870 lines
21 KiB
C
870 lines
21 KiB
C
/*
|
|
* Intel PCH/PCU SPI flash driver.
|
|
*
|
|
* Copyright (C) 2016, Intel Corporation
|
|
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
#include <linux/platform_data/intel-spi.h>
|
|
|
|
#include "intel-spi.h"
|
|
|
|
/* Offsets are from @ispi->base */
|
|
#define BFPREG 0x00
|
|
|
|
#define HSFSTS_CTL 0x04
|
|
#define HSFSTS_CTL_FSMIE BIT(31)
|
|
#define HSFSTS_CTL_FDBC_SHIFT 24
|
|
#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
|
|
|
|
#define HSFSTS_CTL_FCYCLE_SHIFT 17
|
|
#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
/* HW sequencer opcodes */
|
|
#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
|
|
#define HSFSTS_CTL_FGO BIT(16)
|
|
#define HSFSTS_CTL_FLOCKDN BIT(15)
|
|
#define HSFSTS_CTL_FDV BIT(14)
|
|
#define HSFSTS_CTL_SCIP BIT(5)
|
|
#define HSFSTS_CTL_AEL BIT(2)
|
|
#define HSFSTS_CTL_FCERR BIT(1)
|
|
#define HSFSTS_CTL_FDONE BIT(0)
|
|
|
|
#define FADDR 0x08
|
|
#define DLOCK 0x0c
|
|
#define FDATA(n) (0x10 + ((n) * 4))
|
|
|
|
#define FRACC 0x50
|
|
|
|
#define FREG(n) (0x54 + ((n) * 4))
|
|
#define FREG_BASE_MASK 0x3fff
|
|
#define FREG_LIMIT_SHIFT 16
|
|
#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
|
|
|
|
/* Offset is from @ispi->pregs */
|
|
#define PR(n) ((n) * 4)
|
|
#define PR_WPE BIT(31)
|
|
#define PR_LIMIT_SHIFT 16
|
|
#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
|
|
#define PR_RPE BIT(15)
|
|
#define PR_BASE_MASK 0x3fff
|
|
|
|
/* Offsets are from @ispi->sregs */
|
|
#define SSFSTS_CTL 0x00
|
|
#define SSFSTS_CTL_FSMIE BIT(23)
|
|
#define SSFSTS_CTL_DS BIT(22)
|
|
#define SSFSTS_CTL_DBC_SHIFT 16
|
|
#define SSFSTS_CTL_SPOP BIT(11)
|
|
#define SSFSTS_CTL_ACS BIT(10)
|
|
#define SSFSTS_CTL_SCGO BIT(9)
|
|
#define SSFSTS_CTL_COP_SHIFT 12
|
|
#define SSFSTS_CTL_FRS BIT(7)
|
|
#define SSFSTS_CTL_DOFRS BIT(6)
|
|
#define SSFSTS_CTL_AEL BIT(4)
|
|
#define SSFSTS_CTL_FCERR BIT(3)
|
|
#define SSFSTS_CTL_FDONE BIT(2)
|
|
#define SSFSTS_CTL_SCIP BIT(0)
|
|
|
|
#define PREOP_OPTYPE 0x04
|
|
#define OPMENU0 0x08
|
|
#define OPMENU1 0x0c
|
|
|
|
#define OPTYPE_READ_NO_ADDR 0
|
|
#define OPTYPE_WRITE_NO_ADDR 1
|
|
#define OPTYPE_READ_WITH_ADDR 2
|
|
#define OPTYPE_WRITE_WITH_ADDR 3
|
|
|
|
/* CPU specifics */
|
|
#define BYT_PR 0x74
|
|
#define BYT_SSFSTS_CTL 0x90
|
|
#define BYT_BCR 0xfc
|
|
#define BYT_BCR_WPD BIT(0)
|
|
#define BYT_FREG_NUM 5
|
|
#define BYT_PR_NUM 5
|
|
|
|
#define LPT_PR 0x74
|
|
#define LPT_SSFSTS_CTL 0x90
|
|
#define LPT_FREG_NUM 5
|
|
#define LPT_PR_NUM 5
|
|
|
|
#define BXT_PR 0x84
|
|
#define BXT_SSFSTS_CTL 0xa0
|
|
#define BXT_FREG_NUM 12
|
|
#define BXT_PR_NUM 6
|
|
|
|
#define LVSCC 0xc4
|
|
#define UVSCC 0xc8
|
|
#define ERASE_OPCODE_SHIFT 8
|
|
#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
|
|
#define ERASE_64K_OPCODE_SHIFT 16
|
|
#define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
|
|
|
|
#define INTEL_SPI_TIMEOUT 5000 /* ms */
|
|
#define INTEL_SPI_FIFO_SZ 64
|
|
|
|
/**
|
|
* struct intel_spi - Driver private data
|
|
* @dev: Device pointer
|
|
* @info: Pointer to board specific info
|
|
* @nor: SPI NOR layer structure
|
|
* @base: Beginning of MMIO space
|
|
* @pregs: Start of protection registers
