linux_old1/drivers/ata/sata_rcar.c

1061 lines
27 KiB
C

/*
* Renesas R-Car SATA driver
*
* Author: Vladimir Barinov <source@cogentembedded.com>
* Copyright (C) 2013-2015 Cogent Embedded, Inc.
* Copyright (C) 2013-2015 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ata.h>
#include <linux/libata.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/err.h>
#define DRV_NAME "sata_rcar"
/* SH-Navi2G/ATAPI-ATA compatible task registers */
#define DATA_REG 0x100
#define SDEVCON_REG 0x138
/* SH-Navi2G/ATAPI module compatible control registers */
#define ATAPI_CONTROL1_REG 0x180
#define ATAPI_STATUS_REG 0x184
#define ATAPI_INT_ENABLE_REG 0x188
#define ATAPI_DTB_ADR_REG 0x198
#define ATAPI_DMA_START_ADR_REG 0x19C
#define ATAPI_DMA_TRANS_CNT_REG 0x1A0
#define ATAPI_CONTROL2_REG 0x1A4
#define ATAPI_SIG_ST_REG 0x1B0
#define ATAPI_BYTE_SWAP_REG 0x1BC
/* ATAPI control 1 register (ATAPI_CONTROL1) bits */
#define ATAPI_CONTROL1_ISM BIT(16)
#define ATAPI_CONTROL1_DTA32M BIT(11)
#define ATAPI_CONTROL1_RESET BIT(7)
#define ATAPI_CONTROL1_DESE BIT(3)
#define ATAPI_CONTROL1_RW BIT(2)
#define ATAPI_CONTROL1_STOP BIT(1)
#define ATAPI_CONTROL1_START BIT(0)
/* ATAPI status register (ATAPI_STATUS) bits */
#define ATAPI_STATUS_SATAINT BIT(11)
#define ATAPI_STATUS_DNEND BIT(6)
#define ATAPI_STATUS_DEVTRM BIT(5)
#define ATAPI_STATUS_DEVINT BIT(4)
#define ATAPI_STATUS_ERR BIT(2)
#define ATAPI_STATUS_NEND BIT(1)
#define ATAPI_STATUS_ACT BIT(0)
/* Interrupt enable register (ATAPI_INT_ENABLE) bits */
#define ATAPI_INT_ENABLE_SATAINT BIT(11)
#define ATAPI_INT_ENABLE_DNEND BIT(6)
#define ATAPI_INT_ENABLE_DEVTRM BIT(5)
#define ATAPI_INT_ENABLE_DEVINT BIT(4)
#define ATAPI_INT_ENABLE_ERR BIT(2)
#define ATAPI_INT_ENABLE_NEND BIT(1)
#define ATAPI_INT_ENABLE_ACT BIT(0)
/* Access control registers for physical layer control register */
#define SATAPHYADDR_REG 0x200
#define SATAPHYWDATA_REG 0x204
#define SATAPHYACCEN_REG 0x208
#define SATAPHYRESET_REG 0x20C
#define SATAPHYRDATA_REG 0x210
#define SATAPHYACK_REG 0x214
/* Physical layer control address command register (SATAPHYADDR) bits */
#define SATAPHYADDR_PHYRATEMODE BIT(10)
#define SATAPHYADDR_PHYCMD_READ BIT(9)
#define SATAPHYADDR_PHYCMD_WRITE BIT(8)
/* Physical layer control enable register (SATAPHYACCEN) bits */
#define SATAPHYACCEN_PHYLANE BIT(0)
/* Physical layer control reset register (SATAPHYRESET) bits */
#define SATAPHYRESET_PHYRST BIT(1)
#define SATAPHYRESET_PHYSRES BIT(0)
/* Physical layer control acknowledge register (SATAPHYACK) bits */
#define SATAPHYACK_PHYACK BIT(0)
/* Serial-ATA HOST control registers */
#define BISTCONF_REG 0x102C
#define SDATA_REG 0x1100
#define SSDEVCON_REG 0x1204
#define SCRSSTS_REG 0x1400
#define SCRSERR_REG 0x1404
#define SCRSCON_REG 0x1408
#define SCRSACT_REG 0x140C
#define SATAINTSTAT_REG 0x1508
#define SATAINTMASK_REG 0x150C
/* SATA INT status register (SATAINTSTAT) bits */
#define SATAINTSTAT_SERR BIT(3)
#define SATAINTSTAT_ATA BIT(0)
/* SATA INT mask register (SATAINTSTAT) bits */
#define SATAINTMASK_SERRMSK BIT(3)
#define SATAINTMASK_ERRMSK BIT(2)
#define SATAINTMASK_ERRCRTMSK BIT(1)
#define SATAINTMASK_ATAMSK BIT(0)
#define SATAINTMASK_ALL_GEN1 0x7ff
#define SATAINTMASK_ALL_GEN2 0xfff
#define SATA_RCAR_INT_MASK (SATAINTMASK_SERRMSK | \
SATAINTMASK_ATAMSK)
/* Physical Layer Control Registers */
#define SATAPCTLR1_REG 0x43
#define SATAPCTLR2_REG 0x52
#define SATAPCTLR3_REG 0x5A
#define SATAPCTLR4_REG 0x60
