linux_old1/kernel/sys.c

2096 lines
50 KiB
C
Raw Blame History

/*
* linux/kernel/sys.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/utsname.h>
#include <linux/mman.h>
#include <linux/smp_lock.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/prctl.h>
#include <linux/highuid.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/kexec.h>
#include <linux/workqueue.h>
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/key.h>
#include <linux/times.h>
#include <linux/posix-timers.h>
#include <linux/security.h>
#include <linux/dcookies.h>
#include <linux/suspend.h>
#include <linux/tty.h>
#include <linux/signal.h>
#include <linux/cn_proc.h>
#include <linux/getcpu.h>
#include <linux/compat.h>
#include <linux/syscalls.h>
#include <linux/kprobes.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/unistd.h>
#ifndef SET_UNALIGN_CTL
# define SET_UNALIGN_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_UNALIGN_CTL
# define GET_UNALIGN_CTL(a,b) (-EINVAL)
#endif
#ifndef SET_FPEMU_CTL
# define SET_FPEMU_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_FPEMU_CTL
# define GET_FPEMU_CTL(a,b) (-EINVAL)
#endif
#ifndef SET_FPEXC_CTL
# define SET_FPEXC_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_FPEXC_CTL
# define GET_FPEXC_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_ENDIAN
# define GET_ENDIAN(a,b) (-EINVAL)
#endif
#ifndef SET_ENDIAN
# define SET_ENDIAN(a,b) (-EINVAL)
#endif
/*
* this is where the system-wide overflow UID and GID are defined, for
* architectures that now have 32-bit UID/GID but didn't in the past
*/
int overflowuid = DEFAULT_OVERFLOWUID;
int overflowgid = DEFAULT_OVERFLOWGID;
#ifdef CONFIG_UID16
EXPORT_SYMBOL(overflowuid);
EXPORT_SYMBOL(overflowgid);
#endif
/*
* the same as above, but for filesystems which can only store a 16-bit
* UID and GID. as such, this is needed on all architectures
*/
int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
EXPORT_SYMBOL(fs_overflowuid);
EXPORT_SYMBOL(fs_overflowgid);
/*
* this indicates whether you can reboot with ctrl-alt-del: the default is yes
*/
int C_A_D = 1;
int cad_pid = 1;
/*
* Notifier list for kernel code which wants to be called
* at shutdown. This is used to stop any idling DMA operations
* and the like.
*/
static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
/*
* Notifier chain core routines. The exported routines below
* are layered on top of these, with appropriate locking added.
*/
static int notifier_chain_register(struct notifier_block **nl,
struct notifier_block *n)
{
while ((*nl) != NULL) {
if (n->priority > (*nl)->priority)
break;
nl = &((*nl)->next);
}
n->next = *nl;
rcu_assign_pointer(*nl, n);
return 0;
}
static int notifier_chain_unregister(struct notifier_block **nl,
struct notifier_block *n)
{
while ((*nl) != NULL) {
if ((*nl) == n) {
rcu_assign_pointer(*nl, n->next);
return 0;
}
nl = &((*nl)->next);
}
return -ENOENT;
}
static int __kprobes notifier_call_chain(struct notifier_block **nl,
unsigned long val, void *v)
{
int ret = NOTIFY_DONE;
struct notifier_block *nb, *next_nb;
nb = rcu_dereference(*nl);
while (nb) {
next_nb = rcu_dereference(nb->next);
ret = nb->notifier_call(nb, val, v);
if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
break;
nb = next_nb;
}
return ret;
}
/*
* Atomic notifier chain routines. Registration and unregistration
* use a mutex, and call_chain is synchronized by RCU (no locks).
*/
/**
* atomic_notifier_chain_register - Add notifier to an atomic notifier chain
* @nh: Pointer to head of the atomic notifier chain
* @n: New entry in notifier chain
*
* Adds a notifier to an atomic notifier chain.
*
* Currently always returns zero.
*/
int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
struct notifier_block *n)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nh->lock, flags);
ret = notifier_chain_register(&nh->head, n);
spin_unlock_irqrestore(&nh->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
/**
* atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
* @nh: Pointer to head of the atomic notifier chain
* @n: Entry to remove from notifier chain
*
* Removes a notifier from an atomic notifier chain.
*
* Returns zero on success or %-ENOENT on failure.
*/
int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
struct notifier_block *n)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nh->lock, flags);
ret = notifier_chain_unregister(&nh->head, n);
spin_unlock_irqrestore(&nh->lock, flags);
synchronize_rcu();
return ret;
}
EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
/**
* atomic_notifier_call_chain - Call functions in an atomic notifier chain
* @nh: Pointer to head of the atomic notifier chain
* @val: Value passed unmodified to notifier function
* @v: Pointer passed unmodified to notifier function
*
* Calls each function in a notifier chain in turn. The functions
* run in an atomic context, so they must not block.
* This routine uses RCU to synchronize with changes to the chain.
*
* If the return value of the notifier can be and'ed
* with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
* will return immediately, with the return value of
* the notifier function which halted execution.
* Otherwise the return value is the return value
* of the last notifier function called.
*/
int atomic_notifier_call_chain(struct atomic_notifier_head *nh,
unsigned long val, void *v)
{
int ret;
rcu_read_lock();
ret = notifier_call_chain(&nh->head, val, v);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
/*
* Blocking notifier chain routines. All access to the chain is
* synchronized by an rwsem.
*/
/**
* blocking_notifier_chain_register - Add notifier to a blocking notifier chain
* @nh: Pointer to head of the blocking notifier chain
* @n: New entry in notifier chain
*
* Adds a notifier to a blocking notifier chain.
* Must be called in process context.
*
* Currently always returns zero.
*/
int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
struct notifier_block *n)
{
int ret;
/*
* This code gets used during boot-up, when task switching is
* not yet working and interrupts must remain disabled. At
* such times we must not call down_write().
