linux_old1/arch/powerpc/platforms/iseries/pci.c

782 lines
20 KiB
C

/*
* Copyright (C) 2001 Allan Trautman, IBM Corporation
*
* iSeries specific routines for PCI.
*
* Based on code from pci.c and iSeries_pci.c 32bit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/firmware.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/mf.h>
#include <asm/iseries/iommu.h>
#include <asm/ppc-pci.h>
#include "irq.h"
#include "pci.h"
#include "call_pci.h"
/*
* Forward declares of prototypes.
*/
static struct device_node *find_Device_Node(int bus, int devfn);
static int Pci_Retry_Max = 3; /* Only retry 3 times */
static int Pci_Error_Flag = 1; /* Set Retry Error on. */
static struct pci_ops iSeries_pci_ops;
/*
* Table defines
* Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
*/
#define IOMM_TABLE_MAX_ENTRIES 1024
#define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
#define BASE_IO_MEMORY 0xE000000000000000UL
static unsigned long max_io_memory = BASE_IO_MEMORY;
static long current_iomm_table_entry;
/*
* Lookup Tables.
*/
static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
static const char pci_io_text[] = "iSeries PCI I/O";
static DEFINE_SPINLOCK(iomm_table_lock);
/*
* iomm_table_allocate_entry
*
* Adds pci_dev entry in address translation table
*
* - Allocates the number of entries required in table base on BAR
* size.
* - Allocates starting at BASE_IO_MEMORY and increases.
* - The size is round up to be a multiple of entry size.
* - CurrentIndex is incremented to keep track of the last entry.
* - Builds the resource entry for allocated BARs.
*/
static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
{
struct resource *bar_res = &dev->resource[bar_num];
long bar_size = pci_resource_len(dev, bar_num);
/*
* No space to allocate, quick exit, skip Allocation.
*/
if (bar_size == 0)
return;
/*
* Set Resource values.
*/
spin_lock(&iomm_table_lock);
bar_res->name = pci_io_text;
bar_res->start = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
bar_res->end = bar_res->start + bar_size - 1;
/*
* Allocate the number of table entries needed for BAR.
*/
while (bar_size > 0 ) {
iomm_table[current_iomm_table_entry] = dev->sysdata;
iobar_table[current_iomm_table_entry] = bar_num;
bar_size -= IOMM_TABLE_ENTRY_SIZE;
++current_iomm_table_entry;
}
max_io_memory = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
spin_unlock(&iomm_table_lock);
}
/*
* allocate_device_bars
*
* - Allocates ALL pci_dev BAR's and updates the resources with the
* BAR value. BARS with zero length will have the resources
* The HvCallPci_getBarParms is used to get the size of the BAR
* space. It calls iomm_table_allocate_entry to allocate
* each entry.
* - Loops through The Bar resources(0 - 5) including the ROM
* is resource(6).
*/
static void allocate_device_bars(struct pci_dev *dev)
{
int bar_num;
for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
iomm_table_allocate_entry(dev, bar_num);
}
/*
* Log error information to system console.
* Filter out the device not there errors.
* PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
* PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
* PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
*/
static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
int AgentId, int HvRc)
{
if (HvRc == 0x0302)
return;
printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
Error_Text, Bus, SubBus, AgentId, HvRc);
}
/*
* iSeries_pci_final_fixup(void)
*/
void __init iSeries_pci_final_fixup(void)
{
struct pci_dev *pdev = NULL;
struct device_node *node;
int DeviceCount = 0;
/* Fix up at the device node and pci_dev relationship */
mf_display_src(0xC9000100);
printk("pcibios_final_fixup\n");
for_each_pci_dev(pdev) {
node = find_Device_Node(pdev->bus->number, pdev->devfn);
printk("pci dev %p (%x.%x), node %p\n", pdev,
pdev->bus->number, pdev->devfn, node);
if (node != NULL) {
struct pci_dn *pdn = PCI_DN(node);
const u32 *agent;
agent = of_get_property(node, "linux,agent-id", NULL);
if ((pdn != NULL) && (agent != NULL)) {
u8 irq = iSeries_allocate_IRQ(pdn->busno, 0,
pdn->bussubno);
int err;
err = HvCallXm_connectBusUnit(pdn->busno, pdn->bussubno,
*agent, irq);
if (err)
pci_Log_Error("Connect Bus Unit",
pdn->busno, pdn->bussubno, *agent, err);
else {
err = HvCallPci_configStore8(pdn->busno, pdn->bussubno,
*agent,
PCI_INTERRUPT_LINE,
irq);
if (err)
pci_Log_Error("PciCfgStore Irq Failed!",
pdn->busno, pdn->bussubno, *agent, err);
}
if (!err)
pdev->irq = irq;
}
++DeviceCount;
pdev->sysdata = (void *)node;
PCI_DN(node)->pcidev = pdev;
allocate_device_bars(pdev);
iSeries_Device_Information(pdev, DeviceCount);
iommu_devnode_init_iSeries(pdev, node);
} else
printk("PCI: Device Tree not found for 0x%016lX\n",
(unsigned long)pdev);
}
iSeries_activate_IRQs();
mf_display_src(0xC9000200);
}
/*
* Look down the chain to find the matching Device Device
*/
static struct device_node *find_Device_Node(int bus, int devfn)
{
struct device_node *node;
for (node = NULL; (node = of_find_all_nodes(node)); ) {
struct pci_dn *pdn = PCI_DN(node);
if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
return node;
}
return NULL;
}
#if 0
/*
* Returns the device node for the passed pci_dev
* Sanity Check Node PciDev to passed pci_dev
* If none is found, returns a NULL which the client must handle.
