linux_old1/drivers/acpi/osl.c

1163 lines
23 KiB
C

/*
* acpi_osl.c - OS-dependent functions ($Revision: 83 $)
*
* Copyright (C) 2000 Andrew Henroid
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/nmi.h>
#include <acpi/acpi.h>
#include <asm/io.h>
#include <acpi/acpi_bus.h>
#include <acpi/processor.h>
#include <asm/uaccess.h>
#include <linux/efi.h>
#define _COMPONENT ACPI_OS_SERVICES
ACPI_MODULE_NAME ("osl")
#define PREFIX "ACPI: "
struct acpi_os_dpc
{
acpi_osd_exec_callback function;
void *context;
};
#ifdef CONFIG_ACPI_CUSTOM_DSDT
#include CONFIG_ACPI_CUSTOM_DSDT_FILE
#endif
#ifdef ENABLE_DEBUGGER
#include <linux/kdb.h>
/* stuff for debugger support */
int acpi_in_debugger;
EXPORT_SYMBOL(acpi_in_debugger);
extern char line_buf[80];
#endif /*ENABLE_DEBUGGER*/
static unsigned int acpi_irq_irq;
static acpi_osd_handler acpi_irq_handler;
static void *acpi_irq_context;
static struct workqueue_struct *kacpid_wq;
acpi_status
acpi_os_initialize(void)
{
return AE_OK;
}
acpi_status
acpi_os_initialize1(void)
{
/*
* Initialize PCI configuration space access, as we'll need to access
* it while walking the namespace (bus 0 and root bridges w/ _BBNs).
*/
#ifdef CONFIG_ACPI_PCI
if (!raw_pci_ops) {
printk(KERN_ERR PREFIX "Access to PCI configuration space unavailable\n");
return AE_NULL_ENTRY;
}
#endif
kacpid_wq = create_singlethread_workqueue("kacpid");
BUG_ON(!kacpid_wq);
return AE_OK;
}
acpi_status
acpi_os_terminate(void)
{
if (acpi_irq_handler) {
acpi_os_remove_interrupt_handler(acpi_irq_irq,
acpi_irq_handler);
}
destroy_workqueue(kacpid_wq);
return AE_OK;
}
void
acpi_os_printf(const char *fmt,...)
{
va_list args;
va_start(args, fmt);
acpi_os_vprintf(fmt, args);
va_end(args);
}
EXPORT_SYMBOL(acpi_os_printf);
void
acpi_os_vprintf(const char *fmt, va_list args)
{
static char buffer[512];
vsprintf(buffer, fmt, args);
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
kdb_printf("%s", buffer);
} else {
printk("%s", buffer);
}
#else
printk("%s", buffer);
#endif
}
void *
acpi_os_allocate(acpi_size size)
{
return kmalloc(size, GFP_KERNEL);
}
void
acpi_os_free(void *ptr)
{
kfree(ptr);
}
EXPORT_SYMBOL(acpi_os_free);
acpi_status
acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
{
if (efi_enabled) {
addr->pointer_type = ACPI_PHYSICAL_POINTER;
if (efi.acpi20)
addr->pointer.physical =
(acpi_physical_address) virt_to_phys(efi.acpi20);
else if (efi.acpi)
addr->pointer.physical =
(acpi_physical_address) virt_to_phys(efi.acpi);
else {
printk(KERN_ERR PREFIX "System description tables not found\n");
return AE_NOT_FOUND;
}
} else {
if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
printk(KERN_ERR PREFIX "System description tables not found\n");
return AE_NOT_FOUND;
}
}
return AE_OK;
}
acpi_status
acpi_os_map_memory(acpi_physical_address phys, acpi_size size, void __iomem **virt)
{
if (efi_enabled) {
if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
*virt = (void __iomem *) phys_to_virt(phys);
} else {
*virt = ioremap(phys, size);
}
} else {
if (phys > ULONG_MAX) {
printk(KERN_ERR PREFIX "Cannot map memory that high\n");
return AE_BAD_PARAMETER;
}
/*
* ioremap checks to ensure this is in reserved space
*/
*virt = ioremap((unsigned long) phys, size);
}
if (!*virt)
return AE_NO_MEMORY;
return AE_OK;
}
void
acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
{
iounmap(virt);
}
#ifdef ACPI_FUTURE_USAGE
acpi_status
acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
