linux_old1/kernel/time/timekeeping.c

1821 lines
48 KiB
C

/*
* linux/kernel/time/timekeeping.c
*
* Kernel timekeeping code and accessor functions
*
* This code was moved from linux/kernel/timer.c.
* Please see that file for copyright and history logs.
*
*/
#include <linux/timekeeper_internal.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/syscore_ops.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
#include <linux/pvclock_gtod.h>
#include <linux/compiler.h>
#include "tick-internal.h"
#include "ntp_internal.h"
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
#define TK_MIRROR (1 << 1)
#define TK_CLOCK_WAS_SET (1 << 2)
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
static struct {
seqcount_t seq;
struct timekeeper timekeeper;
} tk_core ____cacheline_aligned;
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static struct timekeeper shadow_timekeeper;
/**
* struct tk_fast - NMI safe timekeeper
* @seq: Sequence counter for protecting updates. The lowest bit
* is the index for the tk_read_base array
* @base: tk_read_base array. Access is indexed by the lowest bit of
* @seq.
*
* See @update_fast_timekeeper() below.
*/
struct tk_fast {
seqcount_t seq;
struct tk_read_base base[2];
};
static struct tk_fast tk_fast_mono ____cacheline_aligned;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
tk->xtime_sec++;
}
}
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
struct timespec64 ts;
ts.tv_sec = tk->xtime_sec;
ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
return ts;
}
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec = ts->tv_sec;
tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
}
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec += ts->tv_sec;
tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
tk_normalize_xtime(tk);
}
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
{
struct timespec64 tmp;
/*
* Verify consistency of: offset_real = -wall_to_monotonic
* before modifying anything
*/
set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
-tk->wall_to_monotonic.tv_nsec);
WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
tk->offs_real = timespec64_to_ktime(tmp);
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
tk->offs_boot = ktime_add(tk->offs_boot, delta);
}
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
* @tk: The target timekeeper to setup.
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
* pair and interval request.
*
* Unless you're the timekeeping code, you should not be using this!
*/
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
{
cycle_t interval;
u64 tmp, ntpinterval;
struct clocksource *old_clock;
old_clock = tk->tkr.clock;
tk->tkr.clock = clock;
tk->tkr.read = clock->read;
tk->tkr.mask = clock->mask;
tk->tkr.cycle_last = tk->tkr.read(clock);
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
tmp <<= clock->shift;
ntpinterval = tmp;
tmp += clock->mult/2;
do_div(tmp, clock->mult);
if (tmp == 0)
tmp = 1;
interval = (cycle_t) tmp;
tk->cycle_interval = interval;
/* Go back from cycles -> shifted ns */
tk->xtime_interval = (u64) interval * clock->mult;
tk->xtime_remainder = ntpinterval - tk->xtime_interval;
tk->raw_interval =
((u64) interval * clock->mult) >> clock->shift;
/* if changing clocks, convert xtime_nsec shift units */
if (old_clock) {
int shift_change = clock->shift - old_clock->shift;
if (shift_change < 0)
tk->tkr.xtime_nsec >>= -shift_change;
else
tk->tkr.xtime_nsec <<= shift_change;
}
tk->tkr.shift = clock->shift;
tk->ntp_error = 0;
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
/*
* The timekeeper keeps its own mult values for the currently
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
tk->tkr.mult = clock->mult;
tk->ntp_err_mult = 0;
}
/* Timekeeper helper functions. */
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
#else
static inline u32 arch_gettimeoffset(void) { return 0; }
#endif
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
{
cycle_t cycle_now, delta;
s64 nsec;
/* read clocksource: */
cycle_now = tkr->read(tkr->clock);
/* calculate the delta since the last update_wall_time: */
delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
nsec = delta * tkr->mult + tkr->xtime_nsec;
nsec >>= tkr->shift;
/* If arch requires, add in get_arch_timeoffset() */
return nsec + arch_gettimeoffset();
}
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
{
struct clocksource *clock = tk->tkr.clock;
cycle_t cycle_now, delta;
s64 nsec;
/* read clocksource: */
cycle_now = tk->tkr.read(clock);
/* calculate the delta since the last update_wall_time: */
delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
/* convert delta to nanoseconds. */
nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
/* If arch requires, add in get_arch_timeoffset() */
return nsec + arch_gettimeoffset();
}
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tk: The timekeeper from which we take the update
* @tkf: The fast timekeeper to update
* @tbase: The time base for the fast timekeeper (mono/raw)
*
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
* So we handle this differently than the other timekeeping accessor
* functions which retry when the sequence count has changed. The
* update side does:
*
* smp_wmb(); <- Ensure that the last base[1] update is visible
* tkf->seq++;
* smp_wmb(); <- Ensure that the seqcount update is visible
* update(tkf->base[0], tk);
* smp_wmb(); <- Ensure that the base[0] update is visible
* tkf->seq++;
* smp_wmb(); <- Ensure that the seqcount update is visible
* update(tkf->base[1], tk);
*
* The reader side does:
*
* do {
* seq = tkf->seq;
* smp_rmb();
* idx = seq & 0x01;
* now = now(tkf->base[idx]);
* smp_rmb();
* } while (seq != tkf->seq)
*
* As long as we update base[0] readers are forced off to
* base[1]. Once base[0] is updated readers are redirected to base[0]
* and the base[1] update takes place.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
* slightly wrong timestamp (a few nanoseconds). See
* @ktime_get_mono_fast_ns.
