linux_old1/fs/reiserfs/prints.c

775 lines
21 KiB
C

/*
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
*/
#include <linux/time.h>
#include <linux/fs.h>
#include "reiserfs.h"
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <stdarg.h>
static char error_buf[1024];
static char fmt_buf[1024];
static char off_buf[80];
static char *reiserfs_cpu_offset(struct cpu_key *key)
{
if (cpu_key_k_type(key) == TYPE_DIRENTRY)
sprintf(off_buf, "%llu(%llu)",
(unsigned long long)
GET_HASH_VALUE(cpu_key_k_offset(key)),
(unsigned long long)
GET_GENERATION_NUMBER(cpu_key_k_offset(key)));
else
sprintf(off_buf, "0x%Lx",
(unsigned long long)cpu_key_k_offset(key));
return off_buf;
}
static char *le_offset(struct reiserfs_key *key)
{
int version;
version = le_key_version(key);
if (le_key_k_type(version, key) == TYPE_DIRENTRY)
sprintf(off_buf, "%llu(%llu)",
(unsigned long long)
GET_HASH_VALUE(le_key_k_offset(version, key)),
(unsigned long long)
GET_GENERATION_NUMBER(le_key_k_offset(version, key)));
else
sprintf(off_buf, "0x%Lx",
(unsigned long long)le_key_k_offset(version, key));
return off_buf;
}
static char *cpu_type(struct cpu_key *key)
{
if (cpu_key_k_type(key) == TYPE_STAT_DATA)
return "SD";
if (cpu_key_k_type(key) == TYPE_DIRENTRY)
return "DIR";
if (cpu_key_k_type(key) == TYPE_DIRECT)
return "DIRECT";
if (cpu_key_k_type(key) == TYPE_INDIRECT)
return "IND";
return "UNKNOWN";
}
static char *le_type(struct reiserfs_key *key)
{
int version;
version = le_key_version(key);
if (le_key_k_type(version, key) == TYPE_STAT_DATA)
return "SD";
if (le_key_k_type(version, key) == TYPE_DIRENTRY)
return "DIR";
if (le_key_k_type(version, key) == TYPE_DIRECT)
return "DIRECT";
if (le_key_k_type(version, key) == TYPE_INDIRECT)
return "IND";
return "UNKNOWN";
}
/* %k */
static void sprintf_le_key(char *buf, struct reiserfs_key *key)
{
if (key)
sprintf(buf, "[%d %d %s %s]", le32_to_cpu(key->k_dir_id),
le32_to_cpu(key->k_objectid), le_offset(key),
le_type(key));
else
sprintf(buf, "[NULL]");
}
/* %K */
static void sprintf_cpu_key(char *buf, struct cpu_key *key)
{
if (key)
sprintf(buf, "[%d %d %s %s]", key->on_disk_key.k_dir_id,
key->on_disk_key.k_objectid, reiserfs_cpu_offset(key),
cpu_type(key));
else
sprintf(buf, "[NULL]");
}
static void sprintf_de_head(char *buf, struct reiserfs_de_head *deh)
{
if (deh)
sprintf(buf,
"[offset=%d dir_id=%d objectid=%d location=%d state=%04x]",
deh_offset(deh), deh_dir_id(deh), deh_objectid(deh),
deh_location(deh), deh_state(deh));
else
sprintf(buf, "[NULL]");
}
static void sprintf_item_head(char *buf, struct item_head *ih)
{
if (ih) {
strcpy(buf,
(ih_version(ih) == KEY_FORMAT_3_6) ? "*3.6* " : "*3.5*");
sprintf_le_key(buf + strlen(buf), &(ih->ih_key));
sprintf(buf + strlen(buf), ", item_len %d, item_location %d, "
"free_space(entry_count) %d",
ih_item_len(ih), ih_location(ih), ih_free_space(ih));
} else
sprintf(buf, "[NULL]");
}
static void sprintf_direntry(char *buf, struct reiserfs_dir_entry *de)
{
char name[20];
memcpy(name, de->de_name, de->de_namelen > 19 ? 19 : de->de_namelen);
name[de->de_namelen > 19 ? 19 : de->de_namelen] = 0;
sprintf(buf, "\"%s\"==>[%d %d]", name, de->de_dir_id, de->de_objectid);
}
static void sprintf_block_head(char *buf, struct buffer_head *bh)
{
sprintf(buf, "level=%d, nr_items=%d, free_space=%d rdkey ",
B_LEVEL(bh), B_NR_ITEMS(bh), B_FREE_SPACE(bh));
}