/* Descriptor table word 0 bit (when DTA32M = 1) */
#define SATA_RCAR_DTEND BIT(0)
#define SATA_RCAR_DMA_BOUNDARY 0x1FFFFFFEUL
/* Gen2 Physical Layer Control Registers */
#define RCAR_GEN2_PHY_CTL1_REG 0x1704
#define RCAR_GEN2_PHY_CTL1 0x34180002
#define RCAR_GEN2_PHY_CTL1_SS 0xC180 /* Spread Spectrum */
#define RCAR_GEN2_PHY_CTL2_REG 0x170C
#define RCAR_GEN2_PHY_CTL2 0x00002303
#define RCAR_GEN2_PHY_CTL3_REG 0x171C
#define RCAR_GEN2_PHY_CTL3 0x000B0194
#define RCAR_GEN2_PHY_CTL4_REG 0x1724
#define RCAR_GEN2_PHY_CTL4 0x00030994
#define RCAR_GEN2_PHY_CTL5_REG 0x1740
#define RCAR_GEN2_PHY_CTL5 0x03004001
#define RCAR_GEN2_PHY_CTL5_DC BIT(1) /* DC connection */
#define RCAR_GEN2_PHY_CTL5_TR BIT(2) /* Termination Resistor */
enum sata_rcar_type {
RCAR_GEN1_SATA,
RCAR_GEN2_SATA,
RCAR_GEN3_SATA,
RCAR_R8A7790_ES1_SATA,
};
struct sata_rcar_priv {
void __iomem *base;
u32 sataint_mask;
enum sata_rcar_type type;
};
static void sata_rcar_gen1_phy_preinit(struct sata_rcar_priv *priv)
{
void __iomem *base = priv->base;
/* idle state */
iowrite32(0, base + SATAPHYADDR_REG);
/* reset */
iowrite32(SATAPHYRESET_PHYRST, base + SATAPHYRESET_REG);
udelay(10);
/* deassert reset */
iowrite32(0, base + SATAPHYRESET_REG);
}
static void sata_rcar_gen1_phy_write(struct sata_rcar_priv *priv, u16 reg,
u32 val, int group)
{
void __iomem *base = priv->base;
int timeout;
/* deassert reset */
iowrite32(0, base + SATAPHYRESET_REG);
/* lane 1 */
iowrite32(SATAPHYACCEN_PHYLANE, base + SATAPHYACCEN_REG);
/* write phy register value */
iowrite32(val, base + SATAPHYWDATA_REG);
/* set register group */
if (group)
reg |= SATAPHYADDR_PHYRATEMODE;
/* write command */
iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, base + SATAPHYADDR_REG);
/* wait for ack */
for (timeout = 0; timeout < 100; timeout++) {
val = ioread32(base + SATAPHYACK_REG);
if (val & SATAPHYACK_PHYACK)
break;
}
if (timeout >= 100)
pr_err("%s timeout\n", __func__);
/* idle state */
iowrite32(0, base + SATAPHYADDR_REG);
}
static void sata_rcar_gen1_phy_init(struct sata_rcar_priv *priv)
{
sata_rcar_gen1_phy_preinit(priv);
sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0);
sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1);
sata_rcar_gen1_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0);
sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0);
sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1);
sata_rcar_gen1_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0);
}
static void sata_rcar_gen2_phy_init(struct sata_rcar_priv *priv)
{
void __iomem *base = priv->base;
iowrite32(RCAR_GEN2_PHY_CTL1, base + RCAR_GEN2_PHY_CTL1_REG);
iowrite32(RCAR_GEN2_PHY_CTL2, base + RCAR_GEN2_PHY_CTL2_REG);
iowrite32(RCAR_GEN2_PHY_CTL3, base + RCAR_GEN2_PHY_CTL3_REG);
iowrite32(RCAR_GEN2_PHY_CTL4, base + RCAR_GEN2_PHY_CTL4_REG);
iowrite32(RCAR_GEN2_PHY_CTL5 | RCAR_GEN2_PHY_CTL5_DC |
RCAR_GEN2_PHY_CTL5_TR, base + RCAR_GEN2_PHY_CTL5_REG);
}
static void sata_rcar_freeze(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
/* mask */
iowrite32(priv->sataint_mask, priv->base + SATAINTMASK_REG);
ata_sff_freeze(ap);
}
static void sata_rcar_thaw(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
void __iomem *base = priv->base;
/* ack */
iowrite32(~(u32)SATA_RCAR_INT_MASK, base + SATAINTSTAT_REG);
ata_sff_thaw(ap);
/* unmask */
iowrite32(priv->sataint_mask & ~SATA_RCAR_INT_MASK, base + SATAINTMASK_REG);
}
static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count)