{
if(!phys || !virt)
return AE_BAD_PARAMETER;
*phys = virt_to_phys(virt);
return AE_OK;
}
#endif
#define ACPI_MAX_OVERRIDE_LEN 100
static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
acpi_status
acpi_os_predefined_override (const struct acpi_predefined_names *init_val,
acpi_string *new_val)
{
if (!init_val || !new_val)
return AE_BAD_PARAMETER;
*new_val = NULL;
if (!memcmp (init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
acpi_os_name);
*new_val = acpi_os_name;
}
return AE_OK;
}
acpi_status
acpi_os_table_override (struct acpi_table_header *existing_table,
struct acpi_table_header **new_table)
{
if (!existing_table || !new_table)
return AE_BAD_PARAMETER;
#ifdef CONFIG_ACPI_CUSTOM_DSDT
if (strncmp(existing_table->signature, "DSDT", 4) == 0)
*new_table = (struct acpi_table_header*)AmlCode;
else
*new_table = NULL;
#else
*new_table = NULL;
#endif
return AE_OK;
}
static irqreturn_t
acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
{
return (*acpi_irq_handler)(acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
}
acpi_status
acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, void *context)
{
unsigned int irq;
/*
* Ignore the GSI from the core, and use the value in our copy of the
* FADT. It may not be the same if an interrupt source override exists
* for the SCI.
*/
gsi = acpi_fadt.sci_int;
if (acpi_gsi_to_irq(gsi, &irq) < 0) {
printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
gsi);
return AE_OK;
}
acpi_irq_handler = handler;
acpi_irq_context = context;
if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
return AE_NOT_ACQUIRED;
}
acpi_irq_irq = irq;
return AE_OK;
}
acpi_status
acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
{
if (irq) {
free_irq(irq, acpi_irq);
acpi_irq_handler = NULL;
acpi_irq_irq = 0;
}
return AE_OK;
}
/*
* Running in interpreter thread context, safe to sleep
*/
void
acpi_os_sleep(acpi_integer ms)
{
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(((signed long) ms * HZ) / 1000);
}
EXPORT_SYMBOL(acpi_os_sleep);
void
acpi_os_stall(u32 us)
{
while (us) {
u32 delay = 1000;
if (delay > us)
delay = us;
udelay(delay);
touch_nmi_watchdog();
us -= delay;
}
}
EXPORT_SYMBOL(acpi_os_stall);
/*
* Support ACPI 3.0 AML Timer operand
* Returns 64-bit free-running, monotonically increasing timer
* with 100ns granularity
*/
u64
acpi_os_get_timer (void)
{
static u64 t;
#ifdef CONFIG_HPET
/* TBD: use HPET if available */
#endif
#ifdef CONFIG_X86_PM_TIMER
/* TBD: default to PM timer if HPET was not available */
#endif
if (!t)
printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
return ++t;
}
acpi_status
acpi_os_read_port(
acpi_io_address port,
u32 *value,
u32 width)
{
u32 dummy;
if (!value)
value = &dummy;
switch (width)
{
case 8:
*(u8*) value = inb(port);
break;
case 16:
*(u16*) value = inw(port);
break;
case 32:
*(u32*) value = inl(port);
break;
default:
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_read_port);
acpi_status
acpi_os_write_port(
acpi_io_address port,
u32 value,
u32 width)
{
switch (width)
{
case 8:
outb(value, port);
break;
case 16:
outw(value, port);
break;
case 32:
outl(value, port);
break;
default:
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_write_port);
acpi_status
acpi_os_read_memory(
acpi_physical_address phys_addr,
u32 *value,
u32 width)
{
u32 dummy;
void __iomem *virt_addr;
int iomem = 0;
if (efi_enabled) {