*/
if (unlikely(system_state == SYSTEM_BOOTING))
return notifier_chain_register(&nh->head, n);
down_write(&nh->rwsem);
ret = notifier_chain_register(&nh->head, n);
up_write(&nh->rwsem);
return ret;
}
EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
/**
* blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
* @nh: Pointer to head of the blocking notifier chain
* @n: Entry to remove from notifier chain
*
* Removes a notifier from a blocking notifier chain.
* Must be called from process context.
*
* Returns zero on success or %-ENOENT on failure.
*/
int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
struct notifier_block *n)
{
int ret;
/*
* This code gets used during boot-up, when task switching is
* not yet working and interrupts must remain disabled. At
* such times we must not call down_write().
*/
if (unlikely(system_state == SYSTEM_BOOTING))
return notifier_chain_unregister(&nh->head, n);
down_write(&nh->rwsem);
ret = notifier_chain_unregister(&nh->head, n);
up_write(&nh->rwsem);
return ret;
}
EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
/**
* blocking_notifier_call_chain - Call functions in a blocking notifier chain
* @nh: Pointer to head of the blocking notifier chain
* @val: Value passed unmodified to notifier function
* @v: Pointer passed unmodified to notifier function
*
* Calls each function in a notifier chain in turn. The functions
* run in a process context, so they are allowed to block.
*
* If the return value of the notifier can be and'ed
* with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
* will return immediately, with the return value of
* the notifier function which halted execution.
* Otherwise the return value is the return value
* of the last notifier function called.
*/
int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
unsigned long val, void *v)
{
int ret;
down_read(&nh->rwsem);
ret = notifier_call_chain(&nh->head, val, v);
up_read(&nh->rwsem);
return ret;
}
EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
/*
* Raw notifier chain routines. There is no protection;
* the caller must provide it. Use at your own risk!
*/
/**
* raw_notifier_chain_register - Add notifier to a raw notifier chain
* @nh: Pointer to head of the raw notifier chain
* @n: New entry in notifier chain
*
* Adds a notifier to a raw notifier chain.
* All locking must be provided by the caller.
*
* Currently always returns zero.
*/
int raw_notifier_chain_register(struct raw_notifier_head *nh,
struct notifier_block *n)
{
return notifier_chain_register(&nh->head, n);
}
EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
/**
* raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
* @nh: Pointer to head of the raw notifier chain
* @n: Entry to remove from notifier chain
*
* Removes a notifier from a raw notifier chain.
* All locking must be provided by the caller.
*
* Returns zero on success or %-ENOENT on failure.
*/
int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
struct notifier_block *n)
{
return notifier_chain_unregister(&nh->head, n);
}
EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
/**
* raw_notifier_call_chain - Call functions in a raw notifier chain
* @nh: Pointer to head of the raw notifier chain
* @val: Value passed unmodified to notifier function
* @v: Pointer passed unmodified to notifier function
*
* Calls each function in a notifier chain in turn. The functions
* run in an undefined context.
* All locking must be provided by the caller.
*
* If the return value of the notifier can be and'ed
* with %NOTIFY_STOP_MASK then raw_notifier_call_chain
* will return immediately, with the return value of
* the notifier function which halted execution.
* Otherwise the return value is the return value
* of the last notifier function called.
*/
int raw_notifier_call_chain(struct raw_notifier_head *nh,
unsigned long val, void *v)
{
return notifier_call_chain(&nh->head, val, v);
}
EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
/**
* register_reboot_notifier - Register function to be called at reboot time
* @nb: Info about notifier function to be called
*
* Registers a function with the list of functions
* to be called at reboot time.
*
* Currently always returns zero, as blocking_notifier_chain_register
* always returns zero.
*/
int register_reboot_notifier(struct notifier_block * nb)
{
return blocking_notifier_chain_register(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(register_reboot_notifier);
/**
* unregister_reboot_notifier - Unregister previously registered reboot notifier
* @nb: Hook to be unregistered
*
* Unregisters a previously registered reboot
* notifier function.
*
* Returns zero on success, or %-ENOENT on failure.
*/
int unregister_reboot_notifier(struct notifier_block * nb)
{
return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(unregister_reboot_notifier);
static int set_one_prio(struct task_struct *p, int niceval, int error)
{
int no_nice;
if (p->uid != current->euid &&
p->euid != current->euid && !capable(CAP_SYS_NICE)) {
error = -EPERM;
goto out;
}
if (niceval < task_nice(p) && !can_nice(p, niceval)) {
error = -EACCES;
goto out;
}
no_nice = security_task_setnice(p, niceval);
if (no_nice) {
error = no_nice;
goto out;
}
if (error == -ESRCH)
error = 0;
set_user_nice(p, niceval);
out:
return error;
}
asmlinkage long sys_setpriority(int which, int who, int niceval)
{
struct task_struct *g, *p;
struct user_struct *user;
int error = -EINVAL;
if (which > 2 || which < 0)
goto out;
/* normalize: avoid signed division (rounding problems) */
error = -ESRCH;
if (niceval < -20)
niceval = -20;
if (niceval > 19)
niceval = 19;
read_lock(&tasklist_lock);
switch (which) {
case PRIO_PROCESS:
if (!who)
who = current->pid;
p = find_task_by_pid(who);
if (p)
error = set_one_prio(p, niceval, error);
break;
case PRIO_PGRP:
if (!who)
who = process_group(current);
do_each_task_pid(who, PIDTYPE_PGID, p) {
error = set_one_prio(p, niceval, error);
} while_each_task_pid(who, PIDTYPE_PGID, p);
break;
case PRIO_USER:
user = current->user;
if (!who)
who = current->uid;
else
if ((who != current->uid) && !(user = find_user(who)))
goto out_unlock; /* No processes for this user */
do_each_thread(g, p)
if (p->uid == who)
error = set_one_prio(p, niceval, error);
while_each_thread(g, p);
if (who != current->uid)
free_uid(user); /* For find_user() */
break;
}
out_unlock:
read_unlock(&tasklist_lock);
out:
return error;
}
/*
* Ugh. To avoid negative return values, "getpriority()" will
* not return the normal nice-value, but a negated value that
* has been offset by 20 (ie it returns 40..1 instead of -20..19)
* to stay compatible.
