linux_old1/drivers/mmc/host/sdhci-msm.c

1383 lines
40 KiB
C

/*
* drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
*
* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/mmc/mmc.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/iopoll.h>
#include "sdhci-pltfm.h"
#define CORE_MCI_VERSION 0x50
#define CORE_VERSION_MAJOR_SHIFT 28
#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
#define CORE_VERSION_MINOR_MASK 0xff
#define CORE_HC_MODE 0x78
#define HC_MODE_EN 0x1
#define CORE_POWER 0x0
#define CORE_SW_RST BIT(7)
#define FF_CLK_SW_RST_DIS BIT(13)
#define CORE_PWRCTL_STATUS 0xdc
#define CORE_PWRCTL_MASK 0xe0
#define CORE_PWRCTL_CLEAR 0xe4
#define CORE_PWRCTL_CTL 0xe8
#define CORE_PWRCTL_BUS_OFF BIT(0)
#define CORE_PWRCTL_BUS_ON BIT(1)
#define CORE_PWRCTL_IO_LOW BIT(2)
#define CORE_PWRCTL_IO_HIGH BIT(3)
#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
#define CORE_PWRCTL_IO_SUCCESS BIT(2)
#define REQ_BUS_OFF BIT(0)
#define REQ_BUS_ON BIT(1)
#define REQ_IO_LOW BIT(2)
#define REQ_IO_HIGH BIT(3)
#define INT_MASK 0xf
#define MAX_PHASES 16
#define CORE_DLL_LOCK BIT(7)
#define CORE_DDR_DLL_LOCK BIT(11)
#define CORE_DLL_EN BIT(16)
#define CORE_CDR_EN BIT(17)
#define CORE_CK_OUT_EN BIT(18)
#define CORE_CDR_EXT_EN BIT(19)
#define CORE_DLL_PDN BIT(29)
#define CORE_DLL_RST BIT(30)
#define CORE_DLL_CONFIG 0x100
#define CORE_CMD_DAT_TRACK_SEL BIT(0)
#define CORE_DLL_STATUS 0x108
#define CORE_DLL_CONFIG_2 0x1b4
#define CORE_DDR_CAL_EN BIT(0)
#define CORE_FLL_CYCLE_CNT BIT(18)
#define CORE_DLL_CLOCK_DISABLE BIT(21)
#define CORE_VENDOR_SPEC 0x10c
#define CORE_VENDOR_SPEC_POR_VAL 0xa1c
#define CORE_CLK_PWRSAVE BIT(1)
#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
#define CORE_HC_MCLK_SEL_MASK (3 << 8)
#define CORE_HC_SELECT_IN_EN BIT(18)
#define CORE_HC_SELECT_IN_HS400 (6 << 19)
#define CORE_HC_SELECT_IN_MASK (7 << 19)
#define CORE_CSR_CDC_CTLR_CFG0 0x130
#define CORE_SW_TRIG_FULL_CALIB BIT(16)
#define CORE_HW_AUTOCAL_ENA BIT(17)
#define CORE_CSR_CDC_CTLR_CFG1 0x134
#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
#define CORE_TIMER_ENA BIT(16)
#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
#define CORE_CDC_OFFSET_CFG 0x14C
#define CORE_CSR_CDC_DELAY_CFG 0x150
#define CORE_CDC_SLAVE_DDA_CFG 0x160
#define CORE_CSR_CDC_STATUS0 0x164
#define CORE_CALIBRATION_DONE BIT(0)
#define CORE_CDC_ERROR_CODE_MASK 0x7000000
#define CORE_CSR_CDC_GEN_CFG 0x178
#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
#define CORE_CDC_SWITCH_RC_EN BIT(1)
#define CORE_DDR_200_CFG 0x184
#define CORE_CDC_T4_DLY_SEL BIT(0)
#define CORE_CMDIN_RCLK_EN BIT(1)
#define CORE_START_CDC_TRAFFIC BIT(6)
#define CORE_VENDOR_SPEC3 0x1b0
#define CORE_PWRSAVE_DLL BIT(3)
#define CORE_DDR_CONFIG 0x1b8
#define DDR_CONFIG_POR_VAL 0x80040853
#define CORE_VENDOR_SPEC_CAPABILITIES0 0x11c
#define INVALID_TUNING_PHASE -1
#define SDHCI_MSM_MIN_CLOCK 400000
#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
#define CDR_SELEXT_SHIFT 20
#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
#define CMUX_SHIFT_PHASE_SHIFT 24
#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
struct sdhci_msm_host {
struct platform_device *pdev;
void __iomem *core_mem; /* MSM SDCC mapped address */
int pwr_irq; /* power irq */
struct clk *clk; /* main SD/MMC bus clock */
struct clk *pclk; /* SDHC peripheral bus clock */
struct clk *bus_clk; /* SDHC bus voter clock */
struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
unsigned long clk_rate;
struct mmc_host *mmc;
bool use_14lpp_dll_reset;
bool tuning_done;
bool calibration_done;
u8 saved_tuning_phase;
bool use_cdclp533;
};
static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
unsigned int clock)
{
struct mmc_ios ios = host->mmc->ios;
/*
* The SDHC requires internal clock frequency to be double the
* actual clock that will be set for DDR mode. The controller
* uses the faster clock(100/400MHz) for some of its parts and
* send the actual required clock (50/200MHz) to the card.
