linux_old1/tools/perf/util/evsel.c

1558 lines
36 KiB
C

/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include <byteswap.h>
#include <linux/bitops.h>
#include <lk/debugfs.h>
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
#include "asm/bug.h"
#include "evsel.h"
#include "evlist.h"
#include "util.h"
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "perf_regs.h"
static struct {
bool sample_id_all;
bool exclude_guest;
} perf_missing_features;
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
static int __perf_evsel__sample_size(u64 sample_type)
{
u64 mask = sample_type & PERF_SAMPLE_MASK;
int size = 0;
int i;
for (i = 0; i < 64; i++) {
if (mask & (1ULL << i))
size++;
}
size *= sizeof(u64);
return size;
}
void hists__init(struct hists *hists)
{
memset(hists, 0, sizeof(*hists));
hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
hists->entries_in = &hists->entries_in_array[0];
hists->entries_collapsed = RB_ROOT;
hists->entries = RB_ROOT;
pthread_mutex_init(&hists->lock, NULL);
}
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (!(evsel->attr.sample_type & bit)) {
evsel->attr.sample_type |= bit;
evsel->sample_size += sizeof(u64);
}
}
void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (evsel->attr.sample_type & bit) {
evsel->attr.sample_type &= ~bit;
evsel->sample_size -= sizeof(u64);
}
}
void perf_evsel__set_sample_id(struct perf_evsel *evsel)
{
perf_evsel__set_sample_bit(evsel, ID);
evsel->attr.read_format |= PERF_FORMAT_ID;
}
void perf_evsel__init(struct perf_evsel *evsel,
struct perf_event_attr *attr, int idx)
{
evsel->idx = idx;
evsel->attr = *attr;
evsel->leader = evsel;
INIT_LIST_HEAD(&evsel->node);
hists__init(&evsel->hists);
evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
}
struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
{
struct perf_evsel *evsel = zalloc(sizeof(*evsel));
if (evsel != NULL)
perf_evsel__init(evsel, attr, idx);
return evsel;
}
struct event_format *event_format__new(const char *sys, const char *name)
{
int fd, n;
char *filename;
void *bf = NULL, *nbf;
size_t size = 0, alloc_size = 0;
struct event_format *format = NULL;
if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
goto out;
fd = open(filename, O_RDONLY);
if (fd < 0)
goto out_free_filename;
do {
if (size == alloc_size) {
alloc_size += BUFSIZ;
nbf = realloc(bf, alloc_size);
if (nbf == NULL)
goto out_free_bf;
bf = nbf;
}
n = read(fd, bf + size, alloc_size - size);
if (n < 0)
goto out_free_bf;
size += n;
} while (n > 0);
pevent_parse_format(&format, bf, size, sys);
out_free_bf:
free(bf);
close(fd);
out_free_filename:
free(filename);
out:
return format;
}
struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
{
struct perf_evsel *evsel = zalloc(sizeof(*evsel));
if (evsel != NULL) {
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
};
if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
goto out_free;
evsel->tp_format = event_format__new(sys, name);
if (evsel->tp_format == NULL)
goto out_free;
event_attr_init(&attr);
attr.config = evsel->tp_format->id;
attr.sample_period = 1;
perf_evsel__init(evsel, &attr, idx);
}
return evsel;
out_free:
free(evsel->name);
free(evsel);
return NULL;
}
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
"cycles",
"instructions",
"cache-references",
"cache-misses",
"branches",
"branch-misses",
"bus-cycles",
"stalled-cycles-frontend",
"stalled-cycles-backend",
"ref-cycles",
};
static const char *__perf_evsel__hw_name(u64 config)
{
if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
return perf_evsel__hw_names[config];
return "unknown-hardware";
}
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
{
int colon = 0, r = 0;
struct perf_event_attr *attr = &evsel->attr;
bool exclude_guest_default = false;
#define MOD_PRINT(context, mod) do { \
if (!attr->exclude_##context) { \
if (!colon) colon = ++r; \
r += scnprintf(bf + r, size - r, "%c", mod); \
} } while(0)
if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
MOD_PRINT(kernel, 'k');
MOD_PRINT(user, 'u');
MOD_PRINT(hv, 'h');
exclude_guest_default = true;
}