if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
/* HACK ALERT! We can use readb/w/l on real memory too.. */
virt_addr = (void __iomem *) phys_to_virt(phys_addr);
} else {
iomem = 1;
virt_addr = ioremap(phys_addr, width);
}
} else
virt_addr = (void __iomem *) phys_to_virt(phys_addr);
if (!value)
value = &dummy;
switch (width) {
case 8:
*(u8*) value = readb(virt_addr);
break;
case 16:
*(u16*) value = readw(virt_addr);
break;
case 32:
*(u32*) value = readl(virt_addr);
break;
default:
BUG();
}
if (efi_enabled) {
if (iomem)
iounmap(virt_addr);
}
return AE_OK;
}
acpi_status
acpi_os_write_memory(
acpi_physical_address phys_addr,
u32 value,
u32 width)
{
void __iomem *virt_addr;
int iomem = 0;
if (efi_enabled) {
if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
/* HACK ALERT! We can use writeb/w/l on real memory too */
virt_addr = (void __iomem *) phys_to_virt(phys_addr);
} else {
iomem = 1;
virt_addr = ioremap(phys_addr, width);
}
} else
virt_addr = (void __iomem *) phys_to_virt(phys_addr);
switch (width) {
case 8:
writeb(value, virt_addr);
break;
case 16:
writew(value, virt_addr);
break;
case 32:
writel(value, virt_addr);
break;
default:
BUG();
}
if (iomem)
iounmap(virt_addr);
return AE_OK;
}
#ifdef CONFIG_ACPI_PCI
acpi_status
acpi_os_read_pci_configuration (struct acpi_pci_id *pci_id, u32 reg, void *value, u32 width)
{
int result, size;
if (!value)
return AE_BAD_PARAMETER;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
BUG_ON(!raw_pci_ops);
result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
EXPORT_SYMBOL(acpi_os_read_pci_configuration);
acpi_status
acpi_os_write_pci_configuration (struct acpi_pci_id *pci_id, u32 reg, acpi_integer value, u32 width)
{
int result, size;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
BUG_ON(!raw_pci_ops);
result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
/* TODO: Change code to take advantage of driver model more */
static void
acpi_os_derive_pci_id_2 (
acpi_handle rhandle, /* upper bound */
acpi_handle chandle, /* current node */
struct acpi_pci_id **id,
int *is_bridge,
u8 *bus_number)
{
acpi_handle handle;
struct acpi_pci_id *pci_id = *id;
acpi_status status;
unsigned long temp;
acpi_object_type type;
u8 tu8;
acpi_get_parent(chandle, &handle);
if (handle != rhandle) {
acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge, bus_number);
status = acpi_get_type(handle, &type);
if ( (ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE) )
return;
status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &temp);
if (ACPI_SUCCESS(status)) {
pci_id->device = ACPI_HIWORD (ACPI_LODWORD (temp));
pci_id->function = ACPI_LOWORD (ACPI_LODWORD (temp));
if (*is_bridge)
pci_id->bus = *bus_number;
/* any nicer way to get bus number of bridge ? */
status = acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8, 8);
if (ACPI_SUCCESS(status) &&
((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
status = acpi_os_read_pci_configuration(pci_id, 0x18, &tu8, 8);
if (!ACPI_SUCCESS(status)) {
/* Certainly broken... FIX ME */
return;
}
*is_bridge = 1;
pci_id->bus = tu8;
status = acpi_os_read_pci_configuration(pci_id, 0x19, &tu8, 8);
if (ACPI_SUCCESS(status)) {
*bus_number = tu8;
}
} else
*is_bridge = 0;
}
}
}
void
acpi_os_derive_pci_id (
acpi_handle rhandle, /* upper bound */
acpi_handle chandle, /* current node */
struct acpi_pci_id **id)
{
int is_bridge = 1;
u8 bus_number = (*id)->bus;
acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
}
#else /*!CONFIG_ACPI_PCI*/
acpi_status
acpi_os_write_pci_configuration (
struct acpi_pci_id *pci_id,
u32 reg,
acpi_integer value,
u32 width)
{
return AE_SUPPORT;
}
acpi_status
acpi_os_read_pci_configuration (
struct acpi_pci_id *pci_id,
u32 reg,
void *value,
u32 width)
{
return AE_SUPPORT;
}
void
acpi_os_derive_pci_id (
acpi_handle rhandle, /* upper bound */
acpi_handle chandle, /* current node */
struct acpi_pci_id **id)
{
}
#endif /*CONFIG_ACPI_PCI*/
static void
acpi_os_execute_deferred (
void *context)
{
struct acpi_os_dpc *dpc = NULL;
ACPI_FUNCTION_TRACE ("os_execute_deferred");
dpc = (struct acpi_os_dpc *) context;
if (!dpc) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
return_VOID;
}
dpc->function(dpc->context);
kfree(dpc);
return_VOID;
}
acpi_status
acpi_os_queue_for_execution(
u32 priority,
acpi_osd_exec_callback function,
void *context)
{
acpi_status status = AE_OK;
struct acpi_os_dpc *dpc;
struct work_struct *task;
ACPI_FUNCTION_TRACE ("os_queue_for_execution");
ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context));
if (!function)
return_ACPI_STATUS (AE_BAD_PARAMETER);
/*
* Allocate/initialize DPC structure. Note that this memory will be
* freed by the callee. The kernel handles the tq_struct list in a
* way that allows us to also free its memory inside the callee.
* Because we may want to schedule several tasks with different
* parameters we can't use the approach some kernel code uses of
* having a static tq_struct.
* We can save time and code by allocating the DPC and tq_structs
* from the same memory.
*/
dpc = kmalloc(sizeof(struct acpi_os_dpc)+sizeof(struct work_struct), GFP_ATOMIC);
if (!dpc)
return_ACPI_STATUS (AE_NO_MEMORY);
dpc->function = function;
dpc->context = context;
task = (void *)(dpc+1);
INIT_WORK(task, acpi_os_execute_deferred, (void*)dpc);
if (!queue_work(kacpid_wq, task)) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to queue_work() failed.\n"));
kfree(dpc);
status = AE_ERROR;
}
return_ACPI_STATUS (status);
}
EXPORT_SYMBOL(acpi_os_queue_for_execution);
void
acpi_os_wait_events_complete(
void *context)
{
flush_workqueue(kacpid_wq);
}
EXPORT_SYMBOL(acpi_os_wait_events_complete);
/*
* Allocate the memory for a spinlock and initialize it.
*/
acpi_status
acpi_os_create_lock (
acpi_handle *out_handle)
{
spinlock_t *lock_ptr;
ACPI_FUNCTION_TRACE ("os_create_lock");
lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
spin_lock_init(lock_ptr);
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
*out_handle = lock_ptr;
return_ACPI_STATUS (AE_OK);
}
/*
* Deallocate the memory for a spinlock.
*/
void
acpi_os_delete_lock (
acpi_handle handle)
{
ACPI_FUNCTION_TRACE ("os_create_lock");
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
acpi_os_free(handle);
return_VOID;
}
/*
* Acquire a spinlock.
*
* handle is a pointer to the spinlock_t.
* flags is *not* the result of save_flags - it is an ACPI-specific flag variable
* that indicates whether we are at interrupt level.
*/
void
acpi_os_acquire_lock (
acpi_handle handle,
u32 flags)
{
ACPI_FUNCTION_TRACE ("os_acquire_lock");
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquiring spinlock[%p] from %s level\n", handle,
((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt")));
if (flags & ACPI_NOT_ISR)
ACPI_DISABLE_IRQS();
spin_lock((spinlock_t *)handle);
return_VOID;
}
/*
* Release a spinlock. See above.
