linux_old1/drivers/gpu/drm/nouveau/nouveau_object.c

1295 lines
32 KiB
C

/*
* Copyright (C) 2006 Ben Skeggs.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/*
* Authors:
* Ben Skeggs <darktama@iinet.net.au>
*/
#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_drm.h"
/* NVidia uses context objects to drive drawing operations.
Context objects can be selected into 8 subchannels in the FIFO,
and then used via DMA command buffers.
A context object is referenced by a user defined handle (CARD32). The HW
looks up graphics objects in a hash table in the instance RAM.
An entry in the hash table consists of 2 CARD32. The first CARD32 contains
the handle, the second one a bitfield, that contains the address of the
object in instance RAM.
The format of the second CARD32 seems to be:
NV4 to NV30:
15: 0 instance_addr >> 4
17:16 engine (here uses 1 = graphics)
28:24 channel id (here uses 0)
31 valid (use 1)
NV40:
15: 0 instance_addr >> 4 (maybe 19-0)
21:20 engine (here uses 1 = graphics)
I'm unsure about the other bits, but using 0 seems to work.
The key into the hash table depends on the object handle and channel id and
is given as:
*/
static uint32_t
nouveau_ramht_hash_handle(struct drm_device *dev, int channel, uint32_t handle)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t hash = 0;
int i;
NV_DEBUG(dev, "ch%d handle=0x%08x\n", channel, handle);
for (i = 32; i > 0; i -= dev_priv->ramht_bits) {
hash ^= (handle & ((1 << dev_priv->ramht_bits) - 1));
handle >>= dev_priv->ramht_bits;
}
if (dev_priv->card_type < NV_50)
hash ^= channel << (dev_priv->ramht_bits - 4);
hash <<= 3;
NV_DEBUG(dev, "hash=0x%08x\n", hash);
return hash;
}
static int
nouveau_ramht_entry_valid(struct drm_device *dev, struct nouveau_gpuobj *ramht,
uint32_t offset)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t ctx = nv_ro32(dev, ramht, (offset + 4)/4);
if (dev_priv->card_type < NV_40)
return ((ctx & NV_RAMHT_CONTEXT_VALID) != 0);
return (ctx != 0);
}
static int
nouveau_ramht_insert(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem;
struct nouveau_channel *chan = ref->channel;
struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
uint32_t ctx, co, ho;
if (!ramht) {
NV_ERROR(dev, "No hash table!\n");
return -EINVAL;
}
if (dev_priv->card_type < NV_40) {
ctx = NV_RAMHT_CONTEXT_VALID | (ref->instance >> 4) |
(chan->id << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) |
(ref->gpuobj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT);
} else
if (dev_priv->card_type < NV_50) {
ctx = (ref->instance >> 4) |
(chan->id << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) |
(ref->gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT);
} else {
if (ref->gpuobj->engine == NVOBJ_ENGINE_DISPLAY) {
ctx = (ref->instance << 10) | 2;
} else {
ctx = (ref->instance >> 4) |
((ref->gpuobj->engine <<
NV40_RAMHT_CONTEXT_ENGINE_SHIFT));
}
}
instmem->prepare_access(dev, true);
co = ho = nouveau_ramht_hash_handle(dev, chan->id, ref->handle);
do {
if (!nouveau_ramht_entry_valid(dev, ramht, co)) {
NV_DEBUG(dev,
"insert ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
chan->id, co, ref->handle, ctx);
nv_wo32(dev, ramht, (co + 0)/4, ref->handle);
nv_wo32(dev, ramht, (co + 4)/4, ctx);
list_add_tail(&ref->list, &chan->ramht_refs);
instmem->finish_access(dev);
return 0;
}
NV_DEBUG(dev, "collision ch%d 0x%08x: h=0x%08x\n",
chan->id, co, nv_ro32(dev, ramht, co/4));
co += 8;
if (co >= dev_priv->ramht_size)
co = 0;
} while (co != ho);
instmem->finish_access(dev);
NV_ERROR(dev, "RAMHT space exhausted. ch=%d\n", chan->id);
return -ENOMEM;
}
static void
nouveau_ramht_remove(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem;