{
u16 *ptr = buffer;
while (count--) {
u16 data = ioread32(reg);
*ptr++ = data;
}
}
static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count)
{
const u16 *ptr = buffer;
while (count--)
iowrite32(*ptr++, reg);
}
static u8 sata_rcar_check_status(struct ata_port *ap)
{
return ioread32(ap->ioaddr.status_addr);
}
static u8 sata_rcar_check_altstatus(struct ata_port *ap)
{
return ioread32(ap->ioaddr.altstatus_addr);
}
static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl)
{
iowrite32(ctl, ap->ioaddr.ctl_addr);
}
static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device)
{
iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr);
ata_sff_pause(ap); /* needed; also flushes, for mmio */
}
static unsigned int sata_rcar_ata_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
sata_rcar_dev_select(ap, device);
iowrite32(0x55, ioaddr->nsect_addr);
iowrite32(0xaa, ioaddr->lbal_addr);
iowrite32(0xaa, ioaddr->nsect_addr);
iowrite32(0x55, ioaddr->lbal_addr);
iowrite32(0x55, ioaddr->nsect_addr);
iowrite32(0xaa, ioaddr->lbal_addr);
nsect = ioread32(ioaddr->nsect_addr);
lbal = ioread32(ioaddr->lbal_addr);
if (nsect == 0x55 && lbal == 0xaa)
return 1; /* found a device */
return 0; /* nothing found */
}
static int sata_rcar_wait_after_reset(struct ata_link *link,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
ata_msleep(ap, ATA_WAIT_AFTER_RESET);
return ata_sff_wait_ready(link, deadline);
}
static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
/* software reset. causes dev0 to be selected */
iowrite32(ap->ctl, ioaddr->ctl_addr);
udelay(20);
iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(20);
iowrite32(ap->ctl, ioaddr->ctl_addr);
ap->last_ctl = ap->ctl;
/* wait the port to become ready */
return sata_rcar_wait_after_reset(&ap->link, deadline);
}
static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
unsigned int devmask = 0;
int rc;
u8 err;
/* determine if device 0 is present */
if (sata_rcar_ata_devchk(ap, 0))
devmask |= 1 << 0;
/* issue bus reset */
DPRINTK("about to softreset, devmask=%x\n", devmask);
rc = sata_rcar_bus_softreset(ap, deadline);
/* if link is occupied, -ENODEV too is an error */
if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
ata_link_err(link, "SRST failed (errno=%d)\n", rc);
return rc;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err);
DPRINTK("classes[0]=%u\n", classes[0]);
return 0;
}
static void sata_rcar_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
iowrite32(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
iowrite32(tf->hob_feature, ioaddr->feature_addr);
iowrite32(tf->hob_nsect, ioaddr->nsect_addr);
iowrite32(tf->hob_lbal, ioaddr->lbal_addr);
iowrite32(tf->hob_lbam, ioaddr->lbam_addr);
iowrite32(tf->hob_lbah, ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
iowrite32(tf->feature, ioaddr->feature_addr);
iowrite32(tf->nsect, ioaddr->nsect_addr);
iowrite32(tf->lbal, ioaddr->lbal_addr);
iowrite32(tf->lbam, ioaddr->lbam_addr);
iowrite32(tf->lbah, ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
iowrite32(tf->device, ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = sata_rcar_check_status(ap);
tf->feature = ioread32(ioaddr->error_addr);
tf->nsect = ioread32(ioaddr->nsect_addr);
tf->lbal = ioread32(ioaddr->lbal_addr);
tf->lbam = ioread32(ioaddr->lbam_addr);
tf->lbah = ioread32(ioaddr->lbah_addr);
tf->device = ioread32(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = ioread32(ioaddr->error_addr);