*/
static void update_fast_timekeeper(struct timekeeper *tk)
{
struct tk_read_base *base = tk_fast_mono.base;
/* Force readers off to base[1] */
raw_write_seqcount_latch(&tk_fast_mono.seq);
/* Update base[0] */
memcpy(base, &tk->tkr, sizeof(*base));
/* Force readers back to base[0] */
raw_write_seqcount_latch(&tk_fast_mono.seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
}
/**
* ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
*
* This timestamp is not guaranteed to be monotonic across an update.
* The timestamp is calculated by:
*
* now = base_mono + clock_delta * slope
*
* So if the update lowers the slope, readers who are forced to the
* not yet updated second array are still using the old steeper slope.
*
* tmono
* ^
* | o n
* | o n
* | u
* | o
* |o
* |12345678---> reader order
*
* o = old slope
* u = update
* n = new slope
*
* So reader 6 will observe time going backwards versus reader 5.
*
* While other CPUs are likely to be able observe that, the only way
* for a CPU local observation is when an NMI hits in the middle of
* the update. Timestamps taken from that NMI context might be ahead
* of the following timestamps. Callers need to be aware of that and
* deal with it.
*/
u64 notrace ktime_get_mono_fast_ns(void)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
seq = raw_read_seqcount(&tk_fast_mono.seq);
tkr = tk_fast_mono.base + (seq & 0x01);
now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void update_vsyscall(struct timekeeper *tk)
{
struct timespec xt, wm;
xt = timespec64_to_timespec(tk_xtime(tk));
wm = timespec64_to_timespec(tk->wall_to_monotonic);
update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
tk->tkr.cycle_last);
}
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
s64 remainder;
/*
* Store only full nanoseconds into xtime_nsec after rounding
* it up and add the remainder to the error difference.
* XXX - This is necessary to avoid small 1ns inconsistnecies caused
* by truncating the remainder in vsyscalls. However, it causes
* additional work to be done in timekeeping_adjust(). Once
* the vsyscall implementations are converted to use xtime_nsec
* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
* users are removed, this can be killed.
*/
remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
tk->tkr.xtime_nsec -= remainder;
tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
tk->ntp_error += remainder << tk->ntp_error_shift;
tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
#endif
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
{
raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
}
/**
* pvclock_gtod_register_notifier - register a pvclock timedata update listener
*/
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
/**
* pvclock_gtod_unregister_notifier - unregister a pvclock
* timedata update listener
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
s64 nsec;
/*
* The xtime based monotonic readout is:
* nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
* The ktime based monotonic readout is:
* nsec = base_mono + now();
* ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
*/
nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
nsec *= NSEC_PER_SEC;
nsec += tk->wall_to_monotonic.tv_nsec;
tk->tkr.base_mono = ns_to_ktime(nsec);
/* Update the monotonic raw base */
tk->base_raw = timespec64_to_ktime(tk->raw_time);
}
/* must hold timekeeper_lock */
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
{
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
}
update_vsyscall(tk);
update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
tk_update_ktime_data(tk);
if (action & TK_MIRROR)
memcpy(&shadow_timekeeper, &tk_core.timekeeper,
sizeof(tk_core.timekeeper));
update_fast_timekeeper(tk);
}
/**
* timekeeping_forward_now - update clock to the current time
*
* Forward the current clock to update its state since the last call to
* update_wall_time(). This is useful before significant clock changes,
* as it avoids having to deal with this time offset explicitly.