struct nouveau_channel *chan = ref->channel;
struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
uint32_t co, ho;
if (!ramht) {
NV_ERROR(dev, "No hash table!\n");
return;
}
instmem->prepare_access(dev, true);
co = ho = nouveau_ramht_hash_handle(dev, chan->id, ref->handle);
do {
if (nouveau_ramht_entry_valid(dev, ramht, co) &&
(ref->handle == nv_ro32(dev, ramht, (co/4)))) {
NV_DEBUG(dev,
"remove ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
chan->id, co, ref->handle,
nv_ro32(dev, ramht, (co + 4)));
nv_wo32(dev, ramht, (co + 0)/4, 0x00000000);
nv_wo32(dev, ramht, (co + 4)/4, 0x00000000);
list_del(&ref->list);
instmem->finish_access(dev);
return;
}
co += 8;
if (co >= dev_priv->ramht_size)
co = 0;
} while (co != ho);
list_del(&ref->list);
instmem->finish_access(dev);
NV_ERROR(dev, "RAMHT entry not found. ch=%d, handle=0x%08x\n",
chan->id, ref->handle);
}
int
nouveau_gpuobj_new(struct drm_device *dev, struct nouveau_channel *chan,
uint32_t size, int align, uint32_t flags,
struct nouveau_gpuobj **gpuobj_ret)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_engine *engine = &dev_priv->engine;
struct nouveau_gpuobj *gpuobj;
struct mem_block *pramin = NULL;
int ret;
NV_DEBUG(dev, "ch%d size=%u align=%d flags=0x%08x\n",
chan ? chan->id : -1, size, align, flags);
if (!dev_priv || !gpuobj_ret || *gpuobj_ret != NULL)
return -EINVAL;
gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL);
if (!gpuobj)
return -ENOMEM;
NV_DEBUG(dev, "gpuobj %p\n", gpuobj);
gpuobj->flags = flags;
gpuobj->im_channel = chan;
list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);
/* Choose between global instmem heap, and per-channel private
* instmem heap. On <NV50 allow requests for private instmem
* to be satisfied from global heap if no per-channel area
* available.
*/
if (chan) {
if (chan->ramin_heap) {
NV_DEBUG(dev, "private heap\n");
pramin = chan->ramin_heap;
} else
if (dev_priv->card_type < NV_50) {
NV_DEBUG(dev, "global heap fallback\n");
pramin = dev_priv->ramin_heap;
}
} else {
NV_DEBUG(dev, "global heap\n");
pramin = dev_priv->ramin_heap;
}
if (!pramin) {
NV_ERROR(dev, "No PRAMIN heap!\n");
return -EINVAL;
}
if (!chan) {
ret = engine->instmem.populate(dev, gpuobj, &size);
if (ret) {
nouveau_gpuobj_del(dev, &gpuobj);
return ret;
}
}
/* Allocate a chunk of the PRAMIN aperture */
gpuobj->im_pramin = nouveau_mem_alloc_block(pramin, size,
drm_order(align),
(struct drm_file *)-2, 0);
if (!gpuobj->im_pramin) {
nouveau_gpuobj_del(dev, &gpuobj);
return -ENOMEM;
}
if (!chan) {
ret = engine->instmem.bind(dev, gpuobj);
if (ret) {
nouveau_gpuobj_del(dev, &gpuobj);
return ret;
}
}
if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
int i;
engine->instmem.prepare_access(dev, true);
for (i = 0; i < gpuobj->im_pramin->size; i += 4)
nv_wo32(dev, gpuobj, i/4, 0);
engine->instmem.finish_access(dev);
}
*gpuobj_ret = gpuobj;
return 0;
}
int
nouveau_gpuobj_early_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
NV_DEBUG(dev, "\n");
INIT_LIST_HEAD(&dev_priv->gpuobj_list);
return 0;
}
int
nouveau_gpuobj_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
int ret;
NV_DEBUG(dev, "\n");
if (dev_priv->card_type < NV_50) {
ret = nouveau_gpuobj_new_fake(dev,
dev_priv->ramht_offset, ~0, dev_priv->ramht_size,
NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ALLOW_NO_REFS,
&dev_priv->ramht, NULL);
if (ret)
return ret;
}
return 0;
}
void
nouveau_gpuobj_takedown(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
NV_DEBUG(dev, "\n");
nouveau_gpuobj_del(dev, &dev_priv->ramht);
}
void
nouveau_gpuobj_late_takedown(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = NULL;