tf->hob_nsect = ioread32(ioaddr->nsect_addr);
tf->hob_lbal = ioread32(ioaddr->lbal_addr);
tf->hob_lbam = ioread32(ioaddr->lbam_addr);
tf->hob_lbah = ioread32(ioaddr->lbah_addr);
iowrite32(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
}
}
static void sata_rcar_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
iowrite32(tf->command, ap->ioaddr.command_addr);
ata_sff_pause(ap);
}
static unsigned int sata_rcar_data_xfer(struct ata_queued_cmd *qc,
unsigned char *buf,
unsigned int buflen, int rw)
{
struct ata_port *ap = qc->dev->link->ap;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (rw == READ)
sata_rcar_ioread16_rep(data_addr, buf, words);
else
sata_rcar_iowrite16_rep(data_addr, buf, words);
/* Transfer trailing byte, if any. */
if (unlikely(buflen & 0x01)) {
unsigned char pad[2] = { };
/* Point buf to the tail of buffer */
buf += buflen - 1;
/*
* Use io*16_rep() accessors here as well to avoid pointlessly
* swapping bytes to and from on the big endian machines...
*/
if (rw == READ) {
sata_rcar_ioread16_rep(data_addr, pad, 1);
*buf = pad[0];
} else {
pad[0] = *buf;
sata_rcar_iowrite16_rep(data_addr, pad, 1);
}
words++;
}
return words << 1;
}
static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc)
{
int count;
struct ata_port *ap;
/* We only need to flush incoming data when a command was running */
if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
return;
ap = qc->ap;
/* Drain up to 64K of data before we give up this recovery method */
for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) &&
count < 65536; count += 2)
ioread32(ap->ioaddr.data_addr);
/* Can become DEBUG later */
if (count)
ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
}
static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg,
u32 *val)
{
if (sc_reg > SCR_ACTIVE)
return -EINVAL;
*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2));
return 0;
}
static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg,
u32 val)
{
if (sc_reg > SCR_ACTIVE)
return -EINVAL;
iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2));
return 0;
}
static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_bmdma_prd *prd = ap->bmdma_prd;
struct scatterlist *sg;
unsigned int si;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
u32 addr, sg_len;
/*
* Note: h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32)sg_dma_address(sg);
sg_len = sg_dma_len(sg);
prd[si].addr = cpu_to_le32(addr);
prd[si].flags_len = cpu_to_le32(sg_len);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", si, addr, sg_len);
}
/* end-of-table flag */
prd[si - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND);
}
static void sata_rcar_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
sata_rcar_bmdma_fill_sg(qc);
}
static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE;
struct sata_rcar_priv *priv = ap->host->private_data;
void __iomem *base = priv->base;
u32 dmactl;
/* load PRD table addr. */
mb(); /* make sure PRD table writes are visible to controller */
iowrite32(ap->bmdma_prd_dma, base + ATAPI_DTB_ADR_REG);
/* specify data direction, triple-check start bit is clear */
dmactl = ioread32(base + ATAPI_CONTROL1_REG);
dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP);
if (dmactl & ATAPI_CONTROL1_START) {
dmactl &= ~ATAPI_CONTROL1_START;
dmactl |= ATAPI_CONTROL1_STOP;
}
if (!rw)
dmactl |= ATAPI_CONTROL1_RW;
iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
/* issue r/w command */