static void sprintf_buffer_head(char *buf, struct buffer_head *bh)
{
sprintf(buf,
"dev %pg, size %zd, blocknr %llu, count %d, state 0x%lx, page %p, (%s, %s, %s)",
bh->b_bdev, bh->b_size,
(unsigned long long)bh->b_blocknr, atomic_read(&(bh->b_count)),
bh->b_state, bh->b_page,
buffer_uptodate(bh) ? "UPTODATE" : "!UPTODATE",
buffer_dirty(bh) ? "DIRTY" : "CLEAN",
buffer_locked(bh) ? "LOCKED" : "UNLOCKED");
}
static void sprintf_disk_child(char *buf, struct disk_child *dc)
{
sprintf(buf, "[dc_number=%d, dc_size=%u]", dc_block_number(dc),
dc_size(dc));
}
static char *is_there_reiserfs_struct(char *fmt, int *what)
{
char *k = fmt;
while ((k = strchr(k, '%')) != NULL) {
if (k[1] == 'k' || k[1] == 'K' || k[1] == 'h' || k[1] == 't' ||
k[1] == 'z' || k[1] == 'b' || k[1] == 'y' || k[1] == 'a') {
*what = k[1];
break;
}
k++;
}
return k;
}
/*
* debugging reiserfs we used to print out a lot of different
* variables, like keys, item headers, buffer heads etc. Values of
* most fields matter. So it took a long time just to write
* appropriative printk. With this reiserfs_warning you can use format
* specification for complex structures like you used to do with
* printfs for integers, doubles and pointers. For instance, to print
* out key structure you have to write just:
* reiserfs_warning ("bad key %k", key);
* instead of
* printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid,
* key->k_offset, key->k_uniqueness);
*/
static DEFINE_SPINLOCK(error_lock);
static void prepare_error_buf(const char *fmt, va_list args)
{
char *fmt1 = fmt_buf;
char *k;
char *p = error_buf;
int what;
spin_lock(&error_lock);
strcpy(fmt1, fmt);
while ((k = is_there_reiserfs_struct(fmt1, &what)) != NULL) {
*k = 0;
p += vsprintf(p, fmt1, args);
switch (what) {
case 'k':
sprintf_le_key(p, va_arg(args, struct reiserfs_key *));
break;
case 'K':
sprintf_cpu_key(p, va_arg(args, struct cpu_key *));
break;
case 'h':
sprintf_item_head(p, va_arg(args, struct item_head *));
break;
case 't':
sprintf_direntry(p,
va_arg(args,
struct reiserfs_dir_entry *));
break;
case 'y':
sprintf_disk_child(p,
va_arg(args, struct disk_child *));
break;
case 'z':
sprintf_block_head(p,
va_arg(args, struct buffer_head *));
break;
case 'b':
sprintf_buffer_head(p,
va_arg(args, struct buffer_head *));
break;
case 'a':
sprintf_de_head(p,
va_arg(args,
struct reiserfs_de_head *));
break;
}
p += strlen(p);
fmt1 = k + 2;
}
vsprintf(p, fmt1, args);
spin_unlock(&error_lock);
}
/*
* in addition to usual conversion specifiers this accepts reiserfs
* specific conversion specifiers:
* %k to print little endian key,
* %K to print cpu key,
* %h to print item_head,
* %t to print directory entry
* %z to print block head (arg must be struct buffer_head *
* %b to print buffer_head
*/
#define do_reiserfs_warning(fmt)\
{\
va_list args;\
va_start( args, fmt );\
prepare_error_buf( fmt, args );\
va_end( args );\
}
void __reiserfs_warning(struct super_block *sb, const char *id,
const char *function, const char *fmt, ...)
{
do_reiserfs_warning(fmt);
if (sb)
printk(KERN_WARNING "REISERFS warning (device %s): %s%s%s: "
"%s\n", sb->s_id, id ? id : "", id ? " " : "",
function, error_buf);
else
printk(KERN_WARNING "REISERFS warning: %s%s%s: %s\n",
id ? id : "", id ? " " : "", function, error_buf);
}
/* No newline.. reiserfs_info calls can be followed by printk's */
void reiserfs_info(struct super_block *sb, const char *fmt, ...)