struct list_head *entry, *tmp;
NV_DEBUG(dev, "\n");
list_for_each_safe(entry, tmp, &dev_priv->gpuobj_list) {
gpuobj = list_entry(entry, struct nouveau_gpuobj, list);
NV_ERROR(dev, "gpuobj %p still exists at takedown, refs=%d\n",
gpuobj, gpuobj->refcount);
gpuobj->refcount = 0;
nouveau_gpuobj_del(dev, &gpuobj);
}
}
int
nouveau_gpuobj_del(struct drm_device *dev, struct nouveau_gpuobj **pgpuobj)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_engine *engine = &dev_priv->engine;
struct nouveau_gpuobj *gpuobj;
int i;
NV_DEBUG(dev, "gpuobj %p\n", pgpuobj ? *pgpuobj : NULL);
if (!dev_priv || !pgpuobj || !(*pgpuobj))
return -EINVAL;
gpuobj = *pgpuobj;
if (gpuobj->refcount != 0) {
NV_ERROR(dev, "gpuobj refcount is %d\n", gpuobj->refcount);
return -EINVAL;
}
if (gpuobj->im_pramin && (gpuobj->flags & NVOBJ_FLAG_ZERO_FREE)) {
engine->instmem.prepare_access(dev, true);
for (i = 0; i < gpuobj->im_pramin->size; i += 4)
nv_wo32(dev, gpuobj, i/4, 0);
engine->instmem.finish_access(dev);
}
if (gpuobj->dtor)
gpuobj->dtor(dev, gpuobj);
if (gpuobj->im_backing && !(gpuobj->flags & NVOBJ_FLAG_FAKE))
engine->instmem.clear(dev, gpuobj);
if (gpuobj->im_pramin) {
if (gpuobj->flags & NVOBJ_FLAG_FAKE)
kfree(gpuobj->im_pramin);
else
nouveau_mem_free_block(gpuobj->im_pramin);
}
list_del(&gpuobj->list);
*pgpuobj = NULL;
kfree(gpuobj);
return 0;
}
static int
nouveau_gpuobj_instance_get(struct drm_device *dev,
struct nouveau_channel *chan,
struct nouveau_gpuobj *gpuobj, uint32_t *inst)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *cpramin;
/* <NV50 use PRAMIN address everywhere */
if (dev_priv->card_type < NV_50) {
*inst = gpuobj->im_pramin->start;
return 0;
}
if (chan && gpuobj->im_channel != chan) {
NV_ERROR(dev, "Channel mismatch: obj %d, ref %d\n",
gpuobj->im_channel->id, chan->id);
return -EINVAL;
}
/* NV50 channel-local instance */
if (chan) {
cpramin = chan->ramin->gpuobj;
*inst = gpuobj->im_pramin->start - cpramin->im_pramin->start;
return 0;
}
/* NV50 global (VRAM) instance */
if (!gpuobj->im_channel) {
/* ...from global heap */
if (!gpuobj->im_backing) {
NV_ERROR(dev, "AII, no VRAM backing gpuobj\n");
return -EINVAL;
}
*inst = gpuobj->im_backing_start;
return 0;
} else {
/* ...from local heap */
cpramin = gpuobj->im_channel->ramin->gpuobj;
*inst = cpramin->im_backing_start +
(gpuobj->im_pramin->start - cpramin->im_pramin->start);
return 0;
}
return -EINVAL;
}
int
nouveau_gpuobj_ref_add(struct drm_device *dev, struct nouveau_channel *chan,
uint32_t handle, struct nouveau_gpuobj *gpuobj,
struct nouveau_gpuobj_ref **ref_ret)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj_ref *ref;
uint32_t instance;
int ret;
NV_DEBUG(dev, "ch%d h=0x%08x gpuobj=%p\n",
chan ? chan->id : -1, handle, gpuobj);
if (!dev_priv || !gpuobj || (ref_ret && *ref_ret != NULL))
return -EINVAL;
if (!chan && !ref_ret)
return -EINVAL;
if (gpuobj->engine == NVOBJ_ENGINE_SW && !gpuobj->im_pramin) {
/* sw object */
instance = 0x40;
} else {
ret = nouveau_gpuobj_instance_get(dev, chan, gpuobj, &instance);
if (ret)
return ret;
}
ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (!ref)
return -ENOMEM;
INIT_LIST_HEAD(&ref->list);
ref->gpuobj = gpuobj;
ref->channel = chan;
ref->instance = instance;
if (!ref_ret) {
ref->handle = handle;
ret = nouveau_ramht_insert(dev, ref);
if (ret) {
kfree(ref);
return ret;
}
} else {
ref->handle = ~0;
*ref_ret = ref;
}
ref->gpuobj->refcount++;
return 0;
}
int nouveau_gpuobj_ref_del(struct drm_device *dev, struct nouveau_gpuobj_ref **pref)
{
struct nouveau_gpuobj_ref *ref;
NV_DEBUG(dev, "ref %p\n", pref ? *pref : NULL);
if (!dev || !pref || *pref == NULL)