|
|
* @sregs: Start of software sequencer registers
|
|
* @nregions: Maximum number of regions
|
|
* @pr_num: Maximum number of protected range registers
|
|
* @writeable: Is the chip writeable
|
|
* @locked: Is SPI setting locked
|
|
* @swseq_reg: Use SW sequencer in register reads/writes
|
|
* @swseq_erase: Use SW sequencer in erase operation
|
|
* @erase_64k: 64k erase supported
|
|
* @opcodes: Opcodes which are supported. This are programmed by BIOS
|
|
* before it locks down the controller.
|
|
*/
|
|
struct intel_spi {
|
|
struct device *dev;
|
|
const struct intel_spi_boardinfo *info;
|
|
struct spi_nor nor;
|
|
void __iomem *base;
|
|
void __iomem *pregs;
|
|
void __iomem *sregs;
|
|
size_t nregions;
|
|
size_t pr_num;
|
|
bool writeable;
|
|
bool locked;
|
|
bool swseq_reg;
|
|
bool swseq_erase;
|
|
bool erase_64k;
|
|
u8 opcodes[8];
|
|
};
|
|
|
|
static bool writeable;
|
|
module_param(writeable, bool, 0);
|
|
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
|
|
|
|
static void intel_spi_dump_regs(struct intel_spi *ispi)
|
|
{
|
|
u32 value;
|
|
int i;
|
|
|
|
dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
|
|
|
|
value = readl(ispi->base + HSFSTS_CTL);
|
|
dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
|
|
if (value & HSFSTS_CTL_FLOCKDN)
|
|
dev_dbg(ispi->dev, "-> Locked\n");
|
|
|
|
dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
|
|
dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
|
|
|
|
for (i = 0; i < 16; i++)
|
|
dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
|
|
i, readl(ispi->base + FDATA(i)));
|
|
|
|
dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
|
|
|
|
for (i = 0; i < ispi->nregions; i++)
|
|
dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
|
|
readl(ispi->base + FREG(i)));
|
|
for (i = 0; i < ispi->pr_num; i++)
|
|
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
|
|
readl(ispi->pregs + PR(i)));
|
|
|
|
value = readl(ispi->sregs + SSFSTS_CTL);
|
|
dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
|
|
dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
|
|
readl(ispi->sregs + PREOP_OPTYPE));
|
|
dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
|
|
dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
|
|
|
|
if (ispi->info->type == INTEL_SPI_BYT)
|
|
dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
|
|
|
|
dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
|
|
dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
|
|
|
|
dev_dbg(ispi->dev, "Protected regions:\n");
|
|
for (i = 0; i < ispi->pr_num; i++) {
|
|
u32 base, limit;
|
|
|
|
value = readl(ispi->pregs + PR(i));
|
|
if (!(value & (PR_WPE | PR_RPE)))
|
|
continue;
|
|
|
|
limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
|
base = value & PR_BASE_MASK;
|
|
|
|
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
|
|
i, base << 12, (limit << 12) | 0xfff,
|
|
value & PR_WPE ? 'W' : '.',
|
|
value & PR_RPE ? 'R' : '.');
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "Flash regions:\n");
|
|
for (i = 0; i < ispi->nregions; i++) {
|
|
u32 region, base, limit;
|
|
|
|
region = readl(ispi->base + FREG(i));
|
|
base = region & FREG_BASE_MASK;
|
|
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