*/
asmlinkage long sys_getpriority(int which, int who)
{
struct task_struct *g, *p;
struct user_struct *user;
long niceval, retval = -ESRCH;
if (which > 2 || which < 0)
return -EINVAL;
read_lock(&tasklist_lock);
switch (which) {
case PRIO_PROCESS:
if (!who)
who = current->pid;
p = find_task_by_pid(who);
if (p) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
}
break;
case PRIO_PGRP:
if (!who)
who = process_group(current);
do_each_task_pid(who, PIDTYPE_PGID, p) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
} while_each_task_pid(who, PIDTYPE_PGID, p);
break;
case PRIO_USER:
user = current->user;
if (!who)
who = current->uid;
else
if ((who != current->uid) && !(user = find_user(who)))
goto out_unlock; /* No processes for this user */
do_each_thread(g, p)
if (p->uid == who) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
}
while_each_thread(g, p);
if (who != current->uid)
free_uid(user); /* for find_user() */
break;
}
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
/**
* emergency_restart - reboot the system
*
* Without shutting down any hardware or taking any locks
* reboot the system. This is called when we know we are in
* trouble so this is our best effort to reboot. This is
* safe to call in interrupt context.
*/
void emergency_restart(void)
{
machine_emergency_restart();
}
EXPORT_SYMBOL_GPL(emergency_restart);
static void kernel_restart_prepare(char *cmd)
{
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
system_state = SYSTEM_RESTART;
device_shutdown();
}
/**
* kernel_restart - reboot the system
* @cmd: pointer to buffer containing command to execute for restart
* or %NULL
*
* Shutdown everything and perform a clean reboot.
* This is not safe to call in interrupt context.
*/
void kernel_restart(char *cmd)
{
kernel_restart_prepare(cmd);
if (!cmd) {
printk(KERN_EMERG "Restarting system.\n");
} else {
printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
}
printk(".\n");
machine_restart(cmd);
}
EXPORT_SYMBOL_GPL(kernel_restart);
/**
* kernel_kexec - reboot the system
*
* Move into place and start executing a preloaded standalone
* executable. If nothing was preloaded return an error.
*/
static void kernel_kexec(void)
{
#ifdef CONFIG_KEXEC
struct kimage *image;
image = xchg(&kexec_image, NULL);
if (!image) {
return;
}
kernel_restart_prepare(NULL);
printk(KERN_EMERG "Starting new kernel\n");
machine_shutdown();
machine_kexec(image);
#endif
}
void kernel_shutdown_prepare(enum system_states state)
{
blocking_notifier_call_chain(&reboot_notifier_list,
(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
system_state = state;
device_shutdown();
}
/**
* kernel_halt - halt the system
*
* Shutdown everything and perform a clean system halt.
*/
void kernel_halt(void)
{
kernel_shutdown_prepare(SYSTEM_HALT);
printk(KERN_EMERG "System halted.\n");
machine_halt();
}
EXPORT_SYMBOL_GPL(kernel_halt);
/**
* kernel_power_off - power_off the system
*
* Shutdown everything and perform a clean system power_off.
*/
void kernel_power_off(void)
{
kernel_shutdown_prepare(SYSTEM_POWER_OFF);
printk(KERN_EMERG "Power down.\n");
machine_power_off();
}
EXPORT_SYMBOL_GPL(kernel_power_off);
/*
* Reboot system call: for obvious reasons only root may call it,
* and even root needs to set up some magic numbers in the registers
* so that some mistake won't make this reboot the whole machine.
* You can also set the meaning of the ctrl-alt-del-key here.
*
* reboot doesn't sync: do that yourself before calling this.
*/
asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
{
char buffer[256];
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT))
return -EPERM;
/* For safety, we require "magic" arguments. */
if (magic1 != LINUX_REBOOT_MAGIC1 ||
(magic2 != LINUX_REBOOT_MAGIC2 &&
magic2 != LINUX_REBOOT_MAGIC2A &&
magic2 != LINUX_REBOOT_MAGIC2B &&
magic2 != LINUX_REBOOT_MAGIC2C))
return -EINVAL;
/* Instead of trying to make the power_off code look like
* halt when pm_power_off is not set do it the easy way.
*/
if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
cmd = LINUX_REBOOT_CMD_HALT;
lock_kernel();
switch (cmd) {
case LINUX_REBOOT_CMD_RESTART:
kernel_restart(NULL);
break;
case LINUX_REBOOT_CMD_CAD_ON:
C_A_D = 1;
break;
case LINUX_REBOOT_CMD_CAD_OFF:
C_A_D = 0;
break;
case LINUX_REBOOT_CMD_HALT:
kernel_halt();
unlock_kernel();
do_exit(0);
break;
case LINUX_REBOOT_CMD_POWER_OFF:
kernel_power_off();
unlock_kernel();
do_exit(0);
break;
case LINUX_REBOOT_CMD_RESTART2:
if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
unlock_kernel();
return -EFAULT;
}
buffer[sizeof(buffer) - 1] = '\0';
kernel_restart(buffer);
break;
case LINUX_REBOOT_CMD_KEXEC:
kernel_kexec();
unlock_kernel();
return -EINVAL;
#ifdef CONFIG_SOFTWARE_SUSPEND
case LINUX_REBOOT_CMD_SW_SUSPEND:
{
int ret = software_suspend();
unlock_kernel();
return ret;
}
#endif
default:
unlock_kernel();
return -EINVAL;
}
unlock_kernel();
return 0;
}
static void deferred_cad(void *dummy)
{
kernel_restart(NULL);
}
/*
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
* As it's called within an interrupt, it may NOT sync: the only choice
* is whether to reboot at once, or just ignore the ctrl-alt-del.
*/
void ctrl_alt_del(void)
{
static DECLARE_WORK(cad_work, deferred_cad, NULL);
if (C_A_D)
schedule_work(&cad_work);
else
kill_proc(cad_pid, SIGINT, 1);
}
/*
* Unprivileged users may change the real gid to the effective gid
* or vice versa. (BSD-style)
*
* If you set the real gid at all, or set the effective gid to a value not
* equal to the real gid, then the saved gid is set to the new effective gid.