ap->ops->sff_exec_command(ap, &qc->tf);
}
static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_rcar_priv *priv = ap->host->private_data;
void __iomem *base = priv->base;
u32 dmactl;
/* start host DMA transaction */
dmactl = ioread32(base + ATAPI_CONTROL1_REG);
dmactl &= ~ATAPI_CONTROL1_STOP;
dmactl |= ATAPI_CONTROL1_START;
iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
}
static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_rcar_priv *priv = ap->host->private_data;
void __iomem *base = priv->base;
u32 dmactl;
/* force termination of DMA transfer if active */
dmactl = ioread32(base + ATAPI_CONTROL1_REG);
if (dmactl & ATAPI_CONTROL1_START) {
dmactl &= ~ATAPI_CONTROL1_START;
dmactl |= ATAPI_CONTROL1_STOP;
iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
}
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_sff_dma_pause(ap);
}
static u8 sata_rcar_bmdma_status(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
u8 host_stat = 0;
u32 status;
status = ioread32(priv->base + ATAPI_STATUS_REG);
if (status & ATAPI_STATUS_DEVINT)
host_stat |= ATA_DMA_INTR;
if (status & ATAPI_STATUS_ACT)
host_stat |= ATA_DMA_ACTIVE;
return host_stat;
}
static struct scsi_host_template sata_rcar_sht = {
ATA_BASE_SHT(DRV_NAME),
/*
* This controller allows transfer chunks up to 512MB which cross 64KB
* boundaries, therefore the DMA limits are more relaxed than standard
* ATA SFF.
*/
.sg_tablesize = ATA_MAX_PRD,
.dma_boundary = SATA_RCAR_DMA_BOUNDARY,
};
static struct ata_port_operations sata_rcar_port_ops = {
.inherits = &ata_bmdma_port_ops,
.freeze = sata_rcar_freeze,
.thaw = sata_rcar_thaw,
.softreset = sata_rcar_softreset,
.scr_read = sata_rcar_scr_read,
.scr_write = sata_rcar_scr_write,
.sff_dev_select = sata_rcar_dev_select,
.sff_set_devctl = sata_rcar_set_devctl,
.sff_check_status = sata_rcar_check_status,
.sff_check_altstatus = sata_rcar_check_altstatus,
.sff_tf_load = sata_rcar_tf_load,
.sff_tf_read = sata_rcar_tf_read,
.sff_exec_command = sata_rcar_exec_command,
.sff_data_xfer = sata_rcar_data_xfer,
.sff_drain_fifo = sata_rcar_drain_fifo,
.qc_prep = sata_rcar_qc_prep,
.bmdma_setup = sata_rcar_bmdma_setup,
.bmdma_start = sata_rcar_bmdma_start,
.bmdma_stop = sata_rcar_bmdma_stop,
.bmdma_status = sata_rcar_bmdma_status,
};
static void sata_rcar_serr_interrupt(struct ata_port *ap)
{
struct sata_rcar_priv *priv = ap->host->private_data;
struct ata_eh_info *ehi = &ap->link.eh_info;
int freeze = 0;
u32 serror;
serror = ioread32(priv->base + SCRSERR_REG);
if (!serror)
return;
DPRINTK("SError @host_intr: 0x%x\n", serror);
/* first, analyze and record host port events */
ata_ehi_clear_desc(ehi);
if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
/* Setup a soft-reset EH action */
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, "%s", "hotplug");
freeze = serror & SERR_COMM_WAKE ? 0 : 1;
}
/* freeze or abort */
if (freeze)
ata_port_freeze(ap);
else
ata_port_abort(ap);
}
static void sata_rcar_ata_interrupt(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
int handled = 0;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc)
handled |= ata_bmdma_port_intr(ap, qc);
/* be sure to clear ATA interrupt */
if (!handled)
sata_rcar_check_status(ap);
}
static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct sata_rcar_priv *priv = host->private_data;
void __iomem *base = priv->base;
unsigned int handled = 0;
struct ata_port *ap;