*/
static struct device_node *get_Device_Node(struct pci_dev *pdev)
{
struct device_node *node;
node = pdev->sysdata;
if (node == NULL || PCI_DN(node)->pcidev != pdev)
node = find_Device_Node(pdev->bus->number, pdev->devfn);
return node;
}
#endif
/*
* Config space read and write functions.
* For now at least, we look for the device node for the bus and devfn
* that we are asked to access. It may be possible to translate the devfn
* to a subbus and deviceid more directly.
*/
static u64 hv_cfg_read_func[4] = {
HvCallPciConfigLoad8, HvCallPciConfigLoad16,
HvCallPciConfigLoad32, HvCallPciConfigLoad32
};
static u64 hv_cfg_write_func[4] = {
HvCallPciConfigStore8, HvCallPciConfigStore16,
HvCallPciConfigStore32, HvCallPciConfigStore32
};
/*
* Read PCI config space
*/
static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 *val)
{
struct device_node *node = find_Device_Node(bus->number, devfn);
u64 fn;
struct HvCallPci_LoadReturn ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255) {
*val = ~0;
return PCIBIOS_BAD_REGISTER_NUMBER;
}
fn = hv_cfg_read_func[(size - 1) & 3];
HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
if (ret.rc != 0) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
}
*val = ret.value;
return 0;
}
/*
* Write PCI config space
*/
static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 val)
{
struct device_node *node = find_Device_Node(bus->number, devfn);
u64 fn;
u64 ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255)
return PCIBIOS_BAD_REGISTER_NUMBER;
fn = hv_cfg_write_func[(size - 1) & 3];
ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
if (ret != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
return 0;
}
static struct pci_ops iSeries_pci_ops = {
.read = iSeries_pci_read_config,
.write = iSeries_pci_write_config
};
/*
* Check Return Code
* -> On Failure, print and log information.
* Increment Retry Count, if exceeds max, panic partition.
*
* PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
* PCI: Device 23.90 ReadL Retry( 1)
* PCI: Device 23.90 ReadL Retry Successful(1)
*/
static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
int *retry, u64 ret)
{
if (ret != 0) {
struct pci_dn *pdn = PCI_DN(DevNode);
(*retry)++;
printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
TextHdr, pdn->busno, pdn->devfn,
*retry, (int)ret);
/*
* Bump the retry and check for retry count exceeded.
* If, Exceeded, panic the system.
*/
if (((*retry) > Pci_Retry_Max) &&
(Pci_Error_Flag > 0)) {
mf_display_src(0xB6000103);
panic_timeout = 0;
panic("PCI: Hardware I/O Error, SRC B6000103, "
"Automatic Reboot Disabled.\n");
}
return -1; /* Retry Try */
}
return 0;
}
/*
* Translate the I/O Address into a device node, bar, and bar offset.
* Note: Make sure the passed variable end up on the stack to avoid
* the exposure of being device global.
*/
static inline struct device_node *xlate_iomm_address(
const volatile void __iomem *IoAddress,
u64 *dsaptr, u64 *BarOffsetPtr)
{
unsigned long OrigIoAddr;
unsigned long BaseIoAddr;
unsigned long TableIndex;
struct device_node *DevNode;
OrigIoAddr = (unsigned long __force)IoAddress;
if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
return NULL;
BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
DevNode = iomm_table[TableIndex];
if (DevNode != NULL) {
int barnum = iobar_table[TableIndex];
*dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
*BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
} else
panic("PCI: Invalid PCI IoAddress detected!\n");
return DevNode;
}
/*
* Read MM I/O Instructions for the iSeries
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
* else, data is returned in Big Endian format.