*
* This makes it possible for a setgid program to completely drop its
* privileges, which is often a useful assertion to make when you are doing
* a security audit over a program.
*
* The general idea is that a program which uses just setregid() will be
* 100% compatible with BSD. A program which uses just setgid() will be
* 100% compatible with POSIX with saved IDs.
*
* SMP: There are not races, the GIDs are checked only by filesystem
* operations (as far as semantic preservation is concerned).
*/
asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
{
int old_rgid = current->gid;
int old_egid = current->egid;
int new_rgid = old_rgid;
int new_egid = old_egid;
int retval;
retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
if (retval)
return retval;
if (rgid != (gid_t) -1) {
if ((old_rgid == rgid) ||
(current->egid==rgid) ||
capable(CAP_SETGID))
new_rgid = rgid;
else
return -EPERM;
}
if (egid != (gid_t) -1) {
if ((old_rgid == egid) ||
(current->egid == egid) ||
(current->sgid == egid) ||
capable(CAP_SETGID))
new_egid = egid;
else {
return -EPERM;
}
}
if (new_egid != old_egid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
if (rgid != (gid_t) -1 ||
(egid != (gid_t) -1 && egid != old_rgid))
current->sgid = new_egid;
current->fsgid = new_egid;
current->egid = new_egid;
current->gid = new_rgid;
key_fsgid_changed(current);
proc_id_connector(current, PROC_EVENT_GID);
return 0;
}
/*
* setgid() is implemented like SysV w/ SAVED_IDS
*
* SMP: Same implicit races as above.
*/
asmlinkage long sys_setgid(gid_t gid)
{
int old_egid = current->egid;
int retval;
retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
if (retval)
return retval;
if (capable(CAP_SETGID))
{
if(old_egid != gid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->gid = current->egid = current->sgid = current->fsgid = gid;
}
else if ((gid == current->gid) || (gid == current->sgid))
{
if(old_egid != gid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->egid = current->fsgid = gid;
}
else
return -EPERM;
key_fsgid_changed(current);
proc_id_connector(current, PROC_EVENT_GID);
return 0;
}
static int set_user(uid_t new_ruid, int dumpclear)
{
struct user_struct *new_user;
new_user = alloc_uid(new_ruid);
if (!new_user)
return -EAGAIN;
if (atomic_read(&new_user->processes) >=
current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
new_user != &root_user) {
free_uid(new_user);
return -EAGAIN;
}
switch_uid(new_user);
if(dumpclear)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->uid = new_ruid;
return 0;
}
/*
* Unprivileged users may change the real uid to the effective uid
* or vice versa. (BSD-style)
*
* If you set the real uid at all, or set the effective uid to a value not
* equal to the real uid, then the saved uid is set to the new effective uid.
*
* This makes it possible for a setuid program to completely drop its
* privileges, which is often a useful assertion to make when you are doing
* a security audit over a program.
*
* The general idea is that a program which uses just setreuid() will be
* 100% compatible with BSD. A program which uses just setuid() will be
* 100% compatible with POSIX with saved IDs.
*/
asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
{
int old_ruid, old_euid, old_suid, new_ruid, new_euid;
int retval;
retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
if (retval)
return retval;
new_ruid = old_ruid = current->uid;
new_euid = old_euid = current->euid;
old_suid = current->suid;
if (ruid != (uid_t) -1) {
new_ruid = ruid;
if ((old_ruid != ruid) &&
(current->euid != ruid) &&
!capable(CAP_SETUID))
return -EPERM;
}
if (euid != (uid_t) -1) {
new_euid = euid;
if ((old_ruid != euid) &&
(current->euid != euid) &&
(current->suid != euid) &&
!capable(CAP_SETUID))
return -EPERM;
}
if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
return -EAGAIN;
if (new_euid != old_euid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->fsuid = current->euid = new_euid;
if (ruid != (uid_t) -1 ||
(euid != (uid_t) -1 && euid != old_ruid))
current->suid = current->euid;
current->fsuid = current->euid;
key_fsuid_changed(current);
proc_id_connector(current, PROC_EVENT_UID);
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
}
/*
* setuid() is implemented like SysV with SAVED_IDS
*
* Note that SAVED_ID's is deficient in that a setuid root program
* like sendmail, for example, cannot set its uid to be a normal
* user and then switch back, because if you're root, setuid() sets
* the saved uid too. If you don't like this, blame the bright people
* in the POSIX committee and/or USG. Note that the BSD-style setreuid()
* will allow a root program to temporarily drop privileges and be able to
* regain them by swapping the real and effective uid.
*/
asmlinkage long sys_setuid(uid_t uid)
{
int old_euid = current->euid;
int old_ruid, old_suid, new_ruid, new_suid;
int retval;
retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
if (retval)
return retval;
old_ruid = new_ruid = current->uid;
old_suid = current->suid;
new_suid = old_suid;
if (capable(CAP_SETUID)) {
if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
return -EAGAIN;
new_suid = uid;
} else if ((uid != current->uid) && (uid != new_suid))
return -EPERM;
if (old_euid != uid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->fsuid = current->euid = uid;
current->suid = new_suid;
key_fsuid_changed(current);
proc_id_connector(current, PROC_EVENT_UID);
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
}
/*
* This function implements a generic ability to update ruid, euid,
* and suid. This allows you to implement the 4.4 compatible seteuid().
*/
asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
{
int old_ruid = current->uid;
int old_euid = current->euid;
int old_suid = current->suid;
int retval;
retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
if (retval)
return retval;
if (!capable(CAP_SETUID)) {
if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
(ruid != current->euid) && (ruid != current->suid))
return -EPERM;
if ((euid != (uid_t) -1) && (euid != current->uid) &&
(euid != current->euid) && (euid != current->suid))
return -EPERM;
if ((suid != (uid_t) -1) && (suid != current->uid) &&
(suid != current->euid) && (suid != current->suid))
return -EPERM;
}
if (ruid != (uid_t) -1) {
if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
return -EAGAIN;
}
if (euid != (uid_t) -1) {
if (euid != current->euid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->euid = euid;
}
current->fsuid = current->euid;
if (suid != (uid_t) -1)
current->suid = suid;
key_fsuid_changed(current);
proc_id_connector(current, PROC_EVENT_UID);
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
}
asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
{
int retval;
if (!(retval = put_user(current->uid, ruid)) &&
!(retval = put_user(current->euid, euid)))
retval = put_user(current->suid, suid);
return retval;
}
/*
* Same as above, but for rgid, egid, sgid.