*/
void
acpi_os_release_lock (
acpi_handle handle,
u32 flags)
{
ACPI_FUNCTION_TRACE ("os_release_lock");
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Releasing spinlock[%p] from %s level\n", handle,
((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt")));
spin_unlock((spinlock_t *)handle);
if (flags & ACPI_NOT_ISR)
ACPI_ENABLE_IRQS();
return_VOID;
}
acpi_status
acpi_os_create_semaphore(
u32 max_units,
u32 initial_units,
acpi_handle *handle)
{
struct semaphore *sem = NULL;
ACPI_FUNCTION_TRACE ("os_create_semaphore");
sem = acpi_os_allocate(sizeof(struct semaphore));
if (!sem)
return_ACPI_STATUS (AE_NO_MEMORY);
memset(sem, 0, sizeof(struct semaphore));
sema_init(sem, initial_units);
*handle = (acpi_handle*)sem;
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units));
return_ACPI_STATUS (AE_OK);
}
EXPORT_SYMBOL(acpi_os_create_semaphore);
/*
* TODO: A better way to delete semaphores? Linux doesn't have a
* 'delete_semaphore()' function -- may result in an invalid
* pointer dereference for non-synchronized consumers. Should
* we at least check for blocked threads and signal/cancel them?
*/
acpi_status
acpi_os_delete_semaphore(
acpi_handle handle)
{
struct semaphore *sem = (struct semaphore*) handle;
ACPI_FUNCTION_TRACE ("os_delete_semaphore");
if (!sem)
return_ACPI_STATUS (AE_BAD_PARAMETER);
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
acpi_os_free(sem); sem = NULL;
return_ACPI_STATUS (AE_OK);
}
EXPORT_SYMBOL(acpi_os_delete_semaphore);
/*
* TODO: The kernel doesn't have a 'down_timeout' function -- had to
* improvise. The process is to sleep for one scheduler quantum
* until the semaphore becomes available. Downside is that this
* may result in starvation for timeout-based waits when there's
* lots of semaphore activity.
*
* TODO: Support for units > 1?
*/
acpi_status
acpi_os_wait_semaphore(
acpi_handle handle,
u32 units,
u16 timeout)
{
acpi_status status = AE_OK;
struct semaphore *sem = (struct semaphore*)handle;
int ret = 0;
ACPI_FUNCTION_TRACE ("os_wait_semaphore");
if (!sem || (units < 1))
return_ACPI_STATUS (AE_BAD_PARAMETER);
if (units > 1)
return_ACPI_STATUS (AE_SUPPORT);
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout));
if (in_atomic())
timeout = 0;
switch (timeout)
{
/*
* No Wait:
* --------
* A zero timeout value indicates that we shouldn't wait - just
* acquire the semaphore if available otherwise return AE_TIME
* (a.k.a. 'would block').
*/
case 0:
if(down_trylock(sem))
status = AE_TIME;
break;
/*
* Wait Indefinitely:
* ------------------
*/
case ACPI_WAIT_FOREVER:
down(sem);
break;
/*
* Wait w/ Timeout:
* ----------------
*/
default:
// TODO: A better timeout algorithm?
{
int i = 0;
static const int quantum_ms = 1000/HZ;
ret = down_trylock(sem);
for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(1);
ret = down_trylock(sem);
}
if (ret != 0)
status = AE_TIME;
}
break;
}
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Failed to acquire semaphore[%p|%d|%d], %s\n",
handle, units, timeout, acpi_format_exception(status)));
}
else {
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout));
}
return_ACPI_STATUS (status);
}
EXPORT_SYMBOL(acpi_os_wait_semaphore);
/*
* TODO: Support for units > 1?