*/
static void timekeeping_forward_now(struct timekeeper *tk)
{
struct clocksource *clock = tk->tkr.clock;
cycle_t cycle_now, delta;
s64 nsec;
cycle_now = tk->tkr.read(clock);
delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
tk->tkr.cycle_last = cycle_now;
tk->tkr.xtime_nsec += delta * tk->tkr.mult;
/* If arch requires, add in get_arch_timeoffset() */
tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
tk_normalize_xtime(tk);
nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
timespec64_add_ns(&tk->raw_time, nsec);
}
/**
* __getnstimeofday64 - Returns the time of day in a timespec64.
* @ts: pointer to the timespec to be set
*
* Updates the time of day in the timespec.
* Returns 0 on success, or -ve when suspended (timespec will be undefined).
*/
int __getnstimeofday64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long seq;
s64 nsecs = 0;
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsecs = timekeeping_get_ns(&tk->tkr);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
/*
* Do not bail out early, in case there were callers still using
* the value, even in the face of the WARN_ON.
*/
if (unlikely(timekeeping_suspended))
return -EAGAIN;
return 0;
}
EXPORT_SYMBOL(__getnstimeofday64);
/**
* getnstimeofday64 - Returns the time of day in a timespec64.
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec (WARN if suspended).
*/
void getnstimeofday64(struct timespec64 *ts)
{
WARN_ON(__getnstimeofday64(ts));
}
EXPORT_SYMBOL(getnstimeofday64);
ktime_t ktime_get(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
s64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr.base_mono;
nsecs = timekeeping_get_ns(&tk->tkr);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);
static ktime_t *offsets[TK_OFFS_MAX] = {
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
[TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
};
ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
s64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr.base_mono, *offset);
nsecs = timekeeping_get_ns(&tk->tkr);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
/**
* ktime_mono_to_any() - convert mononotic time to any other time
* @tmono: time to convert.
* @offs: which offset to use
*/
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
ktime_t *offset = offsets[offs];
unsigned long seq;
ktime_t tconv;
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
} while (read_seqcount_retry(&tk_core.seq, seq));
return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
/**
* ktime_get_raw - Returns the raw monotonic time in ktime_t format
*/
ktime_t ktime_get_raw(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
s64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->base_raw;
nsecs = timekeeping_get_ns_raw(tk);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);
/**
* ktime_get_ts64 - get the monotonic clock in timespec64 format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec format in the variable pointed to by @ts.
*/
void ktime_get_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 tomono;
s64 nsec;
unsigned int seq;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsec = timekeeping_get_ns(&tk->tkr);
tomono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_sec += tomono.tv_sec;
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts64);
#ifdef CONFIG_NTP_PPS
/**
* getnstime_raw_and_real - get day and raw monotonic time in timespec format
* @ts_raw: pointer to the timespec to be set to raw monotonic time
* @ts_real: pointer to the timespec to be set to the time of day
*
* This function reads both the time of day and raw monotonic time at the
* same time atomically and stores the resulting timestamps in timespec
* format.
*/
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long seq;
s64 nsecs_raw, nsecs_real;
WARN_ON_ONCE(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
*ts_raw = timespec64_to_timespec(tk->raw_time);
ts_real->tv_sec = tk->xtime_sec;
ts_real->tv_nsec = 0;
nsecs_raw = timekeeping_get_ns_raw(tk);
nsecs_real = timekeeping_get_ns(&tk->tkr);
} while (read_seqcount_retry(&tk_core.seq, seq));
timespec_add_ns(ts_raw, nsecs_raw);
timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);
#endif /* CONFIG_NTP_PPS */
/**
* do_gettimeofday - Returns the time of day in a timeval
* @tv: pointer to the timeval to be set
*
* NOTE: Users should be converted to using getnstimeofday()
*/
void do_gettimeofday(struct timeval *tv)
{
struct timespec64 now;
getnstimeofday64(&now);
tv->tv_sec = now.tv_sec;
tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
/**
* do_settimeofday - Sets the time of day
* @tv: pointer to the timespec variable containing the new time
*
* Sets the time of day to the new time and update NTP and notify hrtimers
*/
int do_settimeofday(const struct timespec *tv)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 ts_delta, xt, tmp;
unsigned long flags;
if (!timespec_valid_strict(tv))
return -EINVAL;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
xt = tk_xtime(tk);
ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
tmp = timespec_to_timespec64(*tv);
tk_set_xtime(tk, &tmp);
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
return 0;
}
EXPORT_SYMBOL(do_settimeofday);
/**
* timekeeping_inject_offset - Adds or subtracts from the current time.
* @tv: pointer to the timespec variable containing the offset
*
* Adds or subtracts an offset value from the current time.