*/
asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
{
int retval;
retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
if (retval)
return retval;
if (!capable(CAP_SETGID)) {
if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
(rgid != current->egid) && (rgid != current->sgid))
return -EPERM;
if ((egid != (gid_t) -1) && (egid != current->gid) &&
(egid != current->egid) && (egid != current->sgid))
return -EPERM;
if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
(sgid != current->egid) && (sgid != current->sgid))
return -EPERM;
}
if (egid != (gid_t) -1) {
if (egid != current->egid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->egid = egid;
}
current->fsgid = current->egid;
if (rgid != (gid_t) -1)
current->gid = rgid;
if (sgid != (gid_t) -1)
current->sgid = sgid;
key_fsgid_changed(current);
proc_id_connector(current, PROC_EVENT_GID);
return 0;
}
asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
{
int retval;
if (!(retval = put_user(current->gid, rgid)) &&
!(retval = put_user(current->egid, egid)))
retval = put_user(current->sgid, sgid);
return retval;
}
/*
* "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
* is used for "access()" and for the NFS daemon (letting nfsd stay at
* whatever uid it wants to). It normally shadows "euid", except when
* explicitly set by setfsuid() or for access..
*/
asmlinkage long sys_setfsuid(uid_t uid)
{
int old_fsuid;
old_fsuid = current->fsuid;
if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
return old_fsuid;
if (uid == current->uid || uid == current->euid ||
uid == current->suid || uid == current->fsuid ||
capable(CAP_SETUID))
{
if (uid != old_fsuid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->fsuid = uid;
}
key_fsuid_changed(current);
proc_id_connector(current, PROC_EVENT_UID);
security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
return old_fsuid;
}
/*
* Samma p<> svenska..
*/
asmlinkage long sys_setfsgid(gid_t gid)
{
int old_fsgid;
old_fsgid = current->fsgid;
if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
return old_fsgid;
if (gid == current->gid || gid == current->egid ||
gid == current->sgid || gid == current->fsgid ||
capable(CAP_SETGID))
{
if (gid != old_fsgid)
{
current->mm->dumpable = suid_dumpable;
smp_wmb();
}
current->fsgid = gid;
key_fsgid_changed(current);
proc_id_connector(current, PROC_EVENT_GID);
}
return old_fsgid;
}
asmlinkage long sys_times(struct tms __user * tbuf)
{
/*
* In the SMP world we might just be unlucky and have one of
* the times increment as we use it. Since the value is an
* atomically safe type this is just fine. Conceptually its
* as if the syscall took an instant longer to occur.
*/
if (tbuf) {
struct tms tmp;
struct task_struct *tsk = current;
struct task_struct *t;
cputime_t utime, stime, cutime, cstime;
spin_lock_irq(&tsk->sighand->siglock);
utime = tsk->signal->utime;
stime = tsk->signal->stime;
t = tsk;
do {
utime = cputime_add(utime, t->utime);
stime = cputime_add(stime, t->stime);
t = next_thread(t);
} while (t != tsk);
cutime = tsk->signal->cutime;
cstime = tsk->signal->cstime;
spin_unlock_irq(&tsk->sighand->siglock);
tmp.tms_utime = cputime_to_clock_t(utime);
tmp.tms_stime = cputime_to_clock_t(stime);
tmp.tms_cutime = cputime_to_clock_t(cutime);
tmp.tms_cstime = cputime_to_clock_t(cstime);
if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
return -EFAULT;
}
return (long) jiffies_64_to_clock_t(get_jiffies_64());
}
/*
* This needs some heavy checking ...
* I just haven't the stomach for it. I also don't fully
* understand sessions/pgrp etc. Let somebody who does explain it.
*
* OK, I think I have the protection semantics right.... this is really
* only important on a multi-user system anyway, to make sure one user
* can't send a signal to a process owned by another. -TYT, 12/12/91
*
* Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
* LBT 04.03.94
*/
asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
{
struct task_struct *p;
struct task_struct *group_leader = current->group_leader;
int err = -EINVAL;
if (!pid)
pid = group_leader->pid;
if (!pgid)
pgid = pid;
if (pgid < 0)
return -EINVAL;
/* From this point forward we keep holding onto the tasklist lock
* so that our parent does not change from under us. -DaveM
*/
write_lock_irq(&tasklist_lock);
err = -ESRCH;
p = find_task_by_pid(pid);
if (!p)
goto out;
err = -EINVAL;
if (!thread_group_leader(p))
goto out;
if (p->real_parent == group_leader) {
err = -EPERM;
if (p->signal->session != group_leader->signal->session)
goto out;
err = -EACCES;
if (p->did_exec)
goto out;
} else {
err = -ESRCH;
if (p != group_leader)
goto out;
}
err = -EPERM;
if (p->signal->leader)
goto out;
if (pgid != pid) {
struct task_struct *p;
do_each_task_pid(pgid, PIDTYPE_PGID, p) {
if (p->signal->session == group_leader->signal->session)
goto ok_pgid;
} while_each_task_pid(pgid, PIDTYPE_PGID, p);
goto out;
}
ok_pgid:
err = security_task_setpgid(p, pgid);
if (err)
goto out;
if (process_group(p) != pgid) {
detach_pid(p, PIDTYPE_PGID);
p->signal->pgrp = pgid;
attach_pid(p, PIDTYPE_PGID, pgid);
}
err = 0;
out:
/* All paths lead to here, thus we are safe. -DaveM */
write_unlock_irq(&tasklist_lock);
return err;
}
asmlinkage long sys_getpgid(pid_t pid)
{
if (!pid) {
return process_group(current);
} else {
int retval;
struct task_struct *p;
read_lock(&tasklist_lock);
p = find_task_by_pid(pid);
retval = -ESRCH;
if (p) {
retval = security_task_getpgid(p);
if (!retval)
retval = process_group(p);
}
read_unlock(&tasklist_lock);
return retval;
}
}
#ifdef __ARCH_WANT_SYS_GETPGRP
asmlinkage long sys_getpgrp(void)
{
/* SMP - assuming writes are word atomic this is fine */
return process_group(current);
}
#endif
asmlinkage long sys_getsid(pid_t pid)
{
if (!pid) {
return current->signal->session;
} else {
int retval;
struct task_struct *p;
read_lock(&tasklist_lock);
p = find_task_by_pid(pid);
retval = -ESRCH;
if(p) {
retval = security_task_getsid(p);
if (!retval)
retval = p->signal->session;
}
read_unlock(&tasklist_lock);
return retval;
}
}
asmlinkage long sys_setsid(void)
{
struct task_struct *group_leader = current->group_leader;
pid_t session;
int err = -EPERM;
mutex_lock(&tty_mutex);
write_lock_irq(&tasklist_lock);
/* Fail if I am already a session leader */
if (group_leader->signal->leader)
goto out;
session = group_leader->pid;
/* Fail if a process group id already exists that equals the
* proposed session id.
