait
*
* i915_gem_active_retire() waits until the request is completed,
* and then ensures that at least the retirement handler for this
* @active tracker is called before returning. If the @active
* tracker is idle, the function returns immediately.
*/
static inline int __must_check
i915_gem_active_retire(struct i915_gem_active *active,
struct mutex *mutex)
{
struct drm_i915_gem_request *request;
int ret;
request = active->request;
if (!request)
return 0;
ret = i915_wait_request(request, true, NULL, NULL);
if (ret)
return ret;
list_del_init(&active->link);
active->request = NULL;
active->retire(active, request);
return 0;
}
/* Convenience functions for peeking at state inside active's request whilst
* guarded by the struct_mutex.
*/
static inline uint32_t
i915_gem_active_get_seqno(const struct i915_gem_active *active,
struct mutex *mutex)
{
return i915_gem_request_get_seqno(i915_gem_active_peek(active, mutex));
}
static inline struct intel_engine_cs *
i915_gem_active_get_engine(const struct i915_gem_active *active,
struct mutex *mutex)
{
return i915_gem_request_get_engine(i915_gem_active_peek(active, mutex));
}
#define for_each_active(mask, idx) \
for (; mask ? idx = ffs(mask) - 1, 1 : 0; mask &= ~BIT(idx))
#endif /* I915_GEM_REQUEST_H */