*/
int timekeeping_inject_offset(struct timespec *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
struct timespec64 ts64, tmp;
int ret = 0;
if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
ts64 = timespec_to_timespec64(*ts);
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
/* Make sure the proposed value is valid */
tmp = timespec64_add(tk_xtime(tk), ts64);
if (!timespec64_valid_strict(&tmp)) {
ret = -EINVAL;
goto error;
}
tk_xtime_add(tk, &ts64);
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
error: /* even if we error out, we forwarded the time, so call update */
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
return ret;
}
EXPORT_SYMBOL(timekeeping_inject_offset);
/**
* timekeeping_get_tai_offset - Returns current TAI offset from UTC
*
*/
s32 timekeeping_get_tai_offset(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
s32 ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tai_offset;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* __timekeeping_set_tai_offset - Lock free worker function
*
*/
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
tk->tai_offset = tai_offset;
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
}
/**
* timekeeping_set_tai_offset - Sets the current TAI offset from UTC
*
*/
void timekeeping_set_tai_offset(s32 tai_offset)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
__timekeeping_set_tai_offset(tk, tai_offset);
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
clock_was_set();
}
/**
* change_clocksource - Swaps clocksources if a new one is available
*
* Accumulates current time interval and initializes new clocksource
*/
static int change_clocksource(void *data)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *new, *old;
unsigned long flags;
new = (struct clocksource *) data;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
/*
* If the cs is in module, get a module reference. Succeeds
* for built-in code (owner == NULL) as well.
*/
if (try_module_get(new->owner)) {
if (!new->enable || new->enable(new) == 0) {
old = tk->tkr.clock;
tk_setup_internals(tk, new);
if (old->disable)
old->disable(old);
module_put(old->owner);
} else {
module_put(new->owner);
}
}
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return 0;
}
/**
* timekeeping_notify - Install a new clock source
* @clock: pointer to the clock source
*
* This function is called from clocksource.c after a new, better clock
* source has been registered. The caller holds the clocksource_mutex.
*/
int timekeeping_notify(struct clocksource *clock)
{
struct timekeeper *tk = &tk_core.timekeeper;
if (tk->tkr.clock == clock)
return 0;
stop_machine(change_clocksource, clock, NULL);
tick_clock_notify();
return tk->tkr.clock == clock ? 0 : -1;
}
/**
* getrawmonotonic - Returns the raw monotonic time in a timespec
* @ts: pointer to the timespec to be set
*
* Returns the raw monotonic time (completely un-modified by ntp)
*/
void getrawmonotonic(struct timespec *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 ts64;
unsigned long seq;
s64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
nsecs = timekeeping_get_ns_raw(tk);
ts64 = tk->raw_time;
} while (read_seqcount_retry(&tk_core.seq, seq));
timespec64_add_ns(&ts64, nsecs);
*ts = timespec64_to_timespec(ts64);
}
EXPORT_SYMBOL(getrawmonotonic);
/**
* timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
*/
int timekeeping_valid_for_hres(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long seq;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
*/
u64 timekeeping_max_deferment(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long seq;
u64 ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr.clock->max_idle_ns;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* read_persistent_clock - Return time from the persistent clock.
*
* Weak dummy function for arches that do not yet support it.
* Reads the time from the battery backed persistent clock.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __weak read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/**
* read_boot_clock - Return time of the system start.
*
* Weak dummy function for arches that do not yet support it.
* Function to read the exact time the system has been started.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __weak read_boot_clock(struct timespec *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/*
* timekeeping_init - Initializes the clocksource and common timekeeping values
*/
void __init timekeeping_init(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *clock;
unsigned long flags;
struct timespec64 now, boot, tmp;
struct timespec ts;
read_persistent_clock(&ts);
now = timespec_to_timespec64(ts);
if (!timespec64_valid_strict(&now)) {
pr_warn("WARNING: Persistent clock returned invalid value!\n"
" Check your CMOS/BIOS settings.\n");
now.tv_sec = 0;
now.tv_nsec = 0;
} else if (now.tv_sec || now.tv_nsec)
persistent_clock_exist = true;
read_boot_clock(&ts);
boot = timespec_to_timespec64(ts);
if (!timespec64_valid_strict(&boot)) {
pr_warn("WARNING: Boot clock returned invalid value!\n"
" Check your CMOS/BIOS settings.\n");
boot.tv_sec = 0;
boot.tv_nsec = 0;
}
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
tk_setup_internals(tk, clock);
tk_set_xtime(tk, &now);
tk->raw_time.tv_sec = 0;
tk->raw_time.tv_nsec = 0;
tk->base_raw.tv64 = 0;
if (boot.tv_sec == 0 && boot.tv_nsec == 0)
boot = tk_xtime(tk);
set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
tk_set_wall_to_mono(tk, tmp);
timekeeping_update(tk, TK_MIRROR);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
/* time in seconds when suspend began */
static struct timespec64 timekeeping_suspend_time;
/**
* __timekeeping_inject_sleeptime - Internal function to add sleep interval
* @delta: pointer to a timespec delta value
*
* Takes a timespec offset measuring a suspend interval and properly
* adds the sleep offset to the timekeeping variables.