*
* Don't check if session id == 1 because kernel threads use this
* session id and so the check will always fail and make it so
* init cannot successfully call setsid.
*/
if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
goto out;
group_leader->signal->leader = 1;
__set_special_pids(session, session);
group_leader->signal->tty = NULL;
group_leader->signal->tty_old_pgrp = 0;
err = process_group(group_leader);
out:
write_unlock_irq(&tasklist_lock);
mutex_unlock(&tty_mutex);
return err;
}
/*
* Supplementary group IDs
*/
/* init to 2 - one for init_task, one to ensure it is never freed */
struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize)
{
struct group_info *group_info;
int nblocks;
int i;
nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
/* Make sure we always allocate at least one indirect block pointer */
nblocks = nblocks ? : 1;
group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
if (!group_info)
return NULL;
group_info->ngroups = gidsetsize;
group_info->nblocks = nblocks;
atomic_set(&group_info->usage, 1);
if (gidsetsize <= NGROUPS_SMALL) {
group_info->blocks[0] = group_info->small_block;
} else {
for (i = 0; i < nblocks; i++) {
gid_t *b;
b = (void *)__get_free_page(GFP_USER);
if (!b)
goto out_undo_partial_alloc;
group_info->blocks[i] = b;
}
}
return group_info;
out_undo_partial_alloc:
while (--i >= 0) {
free_page((unsigned long)group_info->blocks[i]);
}
kfree(group_info);
return NULL;
}
EXPORT_SYMBOL(groups_alloc);
void groups_free(struct group_info *group_info)
{
if (group_info->blocks[0] != group_info->small_block) {
int i;
for (i = 0; i < group_info->nblocks; i++)
free_page((unsigned long)group_info->blocks[i]);
}
kfree(group_info);
}
EXPORT_SYMBOL(groups_free);
/* export the group_info to a user-space array */
static int groups_to_user(gid_t __user *grouplist,
struct group_info *group_info)
{
int i;
int count = group_info->ngroups;
for (i = 0; i < group_info->nblocks; i++) {
int cp_count = min(NGROUPS_PER_BLOCK, count);
int off = i * NGROUPS_PER_BLOCK;
int len = cp_count * sizeof(*grouplist);
if (copy_to_user(grouplist+off, group_info->blocks[i], len))
return -EFAULT;
count -= cp_count;
}
return 0;
}
/* fill a group_info from a user-space array - it must be allocated already */
static int groups_from_user(struct group_info *group_info,
gid_t __user *grouplist)
{
int i;
int count = group_info->ngroups;
for (i = 0; i < group_info->nblocks; i++) {
int cp_count = min(NGROUPS_PER_BLOCK, count);
int off = i * NGROUPS_PER_BLOCK;
int len = cp_count * sizeof(*grouplist);
if (copy_from_user(group_info->blocks[i], grouplist+off, len))
return -EFAULT;
count -= cp_count;
}
return 0;
}
/* a simple Shell sort */
static void groups_sort(struct group_info *group_info)
{
int base, max, stride;
int gidsetsize = group_info->ngroups;
for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
; /* nothing */
stride /= 3;
while (stride) {
max = gidsetsize - stride;
for (base = 0; base < max; base++) {
int left = base;
int right = left + stride;
gid_t tmp = GROUP_AT(group_info, right);
while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
GROUP_AT(group_info, right) =
GROUP_AT(group_info, left);
right = left;
left -= stride;
}
GROUP_AT(group_info, right) = tmp;
}
stride /= 3;
}
}
/* a simple bsearch */
int groups_search(struct group_info *group_info, gid_t grp)
{
unsigned int left, right;
if (!group_info)
return 0;
left = 0;
right = group_info->ngroups;
while (left < right) {
unsigned int mid = (left+right)/2;
int cmp = grp - GROUP_AT(group_info, mid);
if (cmp > 0)
left = mid + 1;
else if (cmp < 0)
right = mid;
else
return 1;
}
return 0;
}
/* validate and set current->group_info */
int set_current_groups(struct group_info *group_info)
{
int retval;
struct group_info *old_info;
retval = security_task_setgroups(group_info);
if (retval)
return retval;
groups_sort(group_info);
get_group_info(group_info);
task_lock(current);
old_info = current->group_info;
current->group_info = group_info;
task_unlock(current);
put_group_info(old_info);
return 0;
}
EXPORT_SYMBOL(set_current_groups);
asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
{
int i = 0;
/*
* SMP: Nobody else can change our grouplist. Thus we are
* safe.
*/
if (gidsetsize < 0)
return -EINVAL;
/* no need to grab task_lock here; it cannot change */
i = current->group_info->ngroups;
if (gidsetsize) {
if (i > gidsetsize) {
i = -EINVAL;
goto out;
}
if (groups_to_user(grouplist, current->group_info)) {
i = -EFAULT;
goto out;
}
}
out:
return i;
}
/*
* SMP: Our groups are copy-on-write. We can set them safely
* without another task interfering.