{
do_reiserfs_warning(fmt);
if (sb)
printk(KERN_NOTICE "REISERFS (device %s): %s",
sb->s_id, error_buf);
else
printk(KERN_NOTICE "REISERFS %s:", error_buf);
}
/* No newline.. reiserfs_printk calls can be followed by printk's */
static void reiserfs_printk(const char *fmt, ...)
{
do_reiserfs_warning(fmt);
printk(error_buf);
}
void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...)
{
#ifdef CONFIG_REISERFS_CHECK
do_reiserfs_warning(fmt);
if (s)
printk(KERN_DEBUG "REISERFS debug (device %s): %s\n",
s->s_id, error_buf);
else
printk(KERN_DEBUG "REISERFS debug: %s\n", error_buf);
#endif
}
/*
* The format:
*
* maintainer-errorid: [function-name:] message
*
* where errorid is unique to the maintainer and function-name is
* optional, is recommended, so that anyone can easily find the bug
* with a simple grep for the short to type string
* maintainer-errorid. Don't bother with reusing errorids, there are
* lots of numbers out there.
*
* Example:
*
* reiserfs_panic(
* p_sb, "reiser-29: reiserfs_new_blocknrs: "
* "one of search_start or rn(%d) is equal to MAX_B_NUM,"
* "which means that we are optimizing location based on the "
* "bogus location of a temp buffer (%p).",
* rn, bh
* );
*
* Regular panic()s sometimes clear the screen before the message can
* be read, thus the need for the while loop.
*
* Numbering scheme for panic used by Vladimir and Anatoly( Hans completely
* ignores this scheme, and considers it pointless complexity):
*
* panics in reiserfs_fs.h have numbers from 1000 to 1999
* super.c 2000 to 2999
* preserve.c (unused) 3000 to 3999
* bitmap.c 4000 to 4999
* stree.c 5000 to 5999
* prints.c 6000 to 6999
* namei.c 7000 to 7999
* fix_nodes.c 8000 to 8999
* dir.c 9000 to 9999
* lbalance.c 10000 to 10999
* ibalance.c 11000 to 11999 not ready
* do_balan.c 12000 to 12999
* inode.c 13000 to 13999
* file.c 14000 to 14999
* objectid.c 15000 - 15999
* buffer.c 16000 - 16999
* symlink.c 17000 - 17999
*
* . */
void __reiserfs_panic(struct super_block *sb, const char *id,
const char *function, const char *fmt, ...)
{
do_reiserfs_warning(fmt);
#ifdef CONFIG_REISERFS_CHECK
dump_stack();
#endif
if (sb)
printk(KERN_WARNING "REISERFS panic (device %s): %s%s%s: %s\n",
sb->s_id, id ? id : "", id ? " " : "",
function, error_buf);
else
printk(KERN_WARNING "REISERFS panic: %s%s%s: %s\n",
id ? id : "", id ? " " : "", function, error_buf);
BUG();
}
void __reiserfs_error(struct super_block *sb, const char *id,
const char *function, const char *fmt, ...)
{
do_reiserfs_warning(fmt);
BUG_ON(sb == NULL);
if (reiserfs_error_panic(sb))
__reiserfs_panic(sb, id, function, error_buf);
if (id && id[0])
printk(KERN_CRIT "REISERFS error (device %s): %s %s: %s\n",
sb->s_id, id, function, error_buf);
else
printk(KERN_CRIT "REISERFS error (device %s): %s: %s\n",
sb->s_id, function, error_buf);
if (sb_rdonly(sb))
return;
reiserfs_info(sb, "Remounting filesystem read-only\n");
sb->s_flags |= SB_RDONLY;
reiserfs_abort_journal(sb, -EIO);
}
void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...)
{
do_reiserfs_warning(fmt);
if (reiserfs_error_panic(sb)) {
panic(KERN_CRIT "REISERFS panic (device %s): %s\n", sb->s_id,
error_buf);
}
if (reiserfs_is_journal_aborted(SB_JOURNAL(sb)))
return;
printk(KERN_CRIT "REISERFS abort (device %s): %s\n", sb->s_id,
error_buf);
sb->s_flags |= SB_RDONLY;
reiserfs_abort_journal(sb, errno);
}
/*
* this prints internal nodes (4 keys/items in line) (dc_number,
* dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number,
* dc_size)...