|
|
|
if (base >= limit || (i > 0 && limit == 0))
|
|
dev_dbg(ispi->dev, " %02d disabled\n", i);
|
|
else
|
|
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
|
|
i, base << 12, (limit << 12) | 0xfff);
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
|
|
ispi->swseq_reg ? 'S' : 'H');
|
|
dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
|
|
ispi->swseq_erase ? 'S' : 'H');
|
|
}
|
|
|
|
/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
|
|
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
|
|
{
|
|
size_t bytes;
|
|
int i = 0;
|
|
|
|
if (size > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
while (size > 0) {
|
|
bytes = min_t(size_t, size, 4);
|
|
memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
|
|
size -= bytes;
|
|
buf += bytes;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
|
|
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
|
|
size_t size)
|
|
{
|
|
size_t bytes;
|
|
int i = 0;
|
|
|
|
if (size > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
while (size > 0) {
|
|
bytes = min_t(size_t, size, 4);
|
|
memcpy_toio(ispi->base + FDATA(i), buf, bytes);
|
|
size -= bytes;
|
|
buf += bytes;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
|
|
{
|
|
u32 val;
|
|
|
|
return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
|
|
!(val & HSFSTS_CTL_SCIP), 0,
|
|
INTEL_SPI_TIMEOUT * 1000);
|
|
}
|
|
|
|
static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
|
|
{
|
|
u32 val;
|
|
|
|
return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
|
|
!(val & SSFSTS_CTL_SCIP), 0,
|
|
INTEL_SPI_TIMEOUT * 1000);
|
|
}
|
|
|
|
static int intel_spi_init(struct intel_spi *ispi)
|
|
{
|
|
u32 opmenu0, opmenu1, lvscc, uvscc, val;
|
|
int i;
|
|
|
|
switch (ispi->info->type) {
|
|
case INTEL_SPI_BYT:
|
|
ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + BYT_PR;
|
|
ispi->nregions = BYT_FREG_NUM;
|
|
ispi->pr_num = BYT_PR_NUM;
|
|
ispi->swseq_reg = true;
|
|
|
|
if (writeable) {
|
|
/* Disable write protection */
|
|
val = readl(ispi->base + BYT_BCR);
|
|
if (!(val & BYT_BCR_WPD)) {
|
|
val |= BYT_BCR_WPD;
|
|
writel(val, ispi->base + BYT_BCR);
|
|
val = readl(ispi->base + BYT_BCR);
|
|
}
|
|
|
|
ispi->writeable = !!(val & BYT_BCR_WPD);
|
|
}
|
|
|
|
break;
|
|
|
|
case INTEL_SPI_LPT:
|
|
ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + LPT_PR;
|
|
ispi->nregions = LPT_FREG_NUM;
|
|
ispi->pr_num = LPT_PR_NUM;
|
|
ispi->swseq_reg = true;
|
|
break;
|
|
|
|
case INTEL_SPI_BXT:
|
|
ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + BXT_PR;
|
|
ispi->nregions = BXT_FREG_NUM;
|
|
ispi->pr_num = BXT_PR_NUM;
|
|
ispi->erase_64k = true;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Disable #SMI generation from HW sequencer */
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~HSFSTS_CTL_FSMIE;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
/*
|
|
* Determine whether erase operation should use HW or SW sequencer.
|
|
*
|
|
* The HW sequencer has a predefined list of opcodes, with only the
|
|
* erase opcode being programmable in LVSCC and UVSCC registers.
|
|
* If these registers don't contain a valid erase opcode, erase
|
|
* cannot be done using HW sequencer.