*/
asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
{
struct group_info *group_info;
int retval;
if (!capable(CAP_SETGID))
return -EPERM;
if ((unsigned)gidsetsize > NGROUPS_MAX)
return -EINVAL;
group_info = groups_alloc(gidsetsize);
if (!group_info)
return -ENOMEM;
retval = groups_from_user(group_info, grouplist);
if (retval) {
put_group_info(group_info);
return retval;
}
retval = set_current_groups(group_info);
put_group_info(group_info);
return retval;
}
/*
* Check whether we're fsgid/egid or in the supplemental group..
*/
int in_group_p(gid_t grp)
{
int retval = 1;
if (grp != current->fsgid) {
retval = groups_search(current->group_info, grp);
}
return retval;
}
EXPORT_SYMBOL(in_group_p);
int in_egroup_p(gid_t grp)
{
int retval = 1;
if (grp != current->egid) {
retval = groups_search(current->group_info, grp);
}
return retval;
}
EXPORT_SYMBOL(in_egroup_p);
DECLARE_RWSEM(uts_sem);
EXPORT_SYMBOL(uts_sem);
asmlinkage long sys_newuname(struct new_utsname __user * name)
{
int errno = 0;
down_read(&uts_sem);
if (copy_to_user(name,&system_utsname,sizeof *name))
errno = -EFAULT;
up_read(&uts_sem);
return errno;
}
asmlinkage long sys_sethostname(char __user *name, int len)
{
int errno;
char tmp[__NEW_UTS_LEN];
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (len < 0 || len > __NEW_UTS_LEN)
return -EINVAL;
down_write(&uts_sem);
errno = -EFAULT;
if (!copy_from_user(tmp, name, len)) {
memcpy(system_utsname.nodename, tmp, len);
system_utsname.nodename[len] = 0;
errno = 0;
}
up_write(&uts_sem);
return errno;
}
#ifdef __ARCH_WANT_SYS_GETHOSTNAME
asmlinkage long sys_gethostname(char __user *name, int len)
{
int i, errno;
if (len < 0)
return -EINVAL;
down_read(&uts_sem);
i = 1 + strlen(system_utsname.nodename);
if (i > len)
i = len;
errno = 0;
if (copy_to_user(name, system_utsname.nodename, i))
errno = -EFAULT;
up_read(&uts_sem);
return errno;
}
#endif
/*
* Only setdomainname; getdomainname can be implemented by calling
* uname()
*/
asmlinkage long sys_setdomainname(char __user *name, int len)
{
int errno;
char tmp[__NEW_UTS_LEN];
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (len < 0 || len > __NEW_UTS_LEN)
return -EINVAL;
down_write(&uts_sem);
errno = -EFAULT;
if (!copy_from_user(tmp, name, len)) {
memcpy(system_utsname.domainname, tmp, len);
system_utsname.domainname[len] = 0;
errno = 0;
}
up_write(&uts_sem);
return errno;
}
asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
{
if (resource >= RLIM_NLIMITS)
return -EINVAL;
else {
struct rlimit value;
task_lock(current->group_leader);
value = current->signal->rlim[resource];
task_unlock(current->group_leader);
return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
}
}
#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
/*
* Back compatibility for getrlimit. Needed for some apps.
*/
asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
{
struct rlimit x;
if (resource >= RLIM_NLIMITS)
return -EINVAL;
task_lock(current->group_leader);
x = current->signal->rlim[resource];
task_unlock(current->group_leader);
if(x.rlim_cur > 0x7FFFFFFF)
x.rlim_cur = 0x7FFFFFFF;
if(x.rlim_max > 0x7FFFFFFF)
x.rlim_max = 0x7FFFFFFF;
return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
}
#endif
asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
{
struct rlimit new_rlim, *old_rlim;
unsigned long it_prof_secs;
int retval;
if (resource >= RLIM_NLIMITS)
return -EINVAL;
if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
return -EFAULT;
if (new_rlim.rlim_cur > new_rlim.rlim_max)
return -EINVAL;
old_rlim = current->signal->rlim + resource;
if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
!capable(CAP_SYS_RESOURCE))
return -EPERM;
if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
return -EPERM;
retval = security_task_setrlimit(resource, &new_rlim);
if (retval)
return retval;
task_lock(current->group_leader);
*old_rlim = new_rlim;
task_unlock(current->group_leader);
if (resource != RLIMIT_CPU)
goto out;
/*
* RLIMIT_CPU handling. Note that the kernel fails to return an error
* code if it rejected the user's attempt to set RLIMIT_CPU. This is a
* very long-standing error, and fixing it now risks breakage of
* applications, so we live with it
*/
if (new_rlim.rlim_cur == RLIM_INFINITY)
goto out;
it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
unsigned long rlim_cur = new_rlim.rlim_cur;
cputime_t cputime;
if (rlim_cur == 0) {
/*
* The caller is asking for an immediate RLIMIT_CPU
* expiry. But we use the zero value to mean "it was
* never set". So let's cheat and make it one second
* instead
*/
rlim_cur = 1;
}
cputime = secs_to_cputime(rlim_cur);
read_lock(&tasklist_lock);
spin_lock_irq(&current->sighand->siglock);
set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
spin_unlock_irq(&current->sighand->siglock);
read_unlock(&tasklist_lock);
}
out:
return 0;
}
/*
* It would make sense to put struct rusage in the task_struct,
* except that would make the task_struct be *really big*. After
* task_struct gets moved into malloc'ed memory, it would
* make sense to do this. It will make moving the rest of the information
* a lot simpler! (Which we're not doing right now because we're not
* measuring them yet).
*
* When sampling multiple threads for RUSAGE_SELF, under SMP we might have
* races with threads incrementing their own counters. But since word
* reads are atomic, we either get new values or old values and we don't
* care which for the sums. We always take the siglock to protect reading
* the c* fields from p->signal from races with exit.c updating those
* fields when reaping, so a sample either gets all the additions of a
* given child after it's reaped, or none so this sample is before reaping.