*/
if (ios.timing == MMC_TIMING_UHS_DDR50 ||
ios.timing == MMC_TIMING_MMC_DDR52 ||
ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
clock *= 2;
return clock;
}
static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios curr_ios = host->mmc->ios;
int rc;
clock = msm_get_clock_rate_for_bus_mode(host, clock);
rc = clk_set_rate(msm_host->clk, clock);
if (rc) {
pr_err("%s: Failed to set clock at rate %u at timing %d\n",
mmc_hostname(host->mmc), clock,
curr_ios.timing);
return;
}
msm_host->clk_rate = clock;
pr_debug("%s: Setting clock at rate %lu at timing %d\n",
mmc_hostname(host->mmc), clk_get_rate(msm_host->clk),
curr_ios.timing);
}
/* Platform specific tuning */
static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
{
u32 wait_cnt = 50;
u8 ck_out_en;
struct mmc_host *mmc = host->mmc;
/* Poll for CK_OUT_EN bit. max. poll time = 50us */
ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
CORE_CK_OUT_EN);
while (ck_out_en != poll) {
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
mmc_hostname(mmc), poll);
return -ETIMEDOUT;
}
udelay(1);
ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
CORE_CK_OUT_EN);
}
return 0;
}
static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
{
int rc;
static const u8 grey_coded_phase_table[] = {
0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
};
unsigned long flags;
u32 config;
struct mmc_host *mmc = host->mmc;
if (phase > 0xf)
return -EINVAL;
spin_lock_irqsave(&host->lock, flags);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
rc = msm_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of DLL_CONFIG register.
*/
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~CDR_SELEXT_MASK;
config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
rc = msm_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
goto out;
err_out:
dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
mmc_hostname(mmc), phase);
out:
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
/*
* Find out the greatest range of consecuitive selected
* DLL clock output phases that can be used as sampling
* setting for SD3.0 UHS-I card read operation (in SDR104
* timing mode) or for eMMC4.5 card read operation (in
* HS400/HS200 timing mode).
* Select the 3/4 of the range and configure the DLL with the
* selected DLL clock output phase.
*/
static int msm_find_most_appropriate_phase(struct sdhci_host *host,
u8 *phase_table, u8 total_phases)
{
int ret;
u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
u8 phases_per_row[MAX_PHASES] = { 0 };
int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
bool phase_0_found = false, phase_15_found = false;
struct mmc_host *mmc = host->mmc;
if (!total_phases || (total_phases > MAX_PHASES)) {
dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
mmc_hostname(mmc), total_phases);
return -EINVAL;
}
for (cnt = 0; cnt < total_phases; cnt++) {
ranges[row_index][col_index] = phase_table[cnt];
phases_per_row[row_index] += 1;
col_index++;
if ((cnt + 1) == total_phases) {
continue;
/* check if next phase in phase_table is consecutive or not */
} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
row_index++;
col_index = 0;
}
}
if (row_index >= MAX_PHASES)
return -EINVAL;
/* Check if phase-0 is present in first valid window? */
if (!ranges[0][0]) {
phase_0_found = true;
phase_0_raw_index = 0;
/* Check if cycle exist between 2 valid windows */
for (cnt = 1; cnt <= row_index; cnt++) {
if (phases_per_row[cnt]) {
for (i = 0; i < phases_per_row[cnt]; i++) {
if (ranges[cnt][i] == 15) {
phase_15_found = true;
phase_15_raw_index = cnt;
break;
}
}
}
}
}
/* If 2 valid windows form cycle then merge them as single window */
if (phase_0_found && phase_15_found) {
/* number of phases in raw where phase 0 is present */
u8 phases_0 = phases_per_row[phase_0_raw_index];
/* number of phases in raw where phase 15 is present */
u8 phases_15 = phases_per_row[phase_15_raw_index];
if (phases_0 + phases_15 >= MAX_PHASES)
/*
* If there are more than 1 phase windows then total
* number of phases in both the windows should not be
* more than or equal to MAX_PHASES.