u32 sataintstat;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sataintstat = ioread32(base + SATAINTSTAT_REG);
sataintstat &= SATA_RCAR_INT_MASK;
if (!sataintstat)
goto done;
/* ack */
iowrite32(~sataintstat & priv->sataint_mask, base + SATAINTSTAT_REG);
ap = host->ports[0];
if (sataintstat & SATAINTSTAT_ATA)
sata_rcar_ata_interrupt(ap);
if (sataintstat & SATAINTSTAT_SERR)
sata_rcar_serr_interrupt(ap);
handled = 1;
done:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static void sata_rcar_setup_port(struct ata_host *host)
{
struct ata_port *ap = host->ports[0];
struct ata_ioports *ioaddr = &ap->ioaddr;
struct sata_rcar_priv *priv = host->private_data;
void __iomem *base = priv->base;
ap->ops = &sata_rcar_port_ops;
ap->pio_mask = ATA_PIO4;
ap->udma_mask = ATA_UDMA6;
ap->flags |= ATA_FLAG_SATA;
if (priv->type == RCAR_R8A7790_ES1_SATA)
ap->flags |= ATA_FLAG_NO_DIPM;
ioaddr->cmd_addr = base + SDATA_REG;
ioaddr->ctl_addr = base + SSDEVCON_REG;
ioaddr->scr_addr = base + SCRSSTS_REG;
ioaddr->altstatus_addr = ioaddr->ctl_addr;
ioaddr->data_addr = ioaddr->cmd_addr + (ATA_REG_DATA << 2);
ioaddr->error_addr = ioaddr->cmd_addr + (ATA_REG_ERR << 2);
ioaddr->feature_addr = ioaddr->cmd_addr + (ATA_REG_FEATURE << 2);
ioaddr->nsect_addr = ioaddr->cmd_addr + (ATA_REG_NSECT << 2);
ioaddr->lbal_addr = ioaddr->cmd_addr + (ATA_REG_LBAL << 2);
ioaddr->lbam_addr = ioaddr->cmd_addr + (ATA_REG_LBAM << 2);
ioaddr->lbah_addr = ioaddr->cmd_addr + (ATA_REG_LBAH << 2);
ioaddr->device_addr = ioaddr->cmd_addr + (ATA_REG_DEVICE << 2);
ioaddr->status_addr = ioaddr->cmd_addr + (ATA_REG_STATUS << 2);
ioaddr->command_addr = ioaddr->cmd_addr + (ATA_REG_CMD << 2);
}
static void sata_rcar_init_module(struct sata_rcar_priv *priv)
{
void __iomem *base = priv->base;
u32 val;
/* SATA-IP reset state */
val = ioread32(base + ATAPI_CONTROL1_REG);
val |= ATAPI_CONTROL1_RESET;
iowrite32(val, base + ATAPI_CONTROL1_REG);
/* ISM mode, PRD mode, DTEND flag at bit 0 */
val = ioread32(base + ATAPI_CONTROL1_REG);
val |= ATAPI_CONTROL1_ISM;
val |= ATAPI_CONTROL1_DESE;
val |= ATAPI_CONTROL1_DTA32M;
iowrite32(val, base + ATAPI_CONTROL1_REG);
/* Release the SATA-IP from the reset state */
val = ioread32(base + ATAPI_CONTROL1_REG);
val &= ~ATAPI_CONTROL1_RESET;
iowrite32(val, base + ATAPI_CONTROL1_REG);
/* ack and mask */
iowrite32(0, base + SATAINTSTAT_REG);
iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
/* enable interrupts */
iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG);
}
static void sata_rcar_init_controller(struct ata_host *host)
{
struct sata_rcar_priv *priv = host->private_data;
priv->sataint_mask = SATAINTMASK_ALL_GEN2;
/* reset and setup phy */
switch (priv->type) {
case RCAR_GEN1_SATA:
priv->sataint_mask = SATAINTMASK_ALL_GEN1;
sata_rcar_gen1_phy_init(priv);
break;
case RCAR_GEN2_SATA:
case RCAR_R8A7790_ES1_SATA:
sata_rcar_gen2_phy_init(priv);
break;
case RCAR_GEN3_SATA:
break;
default:
dev_warn(host->dev, "SATA phy is not initialized\n");
break;
}
sata_rcar_init_module(priv);
}
static const struct of_device_id sata_rcar_match[] = {
{
/* Deprecated by "renesas,sata-r8a7779" */
.compatible = "renesas,rcar-sata",
.data = (void *)RCAR_GEN1_SATA,
},
{
.compatible = "renesas,sata-r8a7779",
.data = (void *)RCAR_GEN1_SATA,
},
{
.compatible = "renesas,sata-r8a7790",
.data = (void *)RCAR_GEN2_SATA
},
{
.compatible = "renesas,sata-r8a7790-es1",
.data = (void *)RCAR_R8A7790_ES1_SATA
},
{
.compatible = "renesas,sata-r8a7791",
.data = (void *)RCAR_GEN2_SATA
},
{