*
* Locking:
* We need to take the siglock for CHILDEREN, SELF and BOTH
* for the cases current multithreaded, non-current single threaded
* non-current multithreaded. Thread traversal is now safe with
* the siglock held.
* Strictly speaking, we donot need to take the siglock if we are current and
* single threaded, as no one else can take our signal_struct away, no one
* else can reap the children to update signal->c* counters, and no one else
* can race with the signal-> fields. If we do not take any lock, the
* signal-> fields could be read out of order while another thread was just
* exiting. So we should place a read memory barrier when we avoid the lock.
* On the writer side, write memory barrier is implied in __exit_signal
* as __exit_signal releases the siglock spinlock after updating the signal->
* fields. But we don't do this yet to keep things simple.
*
*/
static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
{
struct task_struct *t;
unsigned long flags;
cputime_t utime, stime;
memset((char *) r, 0, sizeof *r);
utime = stime = cputime_zero;
rcu_read_lock();
if (!lock_task_sighand(p, &flags)) {
rcu_read_unlock();
return;
}
switch (who) {
case RUSAGE_BOTH:
case RUSAGE_CHILDREN:
utime = p->signal->cutime;
stime = p->signal->cstime;
r->ru_nvcsw = p->signal->cnvcsw;
r->ru_nivcsw = p->signal->cnivcsw;
r->ru_minflt = p->signal->cmin_flt;
r->ru_majflt = p->signal->cmaj_flt;
if (who == RUSAGE_CHILDREN)
break;
case RUSAGE_SELF:
utime = cputime_add(utime, p->signal->utime);
stime = cputime_add(stime, p->signal->stime);
r->ru_nvcsw += p->signal->nvcsw;
r->ru_nivcsw += p->signal->nivcsw;
r->ru_minflt += p->signal->min_flt;
r->ru_majflt += p->signal->maj_flt;
t = p;
do {
utime = cputime_add(utime, t->utime);
stime = cputime_add(stime, t->stime);
r->ru_nvcsw += t->nvcsw;
r->ru_nivcsw += t->nivcsw;
r->ru_minflt += t->min_flt;
r->ru_majflt += t->maj_flt;
t = next_thread(t);
} while (t != p);
break;
default:
BUG();
}
unlock_task_sighand(p, &flags);
rcu_read_unlock();
cputime_to_timeval(utime, &r->ru_utime);
cputime_to_timeval(stime, &r->ru_stime);
}
int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
{
struct rusage r;
k_getrusage(p, who, &r);
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
}
asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
{
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
return -EINVAL;
return getrusage(current, who, ru);
}
asmlinkage long sys_umask(int mask)
{
mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
return mask;
}
asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
long error;
error = security_task_prctl(option, arg2, arg3, arg4, arg5);
if (error)
return error;
switch (option) {
case PR_SET_PDEATHSIG:
if (!valid_signal(arg2)) {
error = -EINVAL;
break;
}
current->pdeath_signal = arg2;
break;
case PR_GET_PDEATHSIG:
error = put_user(current->pdeath_signal, (int __user *)arg2);
break;
case PR_GET_DUMPABLE:
error = current->mm->dumpable;
break;
case PR_SET_DUMPABLE:
if (arg2 < 0 || arg2 > 1) {
error = -EINVAL;
break;
}
current->mm->dumpable = arg2;
break;
case PR_SET_UNALIGN:
error = SET_UNALIGN_CTL(current, arg2);
break;
case PR_GET_UNALIGN:
error = GET_UNALIGN_CTL(current, arg2);
break;
case PR_SET_FPEMU:
error = SET_FPEMU_CTL(current, arg2);
break;
case PR_GET_FPEMU:
error = GET_FPEMU_CTL(current, arg2);
break;
case PR_SET_FPEXC:
error = SET_FPEXC_CTL(current, arg2);
break;
case PR_GET_FPEXC:
error = GET_FPEXC_CTL(current, arg2);
break;
case PR_GET_TIMING:
error = PR_TIMING_STATISTICAL;
break;
case PR_SET_TIMING:
if (arg2 == PR_TIMING_STATISTICAL)
error = 0;
else
error = -EINVAL;
break;
case PR_GET_KEEPCAPS:
if (current->keep_capabilities)
error = 1;
break;
case PR_SET_KEEPCAPS:
if (arg2 != 0 && arg2 != 1) {
error = -EINVAL;
break;
}
current->keep_capabilities = arg2;
break;
case PR_SET_NAME: {
struct task_struct *me = current;
unsigned char ncomm[sizeof(me->comm)];
ncomm[sizeof(me->comm)-1] = 0;
if (strncpy_from_user(ncomm, (char __user *)arg2,
sizeof(me->comm)-1) < 0)
return -EFAULT;
set_task_comm(me, ncomm);
return 0;
}
case PR_GET_NAME: {
struct task_struct *me = current;
unsigned char tcomm[sizeof(me->comm)];
get_task_comm(tcomm, me);
if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
return -EFAULT;
return 0;
}
case PR_GET_ENDIAN:
error = GET_ENDIAN(current, arg2);
break;
case PR_SET_ENDIAN:
error = SET_ENDIAN(current, arg2);
break;
default:
error = -EINVAL;
break;
}
return error;
}
asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
struct getcpu_cache __user *cache)
{
int err = 0;
int cpu = raw_smp_processor_id();
if (cpup)
err |= put_user(cpu, cpup);
if (nodep)
err |= put_user(cpu_to_node(cpu), nodep);
if (cache) {
/*
* The cache is not needed for this implementation,
* but make sure user programs pass something
* valid. vsyscall implementations can instead make
* good use of the cache. Only use t0 and t1 because
* these are available in both 32bit and 64bit ABI (no
* need for a compat_getcpu). 32bit has enough
* padding
*/
unsigned long t0, t1;
get_user(t0, &cache->t0);
get_user(t1, &cache->t1);
t0++;
t1++;
put_user(t0, &cache->t0);
put_user(t1, &cache->t1);
}
return err ? -EFAULT : 0;
}