*/
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
struct timespec64 *delta)
{
if (!timespec64_valid_strict(delta)) {
printk_deferred(KERN_WARNING
"__timekeeping_inject_sleeptime: Invalid "
"sleep delta value!\n");
return;
}
tk_xtime_add(tk, delta);
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
tk_debug_account_sleep_time(delta);
}
/**
* timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
* @delta: pointer to a timespec delta value
*
* This hook is for architectures that cannot support read_persistent_clock
* because their RTC/persistent clock is only accessible when irqs are enabled.
*
* This function should only be called by rtc_resume(), and allows
* a suspend offset to be injected into the timekeeping values.
*/
void timekeeping_inject_sleeptime(struct timespec *delta)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 tmp;
unsigned long flags;
/*
* Make sure we don't set the clock twice, as timekeeping_resume()
* already did it
*/
if (has_persistent_clock())
return;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
tmp = timespec_to_timespec64(*delta);
__timekeeping_inject_sleeptime(tk, &tmp);
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
}
/**
* timekeeping_resume - Resumes the generic timekeeping subsystem.
*
* This is for the generic clocksource timekeeping.
* xtime/wall_to_monotonic/jiffies/etc are
* still managed by arch specific suspend/resume code.
*/
static void timekeeping_resume(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *clock = tk->tkr.clock;
unsigned long flags;
struct timespec64 ts_new, ts_delta;
struct timespec tmp;
cycle_t cycle_now, cycle_delta;
bool suspendtime_found = false;
read_persistent_clock(&tmp);
ts_new = timespec_to_timespec64(tmp);
clockevents_resume();
clocksource_resume();
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
/*
* After system resumes, we need to calculate the suspended time and
* compensate it for the OS time. There are 3 sources that could be
* used: Nonstop clocksource during suspend, persistent clock and rtc
* device.
*
* One specific platform may have 1 or 2 or all of them, and the
* preference will be:
* suspend-nonstop clocksource -> persistent clock -> rtc
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
cycle_now = tk->tkr.read(clock);
if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
cycle_now > tk->tkr.cycle_last) {
u64 num, max = ULLONG_MAX;
u32 mult = clock->mult;
u32 shift = clock->shift;
s64 nsec = 0;
cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
tk->tkr.mask);
/*
* "cycle_delta * mutl" may cause 64 bits overflow, if the
* suspended time is too long. In that case we need do the
* 64 bits math carefully
*/
do_div(max, mult);
if (cycle_delta > max) {
num = div64_u64(cycle_delta, max);
nsec = (((u64) max * mult) >> shift) * num;
cycle_delta -= num * max;
}
nsec += ((u64) cycle_delta * mult) >> shift;
ts_delta = ns_to_timespec64(nsec);
suspendtime_found = true;
} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
suspendtime_found = true;
}
if (suspendtime_found)
__timekeeping_inject_sleeptime(tk, &ts_delta);
/* Re-base the last cycle value */
tk->tkr.cycle_last = cycle_now;
tk->ntp_error = 0;
timekeeping_suspended = 0;
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
touch_softlockup_watchdog();
clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
/* Resume hrtimers */
hrtimers_resume();
}
static int timekeeping_suspend(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
struct timespec64 delta, delta_delta;
static struct timespec64 old_delta;
struct timespec tmp;
read_persistent_clock(&tmp);
timekeeping_suspend_time = timespec_to_timespec64(tmp);
/*
* On some systems the persistent_clock can not be detected at
* timekeeping_init by its return value, so if we see a valid
* value returned, update the persistent_clock_exists flag.
*/
if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
persistent_clock_exist = true;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
timekeeping_suspended = 1;
/*
* To avoid drift caused by repeated suspend/resumes,
* which each can add ~1 second drift error,
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
delta_delta = timespec64_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
* if delta_delta is too large, assume time correction
* has occured and set old_delta to the current delta.