*/
return -EINVAL;
/* Merge 2 cyclic windows */
i = phases_15;
for (cnt = 0; cnt < phases_0; cnt++) {
ranges[phase_15_raw_index][i] =
ranges[phase_0_raw_index][cnt];
if (++i >= MAX_PHASES)
break;
}
phases_per_row[phase_0_raw_index] = 0;
phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
}
for (cnt = 0; cnt <= row_index; cnt++) {
if (phases_per_row[cnt] > curr_max) {
curr_max = phases_per_row[cnt];
selected_row_index = cnt;
}
}
i = (curr_max * 3) / 4;
if (i)
i--;
ret = ranges[selected_row_index][i];
if (ret >= MAX_PHASES) {
ret = -EINVAL;
dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
mmc_hostname(mmc), ret);
}
return ret;
}
static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
{
u32 mclk_freq = 0, config;
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clock <= 112000000)
mclk_freq = 0;
else if (host->clock <= 125000000)
mclk_freq = 1;
else if (host->clock <= 137000000)
mclk_freq = 2;
else if (host->clock <= 150000000)
mclk_freq = 3;
else if (host->clock <= 162000000)
mclk_freq = 4;
else if (host->clock <= 175000000)
mclk_freq = 5;
else if (host->clock <= 187000000)
mclk_freq = 6;
else if (host->clock <= 200000000)
mclk_freq = 7;
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~CMUX_SHIFT_PHASE_MASK;
config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
}
/* Initialize the DLL (Programmable Delay Line) */
static int msm_init_cm_dll(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int wait_cnt = 50;
unsigned long flags;
u32 config;
spin_lock_irqsave(&host->lock, flags);
/*
* Make sure that clock is always enabled when DLL
* tuning is in progress. Keeping PWRSAVE ON may
* turn off the clock.
*/
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
config &= ~CORE_CLK_PWRSAVE;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
if (msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
config |= CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
}
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
msm_cm_dll_set_freq(host);
if (msm_host->use_14lpp_dll_reset &&
!IS_ERR_OR_NULL(msm_host->xo_clk)) {
u32 mclk_freq = 0;
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
config &= CORE_FLL_CYCLE_CNT;
if (config)
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
clk_get_rate(msm_host->xo_clk));
else
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
clk_get_rate(msm_host->xo_clk));
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
config &= ~(0xFF << 10);
config |= mclk_freq << 10;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
/* wait for 5us before enabling DLL clock */
udelay(5);
}
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~CORE_DLL_RST;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config &= ~CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
if (msm_host->use_14lpp_dll_reset) {
msm_cm_dll_set_freq(host);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
config &= ~CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
}
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_DLL_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) &
CORE_DLL_LOCK)) {
/* max. wait for 50us sec for LOCK bit to be set */
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
mmc_hostname(mmc));
spin_unlock_irqrestore(&host->lock, flags);
return -ETIMEDOUT;
}
udelay(1);
}
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
static void msm_hc_select_default(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config;
if (!msm_host->use_cdclp533) {
config = readl_relaxed(host->ioaddr +
CORE_VENDOR_SPEC3);
config &= ~CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
CORE_VENDOR_SPEC3);
}
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_DFLT;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
/*
* Disable HC_SELECT_IN to be able to use the UHS mode select
* configuration from Host Control2 register for all other
* modes.
* Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
* in VENDOR_SPEC_FUNC
*/
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
config &= ~CORE_HC_SELECT_IN_EN;
config &= ~CORE_HC_SELECT_IN_MASK;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
static void msm_hc_select_hs400(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios ios = host->mmc->ios;
u32 config, dll_lock;
int rc;
/* Select the divided clock (free running MCLK/2) */
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_HS400;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
/*
* Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
* register
*/
if ((msm_host->tuning_done || ios.enhanced_strobe) &&
!msm_host->calibration_done) {
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
config |= CORE_HC_SELECT_IN_HS400;
config |= CORE_HC_SELECT_IN_EN;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
}
if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
/*
* Poll on DLL_LOCK or DDR_DLL_LOCK bits in
* CORE_DLL_STATUS to be set. This should get set
* within 15 us at 200 MHz.