return -EINVAL;
ref = *pref;
if (ref->handle != ~0)
nouveau_ramht_remove(dev, ref);
if (ref->gpuobj) {
ref->gpuobj->refcount--;
if (ref->gpuobj->refcount == 0) {
if (!(ref->gpuobj->flags & NVOBJ_FLAG_ALLOW_NO_REFS))
nouveau_gpuobj_del(dev, &ref->gpuobj);
}
}
*pref = NULL;
kfree(ref);
return 0;
}
int
nouveau_gpuobj_new_ref(struct drm_device *dev,
struct nouveau_channel *oc, struct nouveau_channel *rc,
uint32_t handle, uint32_t size, int align,
uint32_t flags, struct nouveau_gpuobj_ref **ref)
{
struct nouveau_gpuobj *gpuobj = NULL;
int ret;
ret = nouveau_gpuobj_new(dev, oc, size, align, flags, &gpuobj);
if (ret)
return ret;
ret = nouveau_gpuobj_ref_add(dev, rc, handle, gpuobj, ref);
if (ret) {
nouveau_gpuobj_del(dev, &gpuobj);
return ret;
}
return 0;
}
int
nouveau_gpuobj_ref_find(struct nouveau_channel *chan, uint32_t handle,
struct nouveau_gpuobj_ref **ref_ret)
{
struct nouveau_gpuobj_ref *ref;
struct list_head *entry, *tmp;
list_for_each_safe(entry, tmp, &chan->ramht_refs) {
ref = list_entry(entry, struct nouveau_gpuobj_ref, list);
if (ref->handle == handle) {
if (ref_ret)
*ref_ret = ref;
return 0;
}
}
return -EINVAL;
}
int
nouveau_gpuobj_new_fake(struct drm_device *dev, uint32_t p_offset,
uint32_t b_offset, uint32_t size,
uint32_t flags, struct nouveau_gpuobj **pgpuobj,
struct nouveau_gpuobj_ref **pref)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = NULL;
int i;
NV_DEBUG(dev,
"p_offset=0x%08x b_offset=0x%08x size=0x%08x flags=0x%08x\n",
p_offset, b_offset, size, flags);
gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL);
if (!gpuobj)
return -ENOMEM;
NV_DEBUG(dev, "gpuobj %p\n", gpuobj);
gpuobj->im_channel = NULL;
gpuobj->flags = flags | NVOBJ_FLAG_FAKE;
list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);
if (p_offset != ~0) {
gpuobj->im_pramin = kzalloc(sizeof(struct mem_block),
GFP_KERNEL);
if (!gpuobj->im_pramin) {
nouveau_gpuobj_del(dev, &gpuobj);
return -ENOMEM;
}
gpuobj->im_pramin->start = p_offset;
gpuobj->im_pramin->size = size;
}
if (b_offset != ~0) {
gpuobj->im_backing = (struct nouveau_bo *)-1;
gpuobj->im_backing_start = b_offset;
}
if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
dev_priv->engine.instmem.prepare_access(dev, true);
for (i = 0; i < gpuobj->im_pramin->size; i += 4)
nv_wo32(dev, gpuobj, i/4, 0);
dev_priv->engine.instmem.finish_access(dev);
}
if (pref) {
i = nouveau_gpuobj_ref_add(dev, NULL, 0, gpuobj, pref);
if (i) {
nouveau_gpuobj_del(dev, &gpuobj);
return i;
}
}
if (pgpuobj)
*pgpuobj = gpuobj;
return 0;
}
static uint32_t
nouveau_gpuobj_class_instmem_size(struct drm_device *dev, int class)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
/*XXX: dodgy hack for now */
if (dev_priv->card_type >= NV_50)
return 24;
if (dev_priv->card_type >= NV_40)
return 32;
return 16;
}
/*
DMA objects are used to reference a piece of memory in the
framebuffer, PCI or AGP address space. Each object is 16 bytes big
and looks as follows:
entry[0]
11:0 class (seems like I can always use 0 here)
12 page table present?
13 page entry linear?
15:14 access: 0 rw, 1 ro, 2 wo
17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP
31:20 dma adjust (bits 0-11 of the address)
entry[1]
dma limit (size of transfer)
entry[X]
1 0 readonly, 1 readwrite
31:12 dma frame address of the page (bits 12-31 of the address)
entry[N]
page table terminator, same value as the first pte, as does nvidia
rivatv uses 0xffffffff
Non linear page tables need a list of frame addresses afterwards,
the rivatv project has some info on this.
The method below creates a DMA object in instance RAM and returns a handle
to it that can be used to set up context objects.
