670 lines
16 KiB
C
670 lines
16 KiB
C
/*
|
|
* fs/f2fs/inline.c
|
|
* Copyright (c) 2013, Intel Corporation
|
|
* Authors: Huajun Li <huajun.li@intel.com>
|
|
* Haicheng Li <haicheng.li@intel.com>
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
|
|
bool f2fs_may_inline_data(struct inode *inode)
|
|
{
|
|
if (f2fs_is_atomic_file(inode))
|
|
return false;
|
|
|
|
if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
|
|
return false;
|
|
|
|
if (i_size_read(inode) > MAX_INLINE_DATA)
|
|
return false;
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool f2fs_may_inline_dentry(struct inode *inode)
|
|
{
|
|
if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
|
|
return false;
|
|
|
|
if (!S_ISDIR(inode->i_mode))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void read_inline_data(struct page *page, struct page *ipage)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
|
|
if (PageUptodate(page))
|
|
return;
|
|
|
|
f2fs_bug_on(F2FS_P_SB(page), page->index);
|
|
|
|
zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
|
|
|
|
/* Copy the whole inline data block */
|
|
src_addr = inline_data_addr(ipage);
|
|
dst_addr = kmap_atomic(page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(dst_addr);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
|
|
{
|
|
void *addr;
|
|
|
|
if (from >= MAX_INLINE_DATA)
|
|
return;
|
|
|
|
addr = inline_data_addr(ipage);
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
memset(addr + from, 0, MAX_INLINE_DATA - from);
|
|
set_page_dirty(ipage);
|
|
|
|
if (from == 0)
|
|
clear_inode_flag(inode, FI_DATA_EXIST);
|
|
}
|
|
|
|
int f2fs_read_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
struct page *ipage;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
unlock_page(page);
|
|
return PTR_ERR(ipage);
|
|
}
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (page->index)
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
else
|
|
read_inline_data(page, ipage);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
f2fs_put_page(ipage, 1);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
|
|
{
|
|
struct f2fs_io_info fio = {
|
|
.sbi = F2FS_I_SB(dn->inode),
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_PRIO,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
int dirty, err;
|
|
|
|
if (!f2fs_exist_data(dn->inode))
|
|
goto clear_out;
|
|
|
|
err = f2fs_reserve_block(dn, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
|
|
|
|
read_inline_data(page, dn->inode_page);
|
|
set_page_dirty(page);
|
|
|
|
/* clear dirty state */
|
|
dirty = clear_page_dirty_for_io(page);
|
|
|
|
/* write data page to try to make data consistent */
|
|
set_page_writeback(page);
|
|
fio.old_blkaddr = dn->data_blkaddr;
|
|
set_inode_flag(dn->inode, FI_HOT_DATA);
|
|
write_data_page(dn, &fio);
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
if (dirty) {
|
|
inode_dec_dirty_pages(dn->inode);
|
|
remove_dirty_inode(dn->inode);
|
|
}
|
|
|
|
/* this converted inline_data should be recovered. */
|
|
set_inode_flag(dn->inode, FI_APPEND_WRITE);
|
|
|
|
/* clear inline data and flag after data writeback */
|
|
truncate_inline_inode(dn->inode, dn->inode_page, 0);
|
|
clear_inline_node(dn->inode_page);
|
|
clear_out:
|
|
stat_dec_inline_inode(dn->inode);
|
|
clear_inode_flag(dn->inode, FI_INLINE_DATA);
|
|
f2fs_put_dnode(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
struct page *ipage, *page;
|
|
int err = 0;
|
|
|
|
if (!f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_write_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_dnode(&dn);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
f2fs_bug_on(F2FS_I_SB(inode), page->index);
|
|
|
|
f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
|
|
src_addr = kmap_atomic(page);
|
|
dst_addr = inline_data_addr(dn.inode_page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
kunmap_atomic(src_addr);
|
|
set_page_dirty(dn.inode_page);
|
|
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
|
|
clear_inline_node(dn.inode_page);
|
|
f2fs_put_dnode(&dn);
|
|
return 0;
|
|
}
|
|
|
|
bool recover_inline_data(struct inode *inode, struct page *npage)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode *ri = NULL;
|
|
void *src_addr, *dst_addr;
|
|
struct page *ipage;
|
|
|
|
/*
|
|
* The inline_data recovery policy is as follows.