*/
acpi_status
acpi_os_signal_semaphore(
acpi_handle handle,
u32 units)
{
struct semaphore *sem = (struct semaphore *) handle;
ACPI_FUNCTION_TRACE ("os_signal_semaphore");
if (!sem || (units < 1))
return_ACPI_STATUS (AE_BAD_PARAMETER);
if (units > 1)
return_ACPI_STATUS (AE_SUPPORT);
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units));
up(sem);
return_ACPI_STATUS (AE_OK);
}
EXPORT_SYMBOL(acpi_os_signal_semaphore);
#ifdef ACPI_FUTURE_USAGE
u32
acpi_os_get_line(char *buffer)
{
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
u32 chars;
kdb_read(buffer, sizeof(line_buf));
/* remove the CR kdb includes */
chars = strlen(buffer) - 1;
buffer[chars] = '\0';
}
#endif
return 0;
}
#endif /* ACPI_FUTURE_USAGE */
/* Assumes no unreadable holes inbetween */
u8
acpi_os_readable(void *ptr, acpi_size len)
{
#if defined(__i386__) || defined(__x86_64__)
char tmp;
return !__get_user(tmp, (char __user *)ptr) && !__get_user(tmp, (char __user *)ptr + len - 1);
#endif
return 1;
}
#ifdef ACPI_FUTURE_USAGE
u8
acpi_os_writable(void *ptr, acpi_size len)
{
/* could do dummy write (racy) or a kernel page table lookup.
The later may be difficult at early boot when kmap doesn't work yet. */
return 1;
}
#endif
u32
acpi_os_get_thread_id (void)
{
if (!in_atomic())
return current->pid;
return 0;
}
acpi_status
acpi_os_signal (
u32 function,
void *info)
{
switch (function)
{
case ACPI_SIGNAL_FATAL:
printk(KERN_ERR PREFIX "Fatal opcode executed\n");
break;
case ACPI_SIGNAL_BREAKPOINT:
/*
* AML Breakpoint
* ACPI spec. says to treat it as a NOP unless
* you are debugging. So if/when we integrate
* AML debugger into the kernel debugger its
* hook will go here. But until then it is
* not useful to print anything on breakpoints.
*/
break;
default:
break;
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_signal);
static int __init
acpi_os_name_setup(char *str)
{
char *p = acpi_os_name;
int count = ACPI_MAX_OVERRIDE_LEN-1;
if (!str || !*str)
return 0;
for (; count-- && str && *str; str++) {
if (isalnum(*str) || *str == ' ' || *str == ':')
*p++ = *str;
else if (*str == '\'' || *str == '"')
continue;
else
break;
}
*p = 0;
return 1;
}
__setup("acpi_os_name=", acpi_os_name_setup);
/*
* _OSI control
* empty string disables _OSI
* TBD additional string adds to _OSI
*/
static int __init
acpi_osi_setup(char *str)
{
if (str == NULL || *str == '\0') {
printk(KERN_INFO PREFIX "_OSI method disabled\n");
acpi_gbl_create_osi_method = FALSE;
} else
{
/* TBD */
printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n", str);
}
return 1;
}
__setup("acpi_osi=", acpi_osi_setup);
/* enable serialization to combat AE_ALREADY_EXISTS errors */
static int __init
acpi_serialize_setup(char *str)
{
printk(KERN_INFO PREFIX "serialize enabled\n");
acpi_gbl_all_methods_serialized = TRUE;
return 1;
}
__setup("acpi_serialize", acpi_serialize_setup);
/*
* Wake and Run-Time GPES are expected to be separate.
* We disable wake-GPEs at run-time to prevent spurious
* interrupts.
*
* However, if a system exists that shares Wake and
* Run-time events on the same GPE this flag is available
* to tell Linux to keep the wake-time GPEs enabled at run-time.
*/
static int __init
acpi_wake_gpes_always_on_setup(char *str)
{
printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
acpi_gbl_leave_wake_gpes_disabled = FALSE;
return 1;
}
__setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
/*
* max_cstate is defined in the base kernel so modules can
* change it w/o depending on the state of the processor module.
*/
unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
EXPORT_SYMBOL(max_cstate);