*/
static int print_internal(struct buffer_head *bh, int first, int last)
{
struct reiserfs_key *key;
struct disk_child *dc;
int i;
int from, to;
if (!B_IS_KEYS_LEVEL(bh))
return 1;
check_internal(bh);
if (first == -1) {
from = 0;
to = B_NR_ITEMS(bh);
} else {
from = first;
to = last < B_NR_ITEMS(bh) ? last : B_NR_ITEMS(bh);
}
reiserfs_printk("INTERNAL NODE (%ld) contains %z\n", bh->b_blocknr, bh);
dc = B_N_CHILD(bh, from);
reiserfs_printk("PTR %d: %y ", from, dc);
for (i = from, key = internal_key(bh, from), dc++; i < to;
i++, key++, dc++) {
reiserfs_printk("KEY %d: %k PTR %d: %y ", i, key, i + 1, dc);
if (i && i % 4 == 0)
printk("\n");
}
printk("\n");
return 0;
}
static int print_leaf(struct buffer_head *bh, int print_mode, int first,
int last)
{
struct block_head *blkh;
struct item_head *ih;
int i, nr;
int from, to;
if (!B_IS_ITEMS_LEVEL(bh))
return 1;
check_leaf(bh);
blkh = B_BLK_HEAD(bh);
ih = item_head(bh, 0);
nr = blkh_nr_item(blkh);
printk
("\n===================================================================\n");
reiserfs_printk("LEAF NODE (%ld) contains %z\n", bh->b_blocknr, bh);
if (!(print_mode & PRINT_LEAF_ITEMS)) {
reiserfs_printk("FIRST ITEM_KEY: %k, LAST ITEM KEY: %k\n",
&(ih->ih_key), &((ih + nr - 1)->ih_key));
return 0;
}
if (first < 0 || first > nr - 1)
from = 0;
else
from = first;
if (last < 0 || last > nr)
to = nr;
else
to = last;
ih += from;
printk
("-------------------------------------------------------------------------------\n");
printk
("|##| type | key | ilen | free_space | version | loc |\n");
for (i = from; i < to; i++, ih++) {
printk
("-------------------------------------------------------------------------------\n");
reiserfs_printk("|%2d| %h |\n", i, ih);
if (print_mode & PRINT_LEAF_ITEMS)
op_print_item(ih, ih_item_body(bh, ih));
}
printk
("===================================================================\n");
return 0;
}
char *reiserfs_hashname(int code)
{
if (code == YURA_HASH)
return "rupasov";
if (code == TEA_HASH)
return "tea";
if (code == R5_HASH)
return "r5";
return "unknown";
}
/* return 1 if this is not super block */
static int print_super_block(struct buffer_head *bh)
{
struct reiserfs_super_block *rs =
(struct reiserfs_super_block *)(bh->b_data);
int skipped, data_blocks;
char *version;
if (is_reiserfs_3_5(rs)) {
version = "3.5";
} else if (is_reiserfs_3_6(rs)) {
version = "3.6";
} else if (is_reiserfs_jr(rs)) {
version = ((sb_version(rs) == REISERFS_VERSION_2) ?