|
|
* [prev.] [next] of inline_data flag
|
|
* o o -> recover inline_data
|
|
* o x -> remove inline_data, and then recover data blocks
|
|
* x o -> remove inline_data, and then recover inline_data
|
|
* x x -> recover data blocks
|
|
*/
|
|
if (IS_INODE(npage))
|
|
ri = F2FS_INODE(npage);
|
|
|
|
if (f2fs_has_inline_data(inode) &&
|
|
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
process_inline:
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
|
|
src_addr = inline_data_addr(npage);
|
|
dst_addr = inline_data_addr(ipage);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
|
|
set_inode_flag(inode, FI_INLINE_DATA);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
return true;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
truncate_inline_inode(inode, ipage, 0);
|
|
clear_inode_flag(inode, FI_INLINE_DATA);
|
|
f2fs_put_page(ipage, 1);
|
|
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
if (truncate_blocks(inode, 0, false))
|
|
return false;
|
|
goto process_inline;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
|
|
struct fscrypt_name *fname, struct page **res_page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
|
struct f2fs_inline_dentry *inline_dentry;
|
|
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
|
|
struct f2fs_dir_entry *de;
|
|
struct f2fs_dentry_ptr d;
|
|
struct page *ipage;
|
|
f2fs_hash_t namehash;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
*res_page = ipage;
|
|
return NULL;
|
|
}
|
|
|
|
namehash = f2fs_dentry_hash(&name);
|
|
|
|
inline_dentry = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr_inline(NULL, &d, inline_dentry);
|
|
de = find_target_dentry(fname, namehash, NULL, &d);
|
|
unlock_page(ipage);
|
|
if (de)
|
|
*res_page = ipage;
|
|
else
|
|
f2fs_put_page(ipage, 0);
|
|
|
|
return de;
|
|
}
|
|
|
|
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
|
|
struct page *ipage)
|
|
{
|
|
struct f2fs_inline_dentry *dentry_blk;
|
|
struct f2fs_dentry_ptr d;
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr_inline(NULL, &d, dentry_blk);
|
|
do_make_empty_dir(inode, parent, &d);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* update i_size to MAX_INLINE_DATA */
|
|
if (i_size_read(inode) < MAX_INLINE_DATA)
|
|
f2fs_i_size_write(inode, MAX_INLINE_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: ipage is grabbed by caller, but if any error occurs, we should
|
|
* release ipage in this function.
|
|
*/
|
|
static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
|
|
struct f2fs_inline_dentry *inline_dentry)
|
|
{
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_dentry_block *dentry_blk;
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
|
|
if (!page) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_new_dnode(&dn, dir, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, 0);
|
|
if (err)
|
|
goto out;
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
|
|
|
|
dentry_blk = kmap_atomic(page);
|
|
|
|
/* copy data from inline dentry block to new dentry block */
|
|
memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
|
|
INLINE_DENTRY_BITMAP_SIZE);
|
|
memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
|
|
SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
|
|
/*
|
|
* we do not need to zero out remainder part of dentry and filename
|
|
* field, since we have used bitmap for marking the usage status of
|
|
* them, besides, we can also ignore copying/zeroing reserved space
|
|
* of dentry block, because them haven't been used so far.
|
|
*/
|
|
memcpy(dentry_blk->dentry, inline_dentry->dentry,
|
|
sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
|
|
memcpy(dentry_blk->filename, inline_dentry->filename,
|
|
NR_INLINE_DENTRY * F2FS_SLOT_LEN);
|
|
|
|
kunmap_atomic(dentry_blk);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
set_page_dirty(page);
|
|
|
|
/* clear inline dir and flag after data writeback */
|
|
truncate_inline_inode(dir, ipage, 0);
|
|
|
|
stat_dec_inline_dir(dir);
|
|
clear_inode_flag(dir, FI_INLINE_DENTRY);
|
|
|
|
f2fs_i_depth_write(dir, 1);
|
|
if (i_size_read(dir) < PAGE_SIZE)
|
|
f2fs_i_size_write(dir, PAGE_SIZE);
|
|
out:
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_add_inline_entries(struct inode *dir,
|
|
struct f2fs_inline_dentry *inline_dentry)
|
|
{
|
|
struct f2fs_dentry_ptr d;
|
|
unsigned long bit_pos = 0;
|
|
int err = 0;
|
|
|
|
make_dentry_ptr_inline(NULL, &d, inline_dentry);
|
|
|
|
while (bit_pos < d.max) {
|
|
struct f2fs_dir_entry *de;
|
|
struct qstr new_name;
|
|
nid_t ino;
|
|
umode_t fake_mode;
|
|
|
|
if (!test_bit_le(bit_pos, d.bitmap)) {
|
|
bit_pos++;
|
|
continue;
|
|
}
|
|
|
|
de = &d.dentry[bit_pos];
|
|
|
|
if (unlikely(!de->name_len)) {
|
|
bit_pos++;
|
|
continue;
|
|
}
|
|
|
|
new_name.name = d.filename[bit_pos];
|
|
new_name.len = le16_to_cpu(de->name_len);
|
|
|
|
ino = le32_to_cpu(de->ino);
|
|
fake_mode = get_de_type(de) << S_SHIFT;
|
|
|
|
err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
|
|
ino, fake_mode);
|
|
if (err)
|
|
goto punch_dentry_pages;
|
|
|
|
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
|
|
}
|
|
return 0;
|
|