|
|
*/
|
|
lvscc = readl(ispi->base + LVSCC);
|
|
uvscc = readl(ispi->base + UVSCC);
|
|
if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
|
|
ispi->swseq_erase = true;
|
|
/* SPI controller on Intel BXT supports 64K erase opcode */
|
|
if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
|
|
if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
|
|
!(uvscc & ERASE_64K_OPCODE_MASK))
|
|
ispi->erase_64k = false;
|
|
|
|
/*
|
|
* Some controllers can only do basic operations using hardware
|
|
* sequencer. All other operations are supposed to be carried out
|
|
* using software sequencer.
|
|
*/
|
|
if (ispi->swseq_reg) {
|
|
/* Disable #SMI generation from SW sequencer */
|
|
val = readl(ispi->sregs + SSFSTS_CTL);
|
|
val &= ~SSFSTS_CTL_FSMIE;
|
|
writel(val, ispi->sregs + SSFSTS_CTL);
|
|
}
|
|
|
|
/* Check controller's lock status */
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
|
|
|
|
if (ispi->locked) {
|
|
/*
|
|
* BIOS programs allowed opcodes and then locks down the
|
|
* register. So read back what opcodes it decided to support.
|
|
* That's the set we are going to support as well.
|
|
*/
|
|
opmenu0 = readl(ispi->sregs + OPMENU0);
|
|
opmenu1 = readl(ispi->sregs + OPMENU1);
|
|
|
|
if (opmenu0 && opmenu1) {
|
|
for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
|
|
ispi->opcodes[i] = opmenu0 >> i * 8;
|
|
ispi->opcodes[i + 4] = opmenu1 >> i * 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
intel_spi_dump_regs(ispi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
|
|
{
|
|
int i;
|
|
int preop;
|
|
|
|
if (ispi->locked) {
|
|
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
|
|
if (ispi->opcodes[i] == opcode)
|
|
return i;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The lock is off, so just use index 0 */
|
|
writel(opcode, ispi->sregs + OPMENU0);
|
|
preop = readw(ispi->sregs + PREOP_OPTYPE);
|
|
writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
|
|
{
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
|
|
|
|
switch (opcode) {
|
|
case SPINOR_OP_RDID:
|
|
val |= HSFSTS_CTL_FCYCLE_RDID;
|
|
break;
|
|
case SPINOR_OP_WRSR:
|
|
val |= HSFSTS_CTL_FCYCLE_WRSR;
|
|
break;
|
|
case SPINOR_OP_RDSR:
|
|
val |= HSFSTS_CTL_FCYCLE_RDSR;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (len > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
|
|
int optype)
|
|
{
|
|
u32 val = 0, status;
|
|
u16 preop;
|
|
int ret;
|
|
|
|
ret = intel_spi_opcode_index(ispi, opcode, optype);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (len > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
/* Only mark 'Data Cycle' bit when there is data to be transferred */
|
|
if (len > 0)
|
|
val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
|
|
val |= ret << SSFSTS_CTL_COP_SHIFT;
|
|
val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
|
|
val |= SSFSTS_CTL_SCGO;
|
|
preop = readw(ispi->sregs + PREOP_OPTYPE);
|
|
if (preop) {
|
|
val |= SSFSTS_CTL_ACS;
|
|
if (preop >> 8)
|
|
val |= SSFSTS_CTL_SPOP;
|
|
}
|
|
writel(val, ispi->sregs + SSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_sw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->sregs + SSFSTS_CTL);
|
|
if (status & SSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
else if (status & SSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
|
|
{
|
|
struct intel_spi *ispi = nor->priv;
|
|
int ret;
|
|
|
|
/* Address of the first chip */
|
|
writel(0, ispi->base + FADDR);
|
|
|
|
if (ispi->swseq_reg)
|
|
ret = intel_spi_sw_cycle(ispi, opcode, len,
|
|
OPTYPE_READ_NO_ADDR);
|
|
else
|
|
ret = intel_spi_hw_cycle(ispi, opcode, len);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_spi_read_block(ispi, buf, len);
|
|
}
|
|
|
|
static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
|
|
{
|
|
struct intel_spi *ispi = nor->priv;
|
|
int ret;
|
|
|
|
/*
|
|
* This is handled with atomic operation and preop code in Intel
|
|
* controller so skip it here now. If the controller is not locked,
|
|
* program the opcode to the PREOP register for later use.