*/
old_delta = delta;
} else {
/* Otherwise try to adjust old_system to compensate */
timekeeping_suspend_time =
timespec64_add(timekeeping_suspend_time, delta_delta);
}
timekeeping_update(tk, TK_MIRROR);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
clocksource_suspend();
clockevents_suspend();
return 0;
}
/* sysfs resume/suspend bits for timekeeping */
static struct syscore_ops timekeeping_syscore_ops = {
.resume = timekeeping_resume,
.suspend = timekeeping_suspend,
};
static int __init timekeeping_init_ops(void)
{
register_syscore_ops(&timekeeping_syscore_ops);
return 0;
}
device_initcall(timekeeping_init_ops);
/*
* Apply a multiplier adjustment to the timekeeper
*/
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
s64 offset,
bool negative,
int adj_scale)
{
s64 interval = tk->cycle_interval;
s32 mult_adj = 1;
if (negative) {
mult_adj = -mult_adj;
interval = -interval;
offset = -offset;
}
mult_adj <<= adj_scale;
interval <<= adj_scale;
offset <<= adj_scale;
/*
* So the following can be confusing.
*
* To keep things simple, lets assume mult_adj == 1 for now.
*
* When mult_adj != 1, remember that the interval and offset values
* have been appropriately scaled so the math is the same.
*
* The basic idea here is that we're increasing the multiplier
* by one, this causes the xtime_interval to be incremented by
* one cycle_interval. This is because:
* xtime_interval = cycle_interval * mult
* So if mult is being incremented by one:
* xtime_interval = cycle_interval * (mult + 1)
* Its the same as:
* xtime_interval = (cycle_interval * mult) + cycle_interval
* Which can be shortened to:
* xtime_interval += cycle_interval
*
* So offset stores the non-accumulated cycles. Thus the current
* time (in shifted nanoseconds) is:
* now = (offset * adj) + xtime_nsec
* Now, even though we're adjusting the clock frequency, we have
* to keep time consistent. In other words, we can't jump back
* in time, and we also want to avoid jumping forward in time.
*
* So given the same offset value, we need the time to be the same
* both before and after the freq adjustment.
* now = (offset * adj_1) + xtime_nsec_1
* now = (offset * adj_2) + xtime_nsec_2
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_2) + xtime_nsec_2
* And we know:
* adj_2 = adj_1 + 1
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * (adj_1+1)) + xtime_nsec_2
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_1) + offset + xtime_nsec_2
* Canceling the sides:
* xtime_nsec_1 = offset + xtime_nsec_2
* Which gives us:
* xtime_nsec_2 = xtime_nsec_1 - offset
* Which simplfies to:
* xtime_nsec -= offset
*
* XXX - TODO: Doc ntp_error calculation.
*/
tk->tkr.mult += mult_adj;
tk->xtime_interval += interval;
tk->tkr.xtime_nsec -= offset;
tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
}
/*
* Calculate the multiplier adjustment needed to match the frequency
* specified by NTP
*/
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
s64 offset)
{
s64 interval = tk->cycle_interval;
s64 xinterval = tk->xtime_interval;
s64 tick_error;
bool negative;
u32 adj;
/* Remove any current error adj from freq calculation */
if (tk->ntp_err_mult)
xinterval -= tk->cycle_interval;
tk->ntp_tick = ntp_tick_length();
/* Calculate current error per tick */
tick_error = ntp_tick_length() >> tk->ntp_error_shift;
tick_error -= (xinterval + tk->xtime_remainder);
/* Don't worry about correcting it if its small */
if (likely((tick_error >= 0) && (tick_error <= interval)))
return;
/* preserve the direction of correction */
negative = (tick_error < 0);
/* Sort out the magnitude of the correction */
tick_error = abs(tick_error);
for (adj = 0; tick_error > interval; adj++)
tick_error >>= 1;
/* scale the corrections */
timekeeping_apply_adjustment(tk, offset, negative, adj);
}
/*
* Adjust the timekeeper's multiplier to the correct frequency
* and also to reduce the accumulated error value.