*/
rc = readl_relaxed_poll_timeout(host->ioaddr +
CORE_DLL_STATUS,
dll_lock,
(dll_lock &
(CORE_DLL_LOCK |
CORE_DDR_DLL_LOCK)), 10,
1000);
if (rc == -ETIMEDOUT)
pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
mmc_hostname(host->mmc), dll_lock);
}
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
/*
* sdhci_msm_hc_select_mode :- In general all timing modes are
* controlled via UHS mode select in Host Control2 register.
* eMMC specific HS200/HS400 doesn't have their respective modes
* defined here, hence we use these values.
*
* HS200 - SDR104 (Since they both are equivalent in functionality)
* HS400 - This involves multiple configurations
* Initially SDR104 - when tuning is required as HS200
* Then when switching to DDR @ 400MHz (HS400) we use
* the vendor specific HC_SELECT_IN to control the mode.
*
* In addition to controlling the modes we also need to select the
* correct input clock for DLL depending on the mode.
*
* HS400 - divided clock (free running MCLK/2)
* All other modes - default (free running MCLK)
*/
void sdhci_msm_hc_select_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
if (ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
msm_hc_select_hs400(host);
else
msm_hc_select_default(host);
}
static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config, calib_done;
int ret;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
config &= ~CORE_CDC_T4_DLY_SEL;
writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config |= CORE_CDC_SWITCH_RC_EN;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
config &= ~CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
/* Perform CDC Register Initialization Sequence */
writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
/* CDC HW Calibration */
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config &= ~CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_HW_AUTOCAL_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
config |= CORE_TIMER_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
calib_done,
(calib_done & CORE_CALIBRATION_DONE),
1, 50);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CDC calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
& CORE_CDC_ERROR_CODE_MASK;
if (ret) {
pr_err("%s: %s: CDC error code %d\n",
mmc_hostname(host->mmc), __func__, ret);
ret = -EINVAL;
goto out;
}
config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
config |= CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
u32 dll_status, config;
int ret;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Currently the CORE_DDR_CONFIG register defaults to desired
* configuration on reset. Currently reprogramming the power on
* reset (POR) value in case it might have been modified by
* bootloaders. In the future, if this changes, then the desired
* values will need to be programmed appropriately.
*/
writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG);
if (mmc->ios.enhanced_strobe) {
config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
config |= CORE_CMDIN_RCLK_EN;
writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
}
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
config |= CORE_DDR_CAL_EN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS,
dll_status,
(dll_status & CORE_DDR_DLL_LOCK),
10, 1000);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3);
config |= CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3);
/*
* Drain writebuffer to ensure above DLL calibration
* and PWRSAVE DLL is enabled.
*/
wmb();
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
int ret;
u32 config;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
if (!mmc->ios.enhanced_strobe) {
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host,
msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
}
if (msm_host->use_cdclp533)
ret = sdhci_msm_cdclp533_calibration(host);
else
ret = sdhci_msm_cm_dll_sdc4_calibration(host);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int tuning_seq_cnt = 3;
u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
int rc;
struct mmc_ios ios = host->mmc->ios;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
/*
* Tuning is required for SDR104, HS200 and HS400 cards and
* if clock frequency is greater than 100MHz in these modes.
*/
if (host->clock <= CORE_FREQ_100MHZ ||
!(ios.timing == MMC_TIMING_MMC_HS400 ||
ios.timing == MMC_TIMING_MMC_HS200 ||
ios.timing == MMC_TIMING_UHS_SDR104))
return 0;
/*
* For HS400 tuning in HS200 timing requires:
* - select MCLK/2 in VENDOR_SPEC
* - program MCLK to 400MHz (or nearest supported) in GCC
*/
if (host->flags & SDHCI_HS400_TUNING) {
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, ios.clock);
host->flags &= ~SDHCI_HS400_TUNING;
}
retry:
/* First of all reset the tuning block */
rc = msm_init_cm_dll(host);
if (rc)
return rc;
phase = 0;
do {
/* Set the phase in delay line hw block */
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
msm_host->saved_tuning_phase = phase;
rc = mmc_send_tuning(mmc, opcode, NULL);
if (!rc) {
/* Tuning is successful at this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
mmc_hostname(mmc), phase);
}
} while (++phase < ARRAY_SIZE(tuned_phases));
if (tuned_phase_cnt) {
rc = msm_find_most_appropriate_phase(host, tuned_phases,
tuned_phase_cnt);
if (rc < 0)
return rc;
else
phase = rc;
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
mmc_hostname(mmc), phase);
} else {
if (--tuning_seq_cnt)
goto retry;
/* Tuning failed */
dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
mmc_hostname(mmc));
rc = -EIO;
}
if (!rc)
msm_host->tuning_done = true;
return rc;
}
/*
* sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
* This needs to be done for both tuning and enhanced_strobe mode.
* DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
* fixed feedback clock is used.
*/
static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->clock > CORE_FREQ_100MHZ &&
(msm_host->tuning_done || ios->enhanced_strobe) &&
!msm_host->calibration_done) {
ret = sdhci_msm_hs400_dll_calibration(host);
if (!ret)
msm_host->calibration_done = true;
else
pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
mmc_hostname(host->mmc), ret);
}
}
static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2;
u32 config;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
break;
case MMC_TIMING_MMC_HS400:
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
}
/*
* When clock frequency is less than 100MHz, the feedback clock must be
* provided and DLL must not be used so that tuning can be skipped. To
* provide feedback clock, the mode selection can be any value less
* than 3'b011 in bits [2:0] of HOST CONTROL2 register.
*/
if (host->clock <= CORE_FREQ_100MHZ) {
if (uhs == MMC_TIMING_MMC_HS400 ||
uhs == MMC_TIMING_MMC_HS200 ||
uhs == MMC_TIMING_UHS_SDR104)
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
/*
* DLL is not required for clock <= 100MHz
* Thus, make sure DLL it is disabled when not required
*/
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
/*
* The DLL needs to be restored and CDCLP533 recalibrated
* when the clock frequency is set back to 400MHz.
*/
msm_host->calibration_done = false;
}
dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
sdhci_msm_hs400(host, &mmc->ios);
}
static void sdhci_msm_voltage_switch(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 irq_status, irq_ack = 0;
irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS);
irq_status &= INT_MASK;
writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR);
if (irq_status & (CORE_PWRCTL_BUS_ON | CORE_PWRCTL_BUS_OFF))
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
if (irq_status & (CORE_PWRCTL_IO_LOW | CORE_PWRCTL_IO_HIGH))
irq_ack |= CORE_PWRCTL_IO_SUCCESS;
/*
* The driver has to acknowledge the interrupt, switch voltages and
* report back if it succeded or not to this register. The voltage
* switches are handled by the sdhci core, so just report success.
*/
writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL);
}
static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
{
struct sdhci_host *host = (struct sdhci_host *)data;
sdhci_msm_voltage_switch(host);
return IRQ_HANDLED;
}
static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return clk_round_rate(msm_host->clk, ULONG_MAX);
}
static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
{
return SDHCI_MSM_MIN_CLOCK;
}
/**
* __sdhci_msm_set_clock - sdhci_msm clock control.
*
* Description:
* MSM controller does not use internal divider and
* instead directly control the GCC clock as per
* HW recommendation.
**/
void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
/*
* Keep actual_clock as zero -
* - since there is no divider used so no need of having actual_clock.
* - MSM controller uses SDCLK for data timeout calculation. If
* actual_clock is zero, host->clock is taken for calculation.
*/
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
/*
* MSM controller do not use clock divider.
* Thus read SDHCI_CLOCK_CONTROL and only enable
* clock with no divider value programmed.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!clock) {
msm_host->clk_rate = clock;
goto out;
}
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, clock);
out:
__sdhci_msm_set_clock(host, clock);
}
static const struct of_device_id sdhci_msm_dt_match[] = {
{ .compatible = "qcom,sdhci-msm-v4" },
{},
};
MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
static const struct sdhci_ops sdhci_msm_ops = {
.reset = sdhci_reset,
.set_clock = sdhci_msm_set_clock,
.get_min_clock = sdhci_msm_get_min_clock,
.get_max_clock = sdhci_msm_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
.voltage_switch = sdhci_msm_voltage_switch,
};
static const struct sdhci_pltfm_data sdhci_msm_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_NO_CARD_NO_RESET |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &sdhci_msm_ops,
};
static int sdhci_msm_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_msm_host *msm_host;
struct resource *core_memres;
int ret;
u16 host_version, core_minor;
u32 core_version, config;
u8 core_major;
host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
msm_host = sdhci_pltfm_priv(pltfm_host);
msm_host->mmc = host->mmc;
msm_host->pdev = pdev;
ret = mmc_of_parse(host->mmc);
if (ret)
goto pltfm_free;
sdhci_get_of_property(pdev);
msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
/* Setup SDCC bus voter clock. */
msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (!IS_ERR(msm_host->bus_clk)) {
/* Vote for max. clk rate for max. performance */
ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
if (ret)
goto pltfm_free;
ret = clk_prepare_enable(msm_host->bus_clk);
if (ret)
goto pltfm_free;
}
/* Setup main peripheral bus clock */
msm_host->pclk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(msm_host->pclk)) {
ret = PTR_ERR(msm_host->pclk);
dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
ret = clk_prepare_enable(msm_host->pclk);
if (ret)
goto bus_clk_disable;
/* Setup SDC MMC clock */
msm_host->clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(msm_host->clk)) {
ret = PTR_ERR(msm_host->clk);
dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
goto pclk_disable;
}
/*
* xo clock is needed for FLL feature of cm_dll.