"3.6" : "3.5");
} else {
return 1;
}
printk("%pg\'s super block is in block %llu\n", bh->b_bdev,
(unsigned long long)bh->b_blocknr);
printk("Reiserfs version %s\n", version);
printk("Block count %u\n", sb_block_count(rs));
printk("Blocksize %d\n", sb_blocksize(rs));
printk("Free blocks %u\n", sb_free_blocks(rs));
/*
* FIXME: this would be confusing if
* someone stores reiserfs super block in some data block ;)
// skipped = (bh->b_blocknr * bh->b_size) / sb_blocksize(rs);
*/
skipped = bh->b_blocknr;
data_blocks = sb_block_count(rs) - skipped - 1 - sb_bmap_nr(rs) -
(!is_reiserfs_jr(rs) ? sb_jp_journal_size(rs) +
1 : sb_reserved_for_journal(rs)) - sb_free_blocks(rs);
printk
("Busy blocks (skipped %d, bitmaps - %d, journal (or reserved) blocks - %d\n"
"1 super block, %d data blocks\n", skipped, sb_bmap_nr(rs),
(!is_reiserfs_jr(rs) ? (sb_jp_journal_size(rs) + 1) :
sb_reserved_for_journal(rs)), data_blocks);
printk("Root block %u\n", sb_root_block(rs));
printk("Journal block (first) %d\n", sb_jp_journal_1st_block(rs));
printk("Journal dev %d\n", sb_jp_journal_dev(rs));
printk("Journal orig size %d\n", sb_jp_journal_size(rs));
printk("FS state %d\n", sb_fs_state(rs));
printk("Hash function \"%s\"\n",
reiserfs_hashname(sb_hash_function_code(rs)));
printk("Tree height %d\n", sb_tree_height(rs));
return 0;
}
static int print_desc_block(struct buffer_head *bh)
{
struct reiserfs_journal_desc *desc;
if (memcmp(get_journal_desc_magic(bh), JOURNAL_DESC_MAGIC, 8))
return 1;
desc = (struct reiserfs_journal_desc *)(bh->b_data);
printk("Desc block %llu (j_trans_id %d, j_mount_id %d, j_len %d)",
(unsigned long long)bh->b_blocknr, get_desc_trans_id(desc),
get_desc_mount_id(desc), get_desc_trans_len(desc));
return 0;
}
/* ..., int print_mode, int first, int last) */
void print_block(struct buffer_head *bh, ...)
{
va_list args;
int mode, first, last;
if (!bh) {
printk("print_block: buffer is NULL\n");
return;
}
va_start(args, bh);
mode = va_arg(args, int);
first = va_arg(args, int);
last = va_arg(args, int);
if (print_leaf(bh, mode, first, last))
if (print_internal(bh, first, last))
if (print_super_block(bh))
if (print_desc_block(bh))
printk
("Block %llu contains unformatted data\n",
(unsigned long long)bh->b_blocknr);
va_end(args);
}
static char print_tb_buf[2048];
/* this stores initial state of tree balance in the print_tb_buf */
void store_print_tb(struct tree_balance *tb)
{
int h = 0;
int i;
struct buffer_head *tbSh, *tbFh;
if (!tb)
return;
sprintf(print_tb_buf, "\n"
"BALANCING %d\n"
"MODE=%c, ITEM_POS=%d POS_IN_ITEM=%d\n"
"=====================================================================\n"
"* h * S * L * R * F * FL * FR * CFL * CFR *\n",
REISERFS_SB(tb->tb_sb)->s_do_balance,
tb->tb_mode, PATH_LAST_POSITION(tb->tb_path),
tb->tb_path->pos_in_item);
for (h = 0; h < ARRAY_SIZE(tb->insert_size); h++) {
if (PATH_H_PATH_OFFSET(tb->tb_path, h) <=
tb->tb_path->path_length
&& PATH_H_PATH_OFFSET(tb->tb_path,
h) > ILLEGAL_PATH_ELEMENT_OFFSET) {
tbSh = PATH_H_PBUFFER(tb->tb_path, h);
tbFh = PATH_H_PPARENT(tb->tb_path, h);
} else {
tbSh = NULL;
tbFh = NULL;
}
sprintf(print_tb_buf + strlen(print_tb_buf),
"* %d * %3lld(%2d) * %3lld(%2d) * %3lld(%2d) * %5lld * %5lld * %5lld * %5lld * %5lld *\n",
h,
(tbSh) ? (long long)(tbSh->b_blocknr) : (-1LL),
(tbSh) ? atomic_read(&tbSh->b_count) : -1,
(tb->L[h]) ? (long long)(tb->L[h]->b_blocknr) : (-1LL),
(tb->L[h]) ? atomic_read(&tb->L[h]->b_count) : -1,