*/
int
nouveau_gpuobj_dma_new(struct nouveau_channel *chan, int class,
uint64_t offset, uint64_t size, int access,
int target, struct nouveau_gpuobj **gpuobj)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem;
int ret;
NV_DEBUG(dev, "ch%d class=0x%04x offset=0x%llx size=0x%llx\n",
chan->id, class, offset, size);
NV_DEBUG(dev, "access=%d target=%d\n", access, target);
switch (target) {
case NV_DMA_TARGET_AGP:
offset += dev_priv->gart_info.aper_base;
break;
default:
break;
}
ret = nouveau_gpuobj_new(dev, chan,
nouveau_gpuobj_class_instmem_size(dev, class),
16, NVOBJ_FLAG_ZERO_ALLOC |
NVOBJ_FLAG_ZERO_FREE, gpuobj);
if (ret) {
NV_ERROR(dev, "Error creating gpuobj: %d\n", ret);
return ret;
}
instmem->prepare_access(dev, true);
if (dev_priv->card_type < NV_50) {
uint32_t frame, adjust, pte_flags = 0;
if (access != NV_DMA_ACCESS_RO)
pte_flags |= (1<<1);
adjust = offset & 0x00000fff;
frame = offset & ~0x00000fff;
nv_wo32(dev, *gpuobj, 0, ((1<<12) | (1<<13) |
(adjust << 20) |
(access << 14) |
(target << 16) |
class));
nv_wo32(dev, *gpuobj, 1, size - 1);
nv_wo32(dev, *gpuobj, 2, frame | pte_flags);
nv_wo32(dev, *gpuobj, 3, frame | pte_flags);
} else {
uint64_t limit = offset + size - 1;
uint32_t flags0, flags5;
if (target == NV_DMA_TARGET_VIDMEM) {
flags0 = 0x00190000;
flags5 = 0x00010000;
} else {
flags0 = 0x7fc00000;
flags5 = 0x00080000;
}
nv_wo32(dev, *gpuobj, 0, flags0 | class);
nv_wo32(dev, *gpuobj, 1, lower_32_bits(limit));
nv_wo32(dev, *gpuobj, 2, lower_32_bits(offset));
nv_wo32(dev, *gpuobj, 3, ((upper_32_bits(limit) & 0xff) << 24) |
(upper_32_bits(offset) & 0xff));
nv_wo32(dev, *gpuobj, 5, flags5);
}
instmem->finish_access(dev);
(*gpuobj)->engine = NVOBJ_ENGINE_SW;
(*gpuobj)->class = class;
return 0;
}
int
nouveau_gpuobj_gart_dma_new(struct nouveau_channel *chan,
uint64_t offset, uint64_t size, int access,
struct nouveau_gpuobj **gpuobj,
uint32_t *o_ret)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
int ret;
if (dev_priv->gart_info.type == NOUVEAU_GART_AGP ||
(dev_priv->card_type >= NV_50 &&
dev_priv->gart_info.type == NOUVEAU_GART_SGDMA)) {
ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
offset + dev_priv->vm_gart_base,
size, access, NV_DMA_TARGET_AGP,
gpuobj);
if (o_ret)
*o_ret = 0;
} else
if (dev_priv->gart_info.type == NOUVEAU_GART_SGDMA) {
*gpuobj = dev_priv->gart_info.sg_ctxdma;
if (offset & ~0xffffffffULL) {
NV_ERROR(dev, "obj offset exceeds 32-bits\n");
return -EINVAL;
}
if (o_ret)
*o_ret = (uint32_t)offset;
ret = (*gpuobj != NULL) ? 0 : -EINVAL;
} else {
NV_ERROR(dev, "Invalid GART type %d\n", dev_priv->gart_info.type);
return -EINVAL;
}
return ret;
}
/* Context objects in the instance RAM have the following structure.
* On NV40 they are 32 byte long, on NV30 and smaller 16 bytes.
NV4 - NV30:
entry[0]
11:0 class
12 chroma key enable
13 user clip enable
14 swizzle enable
17:15 patch config:
scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre
18 synchronize enable
19 endian: 1 big, 0 little
21:20 dither mode
23 single step enable
24 patch status: 0 invalid, 1 valid
25 context_surface 0: 1 valid
26 context surface 1: 1 valid
27 context pattern: 1 valid
28 context rop: 1 valid
29,30 context beta, beta4
entry[1]
7:0 mono format
15:8 color format
31:16 notify instance address
entry[2]
15:0 dma 0 instance address
31:16 dma 1 instance address
entry[3]
dma method traps
NV40:
No idea what the exact format is. Here's what can be deducted:
entry[0]:
11:0 class (maybe uses more bits here?)