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
/* Correct for the current frequency error */
timekeeping_freqadjust(tk, offset);
/* Next make a small adjustment to fix any cumulative error */
if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
tk->ntp_err_mult = 1;
timekeeping_apply_adjustment(tk, offset, 0, 0);
} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
/* Undo any existing error adjustment */
timekeeping_apply_adjustment(tk, offset, 1, 0);
tk->ntp_err_mult = 0;
}
if (unlikely(tk->tkr.clock->maxadj &&
(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
printk_once(KERN_WARNING
"Adjusting %s more than 11%% (%ld vs %ld)\n",
tk->tkr.clock->name, (long)tk->tkr.mult,
(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
}
/*
* It may be possible that when we entered this function, xtime_nsec
* was very small. Further, if we're slightly speeding the clocksource
* in the code above, its possible the required corrective factor to
* xtime_nsec could cause it to underflow.
*
* Now, since we already accumulated the second, cannot simply roll
* the accumulated second back, since the NTP subsystem has been
* notified via second_overflow. So instead we push xtime_nsec forward
* by the amount we underflowed, and add that amount into the error.
*
* We'll correct this error next time through this function, when
* xtime_nsec is not as small.
*/
if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
s64 neg = -(s64)tk->tkr.xtime_nsec;
tk->tkr.xtime_nsec = 0;
tk->ntp_error += neg << tk->ntp_error_shift;
}
}
/**
* accumulate_nsecs_to_secs - Accumulates nsecs into secs
*
* Helper function that accumulates a the nsecs greater then a second
* from the xtime_nsec field to the xtime_secs field.
* It also calls into the NTP code to handle leapsecond processing.
*
*/
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
unsigned int clock_set = 0;
while (tk->tkr.xtime_nsec >= nsecps) {
int leap;
tk->tkr.xtime_nsec -= nsecps;
tk->xtime_sec++;
/* Figure out if its a leap sec and apply if needed */
leap = second_overflow(tk->xtime_sec);
if (unlikely(leap)) {
struct timespec64 ts;
tk->xtime_sec += leap;
ts.tv_sec = leap;
ts.tv_nsec = 0;
tk_set_wall_to_mono(tk,
timespec64_sub(tk->wall_to_monotonic, ts));
__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
clock_set = TK_CLOCK_WAS_SET;
}
}
return clock_set;
}
/**
* logarithmic_accumulation - shifted accumulation of cycles
*
* This functions accumulates a shifted interval of cycles into
* into a shifted interval nanoseconds. Allows for O(log) accumulation
* loop.
*
* Returns the unconsumed cycles.
*/
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
u32 shift,
unsigned int *clock_set)
{
cycle_t interval = tk->cycle_interval << shift;
u64 raw_nsecs;
/* If the offset is smaller then a shifted interval, do nothing */
if (offset < interval)
return offset;
/* Accumulate one shifted interval */
offset -= interval;
tk->tkr.cycle_last += interval;
tk->tkr.xtime_nsec += tk->xtime_interval << shift;
*clock_set |= accumulate_nsecs_to_secs(tk);
/* Accumulate raw time */
raw_nsecs = (u64)tk->raw_interval << shift;
raw_nsecs += tk->raw_time.tv_nsec;
if (raw_nsecs >= NSEC_PER_SEC) {
u64 raw_secs = raw_nsecs;
raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
tk->raw_time.tv_sec += raw_secs;
}
tk->raw_time.tv_nsec = raw_nsecs;
/* Accumulate error between NTP and clock interval */
tk->ntp_error += tk->ntp_tick << shift;
tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
(tk->ntp_error_shift + shift);
return offset;
}
/**
* update_wall_time - Uses the current clocksource to increment the wall time
*
*/
void update_wall_time(void)
{
struct timekeeper *real_tk = &tk_core.timekeeper;
struct timekeeper *tk = &shadow_timekeeper;
cycle_t offset;
int shift = 0, maxshift;
unsigned int clock_set = 0;
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
goto out;
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
offset = real_tk->cycle_interval;
#else
offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
tk->tkr.cycle_last, tk->tkr.mask);
#endif
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval)
goto out;
/*
* With NO_HZ we may have to accumulate many cycle_intervals
* (think "ticks") worth of time at once. To do this efficiently,
* we calculate the largest doubling multiple of cycle_intervals
* that is smaller than the offset. We then accumulate that
* chunk in one go, and then try to consume the next smaller
* doubled multiple.
*/
shift = ilog2(offset) - ilog2(tk->cycle_interval);
shift = max(0, shift);
/* Bound shift to one less than what overflows tick_length */
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
offset = logarithmic_accumulation(tk, offset, shift,
&clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
/* correct the clock when NTP error is too big */
timekeeping_adjust(tk, offset);
/*
* XXX This can be killed once everyone converts
* to the new update_vsyscall.