|
|
*/
|
|
if (opcode == SPINOR_OP_WREN) {
|
|
if (!ispi->locked)
|
|
writel(opcode, ispi->sregs + PREOP_OPTYPE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
writel(0, ispi->base + FADDR);
|
|
|
|
/* Write the value beforehand */
|
|
ret = intel_spi_write_block(ispi, buf, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ispi->swseq_reg)
|
|
return intel_spi_sw_cycle(ispi, opcode, len,
|
|
OPTYPE_WRITE_NO_ADDR);
|
|
return intel_spi_hw_cycle(ispi, opcode, len);
|
|
}
|
|
|
|
static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
|
|
u_char *read_buf)
|
|
{
|
|
struct intel_spi *ispi = nor->priv;
|
|
size_t block_size, retlen = 0;
|
|
u32 val, status;
|
|
ssize_t ret;
|
|
|
|
switch (nor->read_opcode) {
|
|
case SPINOR_OP_READ:
|
|
case SPINOR_OP_READ_FAST:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (len > 0) {
|
|
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
|
|
|
|
writel(from, ispi->base + FADDR);
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCYCLE_READ;
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
ret = -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
ret = -EACCES;
|
|
|
|
if (ret < 0) {
|
|
dev_err(ispi->dev, "read error: %llx: %#x\n", from,
|
|
status);
|
|
return ret;
|
|
}
|
|
|
|
ret = intel_spi_read_block(ispi, read_buf, block_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
len -= block_size;
|
|
from += block_size;
|
|
retlen += block_size;
|
|
read_buf += block_size;
|
|
}
|
|
|
|
return retlen;
|
|
}
|
|
|
|
static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
|
|
const u_char *write_buf)
|
|
{
|
|
struct intel_spi *ispi = nor->priv;
|
|
size_t block_size, retlen = 0;
|
|
u32 val, status;
|
|
ssize_t ret;
|
|
|
|
while (len > 0) {
|
|
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
|
|
|
|
writel(to, ispi->base + FADDR);
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCYCLE_WRITE;
|
|
|
|
ret = intel_spi_write_block(ispi, write_buf, block_size);
|
|
if (ret) {
|
|
dev_err(ispi->dev, "failed to write block\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Start the write now */
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret) {
|
|
dev_err(ispi->dev, "timeout\n");
|
|
return ret;
|
|
}
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
ret = -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
ret = -EACCES;
|
|
|
|
if (ret < 0) {
|
|
dev_err(ispi->dev, "write error: %llx: %#x\n", to,
|
|
status);
|
|
return ret;
|
|
}
|
|
|
|
len -= block_size;
|
|
to += block_size;
|
|
retlen += block_size;
|
|
write_buf += block_size;
|
|
}
|
|
|
|
return retlen;
|
|
}
|
|
|
|
static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
|
|
{
|
|
size_t erase_size, len = nor->mtd.erasesize;
|
|
struct intel_spi *ispi = nor->priv;
|
|
u32 val, status, cmd;
|
|
int ret;
|
|
|
|
/* If the hardware can do 64k erase use that when possible */
|
|
if (len >= SZ_64K && ispi->erase_64k) {
|
|
cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
|
|
erase_size = SZ_64K;
|
|
} else {
|
|
cmd = HSFSTS_CTL_FCYCLE_ERASE;
|
|
erase_size = SZ_4K;
|
|
}
|
|
|
|
if (ispi->swseq_erase) {
|
|
while (len > 0) {
|
|
writel(offs, ispi->base + FADDR);
|
|
|
|
ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
|
|
0, OPTYPE_WRITE_WITH_ADDR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offs += erase_size;
|
|
len -= erase_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
while (len > 0) {
|
|
writel(offs, ispi->base + FADDR);
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= cmd;
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
offs += erase_size;
|
|
len -= erase_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool intel_spi_is_protected(const struct intel_spi *ispi,
|
|
unsigned int base, unsigned int limit)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ispi->pr_num; i++) {
|
|
u32 pr_base, pr_limit, pr_value;
|
|
|
|
pr_value = readl(ispi->pregs + PR(i));
|
|
if (!(pr_value & (PR_WPE | PR_RPE)))
|
|
continue;
|
|
|
|
pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
|
pr_base = pr_value & PR_BASE_MASK;
|
|
|
|
if (pr_base >= base && pr_limit <= limit)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* There will be a single partition holding all enabled flash regions. We
|
|
* call this "BIOS".