17 user clip enable
21:19 patch config
25 patch status valid ?
entry[1]:
15:0 DMA notifier (maybe 20:0)
entry[2]:
15:0 DMA 0 instance (maybe 20:0)
24 big endian
entry[3]:
15:0 DMA 1 instance (maybe 20:0)
entry[4]:
entry[5]:
set to 0?
*/
int
nouveau_gpuobj_gr_new(struct nouveau_channel *chan, int class,
struct nouveau_gpuobj **gpuobj)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
int ret;
NV_DEBUG(dev, "ch%d class=0x%04x\n", chan->id, class);
ret = nouveau_gpuobj_new(dev, chan,
nouveau_gpuobj_class_instmem_size(dev, class),
16,
NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE,
gpuobj);
if (ret) {
NV_ERROR(dev, "Error creating gpuobj: %d\n", ret);
return ret;
}
dev_priv->engine.instmem.prepare_access(dev, true);
if (dev_priv->card_type >= NV_50) {
nv_wo32(dev, *gpuobj, 0, class);
nv_wo32(dev, *gpuobj, 5, 0x00010000);
} else {
switch (class) {
case NV_CLASS_NULL:
nv_wo32(dev, *gpuobj, 0, 0x00001030);
nv_wo32(dev, *gpuobj, 1, 0xFFFFFFFF);
break;
default:
if (dev_priv->card_type >= NV_40) {
nv_wo32(dev, *gpuobj, 0, class);
#ifdef __BIG_ENDIAN
nv_wo32(dev, *gpuobj, 2, 0x01000000);
#endif
} else {
#ifdef __BIG_ENDIAN
nv_wo32(dev, *gpuobj, 0, class | 0x00080000);
#else
nv_wo32(dev, *gpuobj, 0, class);
#endif
}
}
}
dev_priv->engine.instmem.finish_access(dev);
(*gpuobj)->engine = NVOBJ_ENGINE_GR;
(*gpuobj)->class = class;
return 0;
}
int
nouveau_gpuobj_sw_new(struct nouveau_channel *chan, int class,
struct nouveau_gpuobj **gpuobj_ret)
{
struct drm_nouveau_private *dev_priv = chan->dev->dev_private;
struct nouveau_gpuobj *gpuobj;
if (!chan || !gpuobj_ret || *gpuobj_ret != NULL)
return -EINVAL;
gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL);
if (!gpuobj)
return -ENOMEM;
gpuobj->engine = NVOBJ_ENGINE_SW;
gpuobj->class = class;
list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);
*gpuobj_ret = gpuobj;
return 0;
}
static int
nouveau_gpuobj_channel_init_pramin(struct nouveau_channel *chan)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *pramin = NULL;
uint32_t size;
uint32_t base;
int ret;
NV_DEBUG(dev, "ch%d\n", chan->id);
/* Base amount for object storage (4KiB enough?) */
size = 0x1000;
base = 0;
/* PGRAPH context */
if (dev_priv->card_type == NV_50) {
/* Various fixed table thingos */
size += 0x1400; /* mostly unknown stuff */
size += 0x4000; /* vm pd */
base = 0x6000;
/* RAMHT, not sure about setting size yet, 32KiB to be safe */
size += 0x8000;
/* RAMFC */
size += 0x1000;
/* PGRAPH context */
size += 0x70000;
}
NV_DEBUG(dev, "ch%d PRAMIN size: 0x%08x bytes, base alloc=0x%08x\n",
chan->id, size, base);
ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0, size, 0x1000, 0,
&chan->ramin);
if (ret) {
NV_ERROR(dev, "Error allocating channel PRAMIN: %d\n", ret);
return ret;
}
pramin = chan->ramin->gpuobj;
ret = nouveau_mem_init_heap(&chan->ramin_heap,
pramin->im_pramin->start + base, size);
if (ret) {
NV_ERROR(dev, "Error creating PRAMIN heap: %d\n", ret);
nouveau_gpuobj_ref_del(dev, &chan->ramin);
return ret;
}
return 0;
}
int
nouveau_gpuobj_channel_init(struct nouveau_channel *chan,
uint32_t vram_h, uint32_t tt_h)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem;
struct nouveau_gpuobj *vram = NULL, *tt = NULL;
int ret, i;
INIT_LIST_HEAD(&chan->ramht_refs);
NV_DEBUG(dev, "ch%d vram=0x%08x tt=0x%08x\n", chan->id, vram_h, tt_h);
/* Reserve a block of PRAMIN for the channel
*XXX: maybe on <NV50 too at some point
*/
if (0 || dev_priv->card_type == NV_50) {
ret = nouveau_gpuobj_channel_init_pramin(chan);
if (ret) {
NV_ERROR(dev, "init pramin\n");
return ret;
}
}
/* NV50 VM
* - Allocate per-channel page-directory
* - Map GART and VRAM into the channel's address space at the
* locations determined during init.