.compatible = "renesas,sata-r8a7793",
.data = (void *)RCAR_GEN2_SATA
},
{
.compatible = "renesas,sata-r8a7795",
.data = (void *)RCAR_GEN3_SATA
},
{
.compatible = "renesas,rcar-gen2-sata",
.data = (void *)RCAR_GEN2_SATA
},
{
.compatible = "renesas,rcar-gen3-sata",
.data = (void *)RCAR_GEN3_SATA
},
{ },
};
MODULE_DEVICE_TABLE(of, sata_rcar_match);
static int sata_rcar_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ata_host *host;
struct sata_rcar_priv *priv;
struct resource *mem;
int irq;
int ret = 0;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -EINVAL;
priv = devm_kzalloc(dev, sizeof(struct sata_rcar_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->type = (enum sata_rcar_type)of_device_get_match_data(dev);
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0)
goto err_pm_disable;
host = ata_host_alloc(dev, 1);
if (!host) {
dev_err(dev, "ata_host_alloc failed\n");
ret = -ENOMEM;
goto err_pm_put;
}
host->private_data = priv;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(dev, mem);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto err_pm_put;
}
/* setup port */
sata_rcar_setup_port(host);
/* initialize host controller */
sata_rcar_init_controller(host);
ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0,
&sata_rcar_sht);
if (!ret)
return 0;
err_pm_put:
pm_runtime_put(dev);
err_pm_disable:
pm_runtime_disable(dev);
return ret;
}
static int sata_rcar_remove(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
struct sata_rcar_priv *priv = host->private_data;
void __iomem *base = priv->base;
ata_host_detach(host);
/* disable interrupts */
iowrite32(0, base + ATAPI_INT_ENABLE_REG);
/* ack and mask */
iowrite32(0, base + SATAINTSTAT_REG);
iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sata_rcar_suspend(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct sata_rcar_priv *priv = host->private_data;
void __iomem *base = priv->base;
int ret;
ret = ata_host_suspend(host, PMSG_SUSPEND);
if (!ret) {
/* disable interrupts */
iowrite32(0, base + ATAPI_INT_ENABLE_REG);
/* mask */
iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
pm_runtime_put(dev);
}
return ret;
}
static int sata_rcar_resume(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct sata_rcar_priv *priv = host->private_data;
void __iomem *base = priv->base;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
return ret;
if (priv->type == RCAR_GEN3_SATA) {
sata_rcar_init_module(priv);
} else {
/* ack and mask */
iowrite32(0, base + SATAINTSTAT_REG);
iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
/* enable interrupts */
iowrite32(ATAPI_INT_ENABLE_SATAINT,
base + ATAPI_INT_ENABLE_REG);
}
ata_host_resume(host);
return 0;
}
static int sata_rcar_restore(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
return ret;
sata_rcar_setup_port(host);
/* initialize host controller */
sata_rcar_init_controller(host);
ata_host_resume(host);
return 0;
}
static const struct dev_pm_ops sata_rcar_pm_ops = {
.suspend = sata_rcar_suspend,
.resume = sata_rcar_resume,
.freeze = sata_rcar_suspend,
.thaw = sata_rcar_resume,
.poweroff = sata_rcar_suspend,
.restore = sata_rcar_restore,
};
#endif
static struct platform_driver sata_rcar_driver = {
.probe = sata_rcar_probe,
.remove = sata_rcar_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = sata_rcar_match,
#ifdef CONFIG_PM_SLEEP
.pm = &sata_rcar_pm_ops,
#endif
},
};
module_platform_driver(sata_rcar_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");