* In case if xo clock is not mentioned in DT, warn and proceed.
*/
msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
if (IS_ERR(msm_host->xo_clk)) {
ret = PTR_ERR(msm_host->xo_clk);
dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
}
/* Vote for maximum clock rate for maximum performance */
ret = clk_set_rate(msm_host->clk, INT_MAX);
if (ret)
dev_warn(&pdev->dev, "core clock boost failed\n");
ret = clk_prepare_enable(msm_host->clk);
if (ret)
goto pclk_disable;
core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres);
if (IS_ERR(msm_host->core_mem)) {
dev_err(&pdev->dev, "Failed to remap registers\n");
ret = PTR_ERR(msm_host->core_mem);
goto clk_disable;
}
/* Reset the vendor spec register to power on reset state */
writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
host->ioaddr + CORE_VENDOR_SPEC);
/* Set HC_MODE_EN bit in HC_MODE register */
writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE));
config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE);
config |= FF_CLK_SW_RST_DIS;
writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE);
host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT));
core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION);
core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
CORE_VERSION_MAJOR_SHIFT;
core_minor = core_version & CORE_VERSION_MINOR_MASK;
dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
core_version, core_major, core_minor);
if (core_major == 1 && core_minor >= 0x42)
msm_host->use_14lpp_dll_reset = true;
/*
* SDCC 5 controller with major version 1, minor version 0x34 and later
* with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
*/
if (core_major == 1 && core_minor < 0x34)
msm_host->use_cdclp533 = true;
/*
* Support for some capabilities is not advertised by newer
* controller versions and must be explicitly enabled.
*/
if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
writel_relaxed(config, host->ioaddr +
CORE_VENDOR_SPEC_CAPABILITIES0);
}
/* Setup IRQ for handling power/voltage tasks with PMIC */
msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
if (msm_host->pwr_irq < 0) {
dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
msm_host->pwr_irq);
ret = msm_host->pwr_irq;
goto clk_disable;
}
ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
sdhci_msm_pwr_irq, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret) {
dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
goto clk_disable;
}
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev,
MSM_MMC_AUTOSUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&pdev->dev);
host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
ret = sdhci_add_host(host);
if (ret)
goto pm_runtime_disable;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
pm_runtime_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_disable:
clk_disable_unprepare(msm_host->clk);
pclk_disable:
clk_disable_unprepare(msm_host->pclk);
bus_clk_disable:
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static int sdhci_msm_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
0xffffffff);
sdhci_remove_host(host, dead);
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_disable_unprepare(msm_host->clk);
clk_disable_unprepare(msm_host->pclk);
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
sdhci_pltfm_free(pdev);
return 0;
}
#ifdef CONFIG_PM
static int sdhci_msm_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
clk_disable_unprepare(msm_host->clk);
clk_disable_unprepare(msm_host->pclk);
return 0;
}
static int sdhci_msm_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = clk_prepare_enable(msm_host->clk);
if (ret) {
dev_err(dev, "clk_enable failed for core_clk: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(msm_host->pclk);
if (ret) {
dev_err(dev, "clk_enable failed for iface_clk: %d\n", ret);
clk_disable_unprepare(msm_host->clk);
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops sdhci_msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
sdhci_msm_runtime_resume,
NULL)
};
static struct platform_driver sdhci_msm_driver = {
.probe = sdhci_msm_probe,
.remove = sdhci_msm_remove,
.driver = {
.name = "sdhci_msm",
.of_match_table = sdhci_msm_dt_match,
.pm = &sdhci_msm_pm_ops,
},
};
module_platform_driver(sdhci_msm_driver);
MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL v2");