*/
old_vsyscall_fixup(tk);
/*
* Finally, make sure that after the rounding
* xtime_nsec isn't larger than NSEC_PER_SEC
*/
clock_set |= accumulate_nsecs_to_secs(tk);
write_seqcount_begin(&tk_core.seq);
/*
* Update the real timekeeper.
*
* We could avoid this memcpy by switching pointers, but that
* requires changes to all other timekeeper usage sites as
* well, i.e. move the timekeeper pointer getter into the
* spinlocked/seqcount protected sections. And we trade this
* memcpy under the tk_core.seq against one before we start
* updating.
*/
memcpy(real_tk, tk, sizeof(*tk));
timekeeping_update(real_tk, clock_set);
write_seqcount_end(&tk_core.seq);
out:
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
if (clock_set)
/* Have to call _delayed version, since in irq context*/
clock_was_set_delayed();
}
/**
* getboottime - Return the real time of system boot.
* @ts: pointer to the timespec to be set
*
* Returns the wall-time of boot in a timespec.
*
* This is based on the wall_to_monotonic offset and the total suspend
* time. Calls to settimeofday will affect the value returned (which
* basically means that however wrong your real time clock is at boot time,
* you get the right time here).
*/
void getboottime(struct timespec *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
*ts = ktime_to_timespec(t);
}
EXPORT_SYMBOL_GPL(getboottime);
unsigned long get_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return tk->xtime_sec;
}
EXPORT_SYMBOL(get_seconds);
struct timespec __current_kernel_time(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return timespec64_to_timespec(tk_xtime(tk));
}
struct timespec current_kernel_time(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 now;
unsigned long seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_xtime(tk);
} while (read_seqcount_retry(&tk_core.seq, seq));
return timespec64_to_timespec(now);
}
EXPORT_SYMBOL(current_kernel_time);
struct timespec get_monotonic_coarse(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 now, mono;
unsigned long seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_xtime(tk);
mono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
now.tv_nsec + mono.tv_nsec);
return timespec64_to_timespec(now);
}
/*
* Must hold jiffies_lock
*/
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
calc_global_load(ticks);
}
/**
* ktime_get_update_offsets_tick - hrtimer helper
* @offs_real: pointer to storage for monotonic -> realtime offset
* @offs_boot: pointer to storage for monotonic -> boottime offset
* @offs_tai: pointer to storage for monotonic -> clock tai offset
*
* Returns monotonic time at last tick and various offsets
*/
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
ktime_t *offs_tai)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr.base_mono;
nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
*offs_tai = tk->offs_tai;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
#ifdef CONFIG_HIGH_RES_TIMERS
/**
* ktime_get_update_offsets_now - hrtimer helper
* @offs_real: pointer to storage for monotonic -> realtime offset
* @offs_boot: pointer to storage for monotonic -> boottime offset
* @offs_tai: pointer to storage for monotonic -> clock tai offset
*
* Returns current monotonic time and updates the offsets
* Called from hrtimer_interrupt() or retrigger_next_event()
*/
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
ktime_t *offs_tai)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr.base_mono;
nsecs = timekeeping_get_ns(&tk->tkr);
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
*offs_tai = tk->offs_tai;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
#endif
/**
* do_adjtimex() - Accessor function to NTP __do_adjtimex function
*/
int do_adjtimex(struct timex *txc)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
struct timespec64 ts;
s32 orig_tai, tai;
int ret;
/* Validate the data before disabling interrupts */
ret = ntp_validate_timex(txc);
if (ret)
return ret;
if (txc->modes & ADJ_SETOFFSET) {
struct timespec delta;
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!(txc->modes & ADJ_NANO))
delta.tv_nsec *= 1000;
ret = timekeeping_inject_offset(&delta);
if (ret)
return ret;
}
getnstimeofday64(&ts);
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
orig_tai = tai = tk->tai_offset;
ret = __do_adjtimex(txc, &ts, &tai);
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tk, tai);
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
}
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
if (tai != orig_tai)
clock_was_set();
ntp_notify_cmos_timer();
return ret;
}
#ifdef CONFIG_NTP_PPS
/**
* hardpps() - Accessor function to NTP __hardpps function
*/
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
__hardpps(phase_ts, raw_ts);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
EXPORT_SYMBOL(hardpps);
#endif
/**
* xtime_update() - advances the timekeeping infrastructure
* @ticks: number of ticks, that have elapsed since the last call.
*
* Must be called with interrupts disabled.
*/
void xtime_update(unsigned long ticks)
{
write_seqlock(&jiffies_lock);
do_timer(ticks);
write_sequnlock(&jiffies_lock);
update_wall_time();
}