punch_dentry_pages:
|
|
truncate_inode_pages(&dir->i_data, 0);
|
|
truncate_blocks(dir, 0, false);
|
|
remove_dirty_inode(dir);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
|
|
struct f2fs_inline_dentry *inline_dentry)
|
|
{
|
|
struct f2fs_inline_dentry *backup_dentry;
|
|
int err;
|
|
|
|
backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
|
|
sizeof(struct f2fs_inline_dentry), GFP_F2FS_ZERO);
|
|
if (!backup_dentry) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
|
|
truncate_inline_inode(dir, ipage, 0);
|
|
|
|
unlock_page(ipage);
|
|
|
|
err = f2fs_add_inline_entries(dir, backup_dentry);
|
|
if (err)
|
|
goto recover;
|
|
|
|
lock_page(ipage);
|
|
|
|
stat_dec_inline_dir(dir);
|
|
clear_inode_flag(dir, FI_INLINE_DENTRY);
|
|
kfree(backup_dentry);
|
|
return 0;
|
|
recover:
|
|
lock_page(ipage);
|
|
memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
|
|
f2fs_i_depth_write(dir, 0);
|
|
f2fs_i_size_write(dir, MAX_INLINE_DATA);
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
|
|
kfree(backup_dentry);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
|
|
struct f2fs_inline_dentry *inline_dentry)
|
|
{
|
|
if (!F2FS_I(dir)->i_dir_level)
|
|
return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
|
|
else
|
|
return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
|
|
}
|
|
|
|
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
|
|
const struct qstr *orig_name,
|
|
struct inode *inode, nid_t ino, umode_t mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos;
|
|
f2fs_hash_t name_hash;
|
|
struct f2fs_inline_dentry *dentry_blk = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
int slots = GET_DENTRY_SLOTS(new_name->len);
|
|
struct page *page = NULL;
|
|
int err = 0;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
|
|
slots, NR_INLINE_DENTRY);
|
|
if (bit_pos >= NR_INLINE_DENTRY) {
|
|
err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
|
|
if (err)
|
|
return err;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (inode) {
|
|
down_write(&F2FS_I(inode)->i_sem);
|
|
page = init_inode_metadata(inode, dir, new_name,
|
|
orig_name, ipage);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
|
|
name_hash = f2fs_dentry_hash(new_name);
|
|
make_dentry_ptr_inline(NULL, &d, dentry_blk);
|
|
f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* we don't need to mark_inode_dirty now */
|
|
if (inode) {
|
|
f2fs_i_pino_write(inode, dir->i_ino);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
update_parent_metadata(dir, inode, 0);
|
|
fail:
|
|
if (inode)
|
|
up_write(&F2FS_I(inode)->i_sem);
|
|
out:
|
|
f2fs_put_page(ipage, 1);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
|
|
struct inode *dir, struct inode *inode)
|
|
{
|
|
struct f2fs_inline_dentry *inline_dentry;
|
|
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
|
|
unsigned int bit_pos;
|
|
int i;
|
|
|
|
lock_page(page);
|
|
f2fs_wait_on_page_writeback(page, NODE, true);
|
|
|
|
inline_dentry = inline_data_addr(page);
|
|
bit_pos = dentry - inline_dentry->dentry;
|
|
for (i = 0; i < slots; i++)
|
|
__clear_bit_le(bit_pos + i,
|
|
&inline_dentry->dentry_bitmap);
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
dir->i_ctime = dir->i_mtime = current_time(dir);
|
|
f2fs_mark_inode_dirty_sync(dir, false);
|
|
|
|
if (inode)
|
|
f2fs_drop_nlink(dir, inode);
|
|
}
|
|
|
|
bool f2fs_empty_inline_dir(struct inode *dir)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos = 2;
|
|
struct f2fs_inline_dentry *dentry_blk;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return false;
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
|
NR_INLINE_DENTRY,
|
|
bit_pos);
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
|
|
if (bit_pos < NR_INLINE_DENTRY)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
|
|
struct fscrypt_str *fstr)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct f2fs_inline_dentry *inline_dentry = NULL;
|
|
struct page *ipage = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
int err;
|
|
|
|
if (ctx->pos == NR_INLINE_DENTRY)
|
|
return 0;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
inline_dentry = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr_inline(inode, &d, inline_dentry);
|
|
|
|
err = f2fs_fill_dentries(ctx, &d, 0, fstr);
|
|
if (!err)
|
|
ctx->pos = NR_INLINE_DENTRY;
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
return err < 0 ? err : 0;
|
|
}
|
|
|
|
int f2fs_inline_data_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
|
|
{
|
|
__u64 byteaddr, ilen;
|
|
__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
|
|
FIEMAP_EXTENT_LAST;
|
|
struct node_info ni;
|
|
struct page *ipage;
|
|
int err = 0;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
|
|
if (start >= ilen)
|
|
goto out;
|
|
if (start + len < ilen)
|
|
ilen = start + len;
|
|
ilen -= start;
|
|
|
|
get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
|
|
byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
|
|
byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
|
|
err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
|
|
out:
|
|
f2fs_put_page(ipage, 1);
|
|
return err;
|
|
}
|