|
|
*/
|
|
static void intel_spi_fill_partition(struct intel_spi *ispi,
|
|
struct mtd_partition *part)
|
|
{
|
|
u64 end;
|
|
int i;
|
|
|
|
memset(part, 0, sizeof(*part));
|
|
|
|
/* Start from the mandatory descriptor region */
|
|
part->size = 4096;
|
|
part->name = "BIOS";
|
|
|
|
/*
|
|
* Now try to find where this partition ends based on the flash
|
|
* region registers.
|
|
*/
|
|
for (i = 1; i < ispi->nregions; i++) {
|
|
u32 region, base, limit;
|
|
|
|
region = readl(ispi->base + FREG(i));
|
|
base = region & FREG_BASE_MASK;
|
|
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
|
|
|
if (base >= limit || limit == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If any of the regions have protection bits set, make the
|
|
* whole partition read-only to be on the safe side.
|
|
*/
|
|
if (intel_spi_is_protected(ispi, base, limit))
|
|
ispi->writeable = false;
|
|
|
|
end = (limit << 12) + 4096;
|
|
if (end > part->size)
|
|
part->size = end;
|
|
}
|
|
}
|
|
|
|
struct intel_spi *intel_spi_probe(struct device *dev,
|
|
struct resource *mem, const struct intel_spi_boardinfo *info)
|
|
{
|
|
const struct spi_nor_hwcaps hwcaps = {
|
|
.mask = SNOR_HWCAPS_READ |
|
|
SNOR_HWCAPS_READ_FAST |
|
|
SNOR_HWCAPS_PP,
|
|
};
|
|
struct mtd_partition part;
|
|
struct intel_spi *ispi;
|
|
int ret;
|
|
|
|
if (!info || !mem)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
|
|
if (!ispi)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ispi->base = devm_ioremap_resource(dev, mem);
|
|
if (IS_ERR(ispi->base))
|
|
return ERR_CAST(ispi->base);
|
|
|
|
ispi->dev = dev;
|
|
ispi->info = info;
|
|
ispi->writeable = info->writeable;
|
|
|
|
ret = intel_spi_init(ispi);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
ispi->nor.dev = ispi->dev;
|
|
ispi->nor.priv = ispi;
|
|
ispi->nor.read_reg = intel_spi_read_reg;
|
|
ispi->nor.write_reg = intel_spi_write_reg;
|
|
ispi->nor.read = intel_spi_read;
|
|
ispi->nor.write = intel_spi_write;
|
|
ispi->nor.erase = intel_spi_erase;
|
|
|
|
ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
|
|
if (ret) {
|
|
dev_info(dev, "failed to locate the chip\n");
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
intel_spi_fill_partition(ispi, &part);
|
|
|
|
/* Prevent writes if not explicitly enabled */
|
|
if (!ispi->writeable || !writeable)
|
|
ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
|
|
|
|
ret = mtd_device_parse_register(&ispi->nor.mtd, NULL, NULL, &part, 1);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return ispi;
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_spi_probe);
|
|
|
|
int intel_spi_remove(struct intel_spi *ispi)
|
|
{
|
|
return mtd_device_unregister(&ispi->nor.mtd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_spi_remove);
|
|
|
|
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
|
|
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|