*/
static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n",
IoAddress);
return 0xff;
}
do {
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
} while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
return ret.value;
}
static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n",
IoAddress);
return 0xffff;
}
do {
HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
return ret.value;
}
static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n",
IoAddress);
return 0xffffffff;
}
do {
HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
return ret.value;
}
/*
* Write MM I/O Instructions for the iSeries
*
*/
static void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
}
static void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n",
IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
}
static void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n",
IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
}
static u8 iseries_readb(const volatile void __iomem *addr)
{
return iSeries_Read_Byte(addr);
}
static u16 iseries_readw(const volatile void __iomem *addr)
{
return le16_to_cpu(iSeries_Read_Word(addr));
}
static u32 iseries_readl(const volatile void __iomem *addr)
{
return le32_to_cpu(iSeries_Read_Long(addr));
}
static u16 iseries_readw_be(const volatile void __iomem *addr)
{
return iSeries_Read_Word(addr);
}
static u32 iseries_readl_be(const volatile void __iomem *addr)
{
return iSeries_Read_Long(addr);
}
static void iseries_writeb(u8 data, volatile void __iomem *addr)
{
iSeries_Write_Byte(data, addr);
}
static void iseries_writew(u16 data, volatile void __iomem *addr)
{
iSeries_Write_Word(cpu_to_le16(data), addr);
}
static void iseries_writel(u32 data, volatile void __iomem *addr)
{
iSeries_Write_Long(cpu_to_le32(data), addr);
}
static void iseries_writew_be(u16 data, volatile void __iomem *addr)
{
iSeries_Write_Word(data, addr);
}
static void iseries_writel_be(u32 data, volatile void __iomem *addr)
{
iSeries_Write_Long(data, addr);
}
static void iseries_readsb(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u8 *dst = buf;
while(count-- > 0)
*(dst++) = iSeries_Read_Byte(addr);
}
static void iseries_readsw(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u16 *dst = buf;
while(count-- > 0)
*(dst++) = iSeries_Read_Word(addr);
}
static void iseries_readsl(const volatile void __iomem *addr, void *buf,
unsigned long count)
{
u32 *dst = buf;
while(count-- > 0)
*(dst++) = iSeries_Read_Long(addr);
}
static void iseries_writesb(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u8 *src = buf;
while(count-- > 0)
iSeries_Write_Byte(*(src++), addr);
}
static void iseries_writesw(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u16 *src = buf;
while(count-- > 0)
iSeries_Write_Word(*(src++), addr);
}
static void iseries_writesl(volatile void __iomem *addr, const void *buf,
unsigned long count)
{
const u32 *src = buf;
while(count-- > 0)
iSeries_Write_Long(*(src++), addr);
}
static void iseries_memset_io(volatile void __iomem *addr, int c,
unsigned long n)
{
volatile char __iomem *d = addr;
while (n-- > 0)
iSeries_Write_Byte(c, d++);
}
static void iseries_memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n)
{
char *d = dest;
const volatile char __iomem *s = src;
while (n-- > 0)
*d++ = iSeries_Read_Byte(s++);
}
static void iseries_memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n)
{
const char *s = src;
volatile char __iomem *d = dest;
while (n-- > 0)
iSeries_Write_Byte(*s++, d++);
}
/* We only set MMIO ops. The default PIO ops will be default
* to the MMIO ops + pci_io_base which is 0 on iSeries as
* expected so both should work.
*
* Note that we don't implement the readq/writeq versions as
* I don't know of an HV call for doing so. Thus, the default
* operation will be used instead, which will fault a the value
* return by iSeries for MMIO addresses always hits a non mapped
* area. This is as good as the BUG() we used to have there.
*/
static struct ppc_pci_io __initdata iseries_pci_io = {
.readb = iseries_readb,
.readw = iseries_readw,
.readl = iseries_readl,
.readw_be = iseries_readw_be,
.readl_be = iseries_readl_be,
.writeb = iseries_writeb,
.writew = iseries_writew,
.writel = iseries_writel,
.writew_be = iseries_writew_be,
.writel_be = iseries_writel_be,
.readsb = iseries_readsb,
.readsw = iseries_readsw,
.readsl = iseries_readsl,
.writesb = iseries_writesb,
.writesw = iseries_writesw,
.writesl = iseries_writesl,
.memset_io = iseries_memset_io,
.memcpy_fromio = iseries_memcpy_fromio,
.memcpy_toio = iseries_memcpy_toio,
};
/*
* iSeries_pcibios_init
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
void __init iSeries_pcibios_init(void)
{
struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
struct device_node *node = NULL;
/* Install IO hooks */
ppc_pci_io = iseries_pci_io;
/* iSeries has no IO space in the common sense, it needs to set
* the IO base to 0
*/
pci_io_base = 0;
if (root == NULL) {
printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
"of device tree\n");
return;
}
while ((node = of_get_next_child(root, node)) != NULL) {
HvBusNumber bus;
const u32 *busp;
if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
continue;
busp = of_get_property(node, "bus-range", NULL);
if (busp == NULL)
continue;
bus = *busp;
printk("bus %d appears to exist\n", bus);
phb = pcibios_alloc_controller(node);
if (phb == NULL)
continue;
phb->pci_mem_offset = bus;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
}
of_node_put(root);
pci_devs_phb_init();
}