(tb->R[h]) ? (long long)(tb->R[h]->b_blocknr) : (-1LL),
(tb->R[h]) ? atomic_read(&tb->R[h]->b_count) : -1,
(tbFh) ? (long long)(tbFh->b_blocknr) : (-1LL),
(tb->FL[h]) ? (long long)(tb->FL[h]->
b_blocknr) : (-1LL),
(tb->FR[h]) ? (long long)(tb->FR[h]->
b_blocknr) : (-1LL),
(tb->CFL[h]) ? (long long)(tb->CFL[h]->
b_blocknr) : (-1LL),
(tb->CFR[h]) ? (long long)(tb->CFR[h]->
b_blocknr) : (-1LL));
}
sprintf(print_tb_buf + strlen(print_tb_buf),
"=====================================================================\n"
"* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n"
"* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n",
tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0],
tb->rbytes, tb->blknum[0], tb->s0num, tb->snum[0],
tb->sbytes[0], tb->snum[1], tb->sbytes[1],
tb->cur_blknum, tb->lkey[0], tb->rkey[0]);
/* this prints balance parameters for non-leaf levels */
h = 0;
do {
h++;
sprintf(print_tb_buf + strlen(print_tb_buf),
"* %d * %4d * %2d * * %2d * * %2d *\n",
h, tb->insert_size[h], tb->lnum[h], tb->rnum[h],
tb->blknum[h]);
} while (tb->insert_size[h]);
sprintf(print_tb_buf + strlen(print_tb_buf),
"=====================================================================\n"
"FEB list: ");
/* print FEB list (list of buffers in form (bh (b_blocknr, b_count), that will be used for new nodes) */
h = 0;
for (i = 0; i < ARRAY_SIZE(tb->FEB); i++)
sprintf(print_tb_buf + strlen(print_tb_buf),
"%p (%llu %d)%s", tb->FEB[i],
tb->FEB[i] ? (unsigned long long)tb->FEB[i]->
b_blocknr : 0ULL,
tb->FEB[i] ? atomic_read(&tb->FEB[i]->b_count) : 0,
(i == ARRAY_SIZE(tb->FEB) - 1) ? "\n" : ", ");
sprintf(print_tb_buf + strlen(print_tb_buf),
"======================== the end ====================================\n");
}
void print_cur_tb(char *mes)
{
printk("%s\n%s", mes, print_tb_buf);
}
static void check_leaf_block_head(struct buffer_head *bh)
{
struct block_head *blkh;
int nr;
blkh = B_BLK_HEAD(bh);
nr = blkh_nr_item(blkh);
if (nr > (bh->b_size - BLKH_SIZE) / IH_SIZE)
reiserfs_panic(NULL, "vs-6010", "invalid item number %z",
bh);
if (blkh_free_space(blkh) > bh->b_size - BLKH_SIZE - IH_SIZE * nr)
reiserfs_panic(NULL, "vs-6020", "invalid free space %z",
bh);
}
static void check_internal_block_head(struct buffer_head *bh)
{
struct block_head *blkh;
blkh = B_BLK_HEAD(bh);
if (!(B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL && B_LEVEL(bh) <= MAX_HEIGHT))
reiserfs_panic(NULL, "vs-6025", "invalid level %z", bh);
if (B_NR_ITEMS(bh) > (bh->b_size - BLKH_SIZE) / IH_SIZE)
reiserfs_panic(NULL, "vs-6030", "invalid item number %z", bh);
if (B_FREE_SPACE(bh) !=
bh->b_size - BLKH_SIZE - KEY_SIZE * B_NR_ITEMS(bh) -
DC_SIZE * (B_NR_ITEMS(bh) + 1))
reiserfs_panic(NULL, "vs-6040", "invalid free space %z", bh);
}
void check_leaf(struct buffer_head *bh)
{
int i;
struct item_head *ih;
if (!bh)
return;
check_leaf_block_head(bh);
for (i = 0, ih = item_head(bh, 0); i < B_NR_ITEMS(bh); i++, ih++)
op_check_item(ih, ih_item_body(bh, ih));
}
void check_internal(struct buffer_head *bh)
{
if (!bh)
return;
check_internal_block_head(bh);
}
void print_statistics(struct super_block *s)
{
/*
printk ("reiserfs_put_super: session statistics: balances %d, fix_nodes %d, \
bmap with search %d, without %d, dir2ind %d, ind2dir %d\n",
REISERFS_SB(s)->s_do_balance, REISERFS_SB(s)->s_fix_nodes,
REISERFS_SB(s)->s_bmaps, REISERFS_SB(s)->s_bmaps_without_search,
REISERFS_SB(s)->s_direct2indirect, REISERFS_SB(s)->s_indirect2direct);
*/
}