*/
if (dev_priv->card_type >= NV_50) {
uint32_t vm_offset, pde;
instmem->prepare_access(dev, true);
vm_offset = (dev_priv->chipset & 0xf0) == 0x50 ? 0x1400 : 0x200;
vm_offset += chan->ramin->gpuobj->im_pramin->start;
ret = nouveau_gpuobj_new_fake(dev, vm_offset, ~0, 0x4000,
0, &chan->vm_pd, NULL);
if (ret) {
instmem->finish_access(dev);
return ret;
}
for (i = 0; i < 0x4000; i += 8) {
nv_wo32(dev, chan->vm_pd, (i+0)/4, 0x00000000);
nv_wo32(dev, chan->vm_pd, (i+4)/4, 0xdeadcafe);
}
pde = (dev_priv->vm_gart_base / (512*1024*1024)) * 2;
ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
dev_priv->gart_info.sg_ctxdma,
&chan->vm_gart_pt);
if (ret) {
instmem->finish_access(dev);
return ret;
}
nv_wo32(dev, chan->vm_pd, pde++,
chan->vm_gart_pt->instance | 0x03);
nv_wo32(dev, chan->vm_pd, pde++, 0x00000000);
pde = (dev_priv->vm_vram_base / (512*1024*1024)) * 2;
for (i = 0; i < dev_priv->vm_vram_pt_nr; i++) {
ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
dev_priv->vm_vram_pt[i],
&chan->vm_vram_pt[i]);
if (ret) {
instmem->finish_access(dev);
return ret;
}
nv_wo32(dev, chan->vm_pd, pde++,
chan->vm_vram_pt[i]->instance | 0x61);
nv_wo32(dev, chan->vm_pd, pde++, 0x00000000);
}
instmem->finish_access(dev);
}
/* RAMHT */
if (dev_priv->card_type < NV_50) {
ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->ramht,
&chan->ramht);
if (ret)
return ret;
} else {
ret = nouveau_gpuobj_new_ref(dev, chan, chan, 0,
0x8000, 16,
NVOBJ_FLAG_ZERO_ALLOC,
&chan->ramht);
if (ret)
return ret;
}
/* VRAM ctxdma */
if (dev_priv->card_type >= NV_50) {
ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
0, dev_priv->vm_end,
NV_DMA_ACCESS_RW,
NV_DMA_TARGET_AGP, &vram);
if (ret) {
NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret);
return ret;
}
} else {
ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
0, dev_priv->fb_available_size,
NV_DMA_ACCESS_RW,
NV_DMA_TARGET_VIDMEM, &vram);
if (ret) {
NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret);
return ret;
}
}
ret = nouveau_gpuobj_ref_add(dev, chan, vram_h, vram, NULL);
if (ret) {
NV_ERROR(dev, "Error referencing VRAM ctxdma: %d\n", ret);
return ret;
}
/* TT memory ctxdma */
if (dev_priv->card_type >= NV_50) {
tt = vram;
} else
if (dev_priv->gart_info.type != NOUVEAU_GART_NONE) {
ret = nouveau_gpuobj_gart_dma_new(chan, 0,
dev_priv->gart_info.aper_size,
NV_DMA_ACCESS_RW, &tt, NULL);
} else {
NV_ERROR(dev, "Invalid GART type %d\n", dev_priv->gart_info.type);
ret = -EINVAL;
}
if (ret) {
NV_ERROR(dev, "Error creating TT ctxdma: %d\n", ret);
return ret;
}
ret = nouveau_gpuobj_ref_add(dev, chan, tt_h, tt, NULL);
if (ret) {
NV_ERROR(dev, "Error referencing TT ctxdma: %d\n", ret);
return ret;
}
return 0;
}
void
nouveau_gpuobj_channel_takedown(struct nouveau_channel *chan)
{
struct drm_nouveau_private *dev_priv = chan->dev->dev_private;
struct drm_device *dev = chan->dev;
struct list_head *entry, *tmp;
struct nouveau_gpuobj_ref *ref;
int i;
NV_DEBUG(dev, "ch%d\n", chan->id);
if (!chan->ramht_refs.next)
return;
list_for_each_safe(entry, tmp, &chan->ramht_refs) {
ref = list_entry(entry, struct nouveau_gpuobj_ref, list);
nouveau_gpuobj_ref_del(dev, &ref);
}
nouveau_gpuobj_ref_del(dev, &chan->ramht);
nouveau_gpuobj_del(dev, &chan->vm_pd);
nouveau_gpuobj_ref_del(dev, &chan->vm_gart_pt);
for (i = 0; i < dev_priv->vm_vram_pt_nr; i++)
nouveau_gpuobj_ref_del(dev, &chan->vm_vram_pt[i]);
if (chan->ramin_heap)
nouveau_mem_takedown(&chan->ramin_heap);
if (chan->ramin)
