42a2d923cc
Pull networking updates from David Miller: 1) The addition of nftables. No longer will we need protocol aware firewall filtering modules, it can all live in userspace. At the core of nftables is a, for lack of a better term, virtual machine that executes byte codes to inspect packet or metadata (arriving interface index, etc.) and make verdict decisions. Besides support for loading packet contents and comparing them, the interpreter supports lookups in various datastructures as fundamental operations. For example sets are supports, and therefore one could create a set of whitelist IP address entries which have ACCEPT verdicts attached to them, and use the appropriate byte codes to do such lookups. Since the interpreted code is composed in userspace, userspace can do things like optimize things before giving it to the kernel. Another major improvement is the capability of atomically updating portions of the ruleset. In the existing netfilter implementation, one has to update the entire rule set in order to make a change and this is very expensive. Userspace tools exist to create nftables rules using existing netfilter rule sets, but both kernel implementations will need to co-exist for quite some time as we transition from the old to the new stuff. Kudos to Patrick McHardy, Pablo Neira Ayuso, and others who have worked so hard on this. 2) Daniel Borkmann and Hannes Frederic Sowa made several improvements to our pseudo-random number generator, mostly used for things like UDP port randomization and netfitler, amongst other things. In particular the taus88 generater is updated to taus113, and test cases are added. 3) Support 64-bit rates in HTB and TBF schedulers, from Eric Dumazet and Yang Yingliang. 4) Add support for new 577xx tigon3 chips to tg3 driver, from Nithin Sujir. 5) Fix two fatal flaws in TCP dynamic right sizing, from Eric Dumazet, Neal Cardwell, and Yuchung Cheng. 6) Allow IP_TOS and IP_TTL to be specified in sendmsg() ancillary control message data, much like other socket option attributes. From Francesco Fusco. 7) Allow applications to specify a cap on the rate computed automatically by the kernel for pacing flows, via a new SO_MAX_PACING_RATE socket option. From Eric Dumazet. 8) Make the initial autotuned send buffer sizing in TCP more closely reflect actual needs, from Eric Dumazet. 9) Currently early socket demux only happens for TCP sockets, but we can do it for connected UDP sockets too. Implementation from Shawn Bohrer. 10) Refactor inet socket demux with the goal of improving hash demux performance for listening sockets. With the main goals being able to use RCU lookups on even request sockets, and eliminating the listening lock contention. From Eric Dumazet. 11) The bonding layer has many demuxes in it's fast path, and an RCU conversion was started back in 3.11, several changes here extend the RCU usage to even more locations. From Ding Tianhong and Wang Yufen, based upon suggestions by Nikolay Aleksandrov and Veaceslav Falico. 12) Allow stackability of segmentation offloads to, in particular, allow segmentation offloading over tunnels. From Eric Dumazet. 13) Significantly improve the handling of secret keys we input into the various hash functions in the inet hashtables, TCP fast open, as well as syncookies. From Hannes Frederic Sowa. The key fundamental operation is "net_get_random_once()" which uses static keys. Hannes even extended this to ipv4/ipv6 fragmentation handling and our generic flow dissector. 14) The generic driver layer takes care now to set the driver data to NULL on device removal, so it's no longer necessary for drivers to explicitly set it to NULL any more. Many drivers have been cleaned up in this way, from Jingoo Han. 15) Add a BPF based packet scheduler classifier, from Daniel Borkmann. 16) Improve CRC32 interfaces and generic SKB checksum iterators so that SCTP's checksumming can more cleanly be handled. Also from Daniel Borkmann. 17) Add a new PMTU discovery mode, IP_PMTUDISC_INTERFACE, which forces using the interface MTU value. This helps avoid PMTU attacks, particularly on DNS servers. From Hannes Frederic Sowa. 18) Use generic XPS for transmit queue steering rather than internal (re-)implementation in virtio-net. From Jason Wang. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits) random32: add test cases for taus113 implementation random32: upgrade taus88 generator to taus113 from errata paper random32: move rnd_state to linux/random.h random32: add prandom_reseed_late() and call when nonblocking pool becomes initialized random32: add periodic reseeding random32: fix off-by-one in seeding requirement PHY: Add RTL8201CP phy_driver to realtek xtsonic: add missing platform_set_drvdata() in xtsonic_probe() macmace: add missing platform_set_drvdata() in mace_probe() ethernet/arc/arc_emac: add missing platform_set_drvdata() in arc_emac_probe() ipv6: protect for_each_sk_fl_rcu in mem_check with rcu_read_lock_bh vlan: Implement vlan_dev_get_egress_qos_mask as an inline. ixgbe: add warning when max_vfs is out of range. igb: Update link modes display in ethtool netfilter: push reasm skb through instead of original frag skbs ip6_output: fragment outgoing reassembled skb properly MAINTAINERS: mv643xx_eth: take over maintainership from Lennart net_sched: tbf: support of 64bit rates ixgbe: deleting dfwd stations out of order can cause null ptr deref ixgbe: fix build err, num_rx_queues is only available with CONFIG_RPS ... |
||
---|---|---|
.. | ||
obsolete | ||
removed | ||
stable | ||
testing | ||
README |
README
This directory attempts to document the ABI between the Linux kernel and userspace, and the relative stability of these interfaces. Due to the everchanging nature of Linux, and the differing maturity levels, these interfaces should be used by userspace programs in different ways. We have four different levels of ABI stability, as shown by the four different subdirectories in this location. Interfaces may change levels of stability according to the rules described below. The different levels of stability are: stable/ This directory documents the interfaces that the developer has defined to be stable. Userspace programs are free to use these interfaces with no restrictions, and backward compatibility for them will be guaranteed for at least 2 years. Most interfaces (like syscalls) are expected to never change and always be available. testing/ This directory documents interfaces that are felt to be stable, as the main development of this interface has been completed. The interface can be changed to add new features, but the current interface will not break by doing this, unless grave errors or security problems are found in them. Userspace programs can start to rely on these interfaces, but they must be aware of changes that can occur before these interfaces move to be marked stable. Programs that use these interfaces are strongly encouraged to add their name to the description of these interfaces, so that the kernel developers can easily notify them if any changes occur (see the description of the layout of the files below for details on how to do this.) obsolete/ This directory documents interfaces that are still remaining in the kernel, but are marked to be removed at some later point in time. The description of the interface will document the reason why it is obsolete and when it can be expected to be removed. removed/ This directory contains a list of the old interfaces that have been removed from the kernel. Every file in these directories will contain the following information: What: Short description of the interface Date: Date created KernelVersion: Kernel version this feature first showed up in. Contact: Primary contact for this interface (may be a mailing list) Description: Long description of the interface and how to use it. Users: All users of this interface who wish to be notified when it changes. This is very important for interfaces in the "testing" stage, so that kernel developers can work with userspace developers to ensure that things do not break in ways that are unacceptable. It is also important to get feedback for these interfaces to make sure they are working in a proper way and do not need to be changed further. How things move between levels: Interfaces in stable may move to obsolete, as long as the proper notification is given. Interfaces may be removed from obsolete and the kernel as long as the documented amount of time has gone by. Interfaces in the testing state can move to the stable state when the developers feel they are finished. They cannot be removed from the kernel tree without going through the obsolete state first. It's up to the developer to place their interfaces in the category they wish for it to start out in. Notable bits of non-ABI, which should not under any circumstances be considered stable: - Kconfig. Userspace should not rely on the presence or absence of any particular Kconfig symbol, in /proc/config.gz, in the copy of .config commonly installed to /boot, or in any invocation of the kernel build process. - Kernel-internal symbols. Do not rely on the presence, absence, location, or type of any kernel symbol, either in System.map files or the kernel binary itself. See Documentation/stable_api_nonsense.txt.