nouveau_gpuobj_ref_del(dev, &chan->ramin);
}
int
nouveau_gpuobj_suspend(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj;
int i;
if (dev_priv->card_type < NV_50) {
dev_priv->susres.ramin_copy = vmalloc(dev_priv->ramin_rsvd_vram);
if (!dev_priv->susres.ramin_copy)
return -ENOMEM;
for (i = 0; i < dev_priv->ramin_rsvd_vram; i += 4)
dev_priv->susres.ramin_copy[i/4] = nv_ri32(dev, i);
return 0;
}
list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) {
if (!gpuobj->im_backing || (gpuobj->flags & NVOBJ_FLAG_FAKE))
continue;
gpuobj->im_backing_suspend = vmalloc(gpuobj->im_pramin->size);
if (!gpuobj->im_backing_suspend) {
nouveau_gpuobj_resume(dev);
return -ENOMEM;
}
dev_priv->engine.instmem.prepare_access(dev, false);
for (i = 0; i < gpuobj->im_pramin->size / 4; i++)
gpuobj->im_backing_suspend[i] = nv_ro32(dev, gpuobj, i);
dev_priv->engine.instmem.finish_access(dev);
}
return 0;
}
void
nouveau_gpuobj_suspend_cleanup(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj;
if (dev_priv->card_type < NV_50) {
vfree(dev_priv->susres.ramin_copy);
dev_priv->susres.ramin_copy = NULL;
return;
}
list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) {
if (!gpuobj->im_backing_suspend)
continue;
vfree(gpuobj->im_backing_suspend);
gpuobj->im_backing_suspend = NULL;
}
}
void
nouveau_gpuobj_resume(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj;
int i;
if (dev_priv->card_type < NV_50) {
for (i = 0; i < dev_priv->ramin_rsvd_vram; i += 4)
nv_wi32(dev, i, dev_priv->susres.ramin_copy[i/4]);
nouveau_gpuobj_suspend_cleanup(dev);
return;
}
list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) {
if (!gpuobj->im_backing_suspend)
continue;
dev_priv->engine.instmem.prepare_access(dev, true);
for (i = 0; i < gpuobj->im_pramin->size / 4; i++)
nv_wo32(dev, gpuobj, i, gpuobj->im_backing_suspend[i]);
dev_priv->engine.instmem.finish_access(dev);
}
nouveau_gpuobj_suspend_cleanup(dev);
}
int nouveau_ioctl_grobj_alloc(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_nouveau_grobj_alloc *init = data;
struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
struct nouveau_pgraph_object_class *grc;
struct nouveau_gpuobj *gr = NULL;
struct nouveau_channel *chan;
int ret;
NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(init->channel, file_priv, chan);
if (init->handle == ~0)
return -EINVAL;
grc = pgraph->grclass;
while (grc->id) {
if (grc->id == init->class)
break;
grc++;
}
if (!grc->id) {
NV_ERROR(dev, "Illegal object class: 0x%x\n", init->class);
return -EPERM;
}
if (nouveau_gpuobj_ref_find(chan, init->handle, NULL) == 0)
return -EEXIST;
if (!grc->software)
ret = nouveau_gpuobj_gr_new(chan, grc->id, &gr);
else
ret = nouveau_gpuobj_sw_new(chan, grc->id, &gr);
if (ret) {
NV_ERROR(dev, "Error creating object: %d (%d/0x%08x)\n",
ret, init->channel, init->handle);
return ret;
}
ret = nouveau_gpuobj_ref_add(dev, chan, init->handle, gr, NULL);
if (ret) {
NV_ERROR(dev, "Error referencing object: %d (%d/0x%08x)\n",
ret, init->channel, init->handle);
nouveau_gpuobj_del(dev, &gr);
return ret;
}
return 0;
}
int nouveau_ioctl_gpuobj_free(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_nouveau_gpuobj_free *objfree = data;
struct nouveau_gpuobj_ref *ref;
struct nouveau_channel *chan;
int ret;
NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(objfree->channel, file_priv, chan);
ret = nouveau_gpuobj_ref_find(chan, objfree->handle, &ref);
if (ret)
return ret;
nouveau_gpuobj_ref_del(dev, &ref);
return 0;
}