if (attr->precise_ip) {
if (!colon)
colon = ++r;
r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
exclude_guest_default = true;
}
if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
MOD_PRINT(host, 'H');
MOD_PRINT(guest, 'G');
}
#undef MOD_PRINT
if (colon)
bf[colon - 1] = ':';
return r;
}
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
"cpu-clock",
"task-clock",
"page-faults",
"context-switches",
"cpu-migrations",
"minor-faults",
"major-faults",
"alignment-faults",
"emulation-faults",
};
static const char *__perf_evsel__sw_name(u64 config)
{
if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
return perf_evsel__sw_names[config];
return "unknown-software";
}
static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
int r;
r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
if (type & HW_BREAKPOINT_R)
r += scnprintf(bf + r, size - r, "r");
if (type & HW_BREAKPOINT_W)
r += scnprintf(bf + r, size - r, "w");
if (type & HW_BREAKPOINT_X)
r += scnprintf(bf + r, size - r, "x");
return r;
}
static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
struct perf_event_attr *attr = &evsel->attr;
int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "L1-dcache", "l1-d", "l1d", "L1-data", },
{ "L1-icache", "l1-i", "l1i", "L1-instruction", },
{ "LLC", "L2", },
{ "dTLB", "d-tlb", "Data-TLB", },
{ "iTLB", "i-tlb", "Instruction-TLB", },
{ "branch", "branches", "bpu", "btb", "bpc", },
{ "node", },
};
const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "load", "loads", "read", },
{ "store", "stores", "write", },
{ "prefetch", "prefetches", "speculative-read", "speculative-load", },
};
const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "refs", "Reference", "ops", "access", },
{ "misses", "miss", },
};
#define C(x) PERF_COUNT_HW_CACHE_##x
#define CACHE_READ (1 << C(OP_READ))
#define CACHE_WRITE (1 << C(OP_WRITE))
#define CACHE_PREFETCH (1 << C(OP_PREFETCH))
#define COP(x) (1 << x)
/*
* cache operartion stat
* L1I : Read and prefetch only
* ITLB and BPU : Read-only
*/
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
[C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
[C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(ITLB)] = (CACHE_READ),
[C(BPU)] = (CACHE_READ),
[C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};
bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
if (perf_evsel__hw_cache_stat[type] & COP(op))
return true; /* valid */
else
return false; /* invalid */
}
int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
char *bf, size_t size)
{
if (result) {
return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][0],
perf_evsel__hw_cache_result[result][0]);
}
return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][1]);
}
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
{
u8 op, result, type = (config >> 0) & 0xff;
const char *err = "unknown-ext-hardware-cache-type";
if (type > PERF_COUNT_HW_CACHE_MAX)
goto out_err;
op = (config >> 8) & 0xff;
err = "unknown-ext-hardware-cache-op";
if (op > PERF_COUNT_HW_CACHE_OP_MAX)
goto out_err;
result = (config >> 16) & 0xff;
err = "unknown-ext-hardware-cache-result";
if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
goto out_err;
err = "invalid-cache";
if (!perf_evsel__is_cache_op_valid(type, op))
goto out_err;
return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
return scnprintf(bf, size, "%s", err);
}
static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
const char *perf_evsel__name(struct perf_evsel *evsel)
{
char bf[128];
if (evsel->name)
return evsel->name;
switch (evsel->attr.type) {
case PERF_TYPE_RAW:
perf_evsel__raw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HARDWARE:
perf_evsel__hw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HW_CACHE:
perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_SOFTWARE:
perf_evsel__sw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_TRACEPOINT:
scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
break;
case PERF_TYPE_BREAKPOINT:
perf_evsel__bp_name(evsel, bf, sizeof(bf));
break;
default:
scnprintf(bf, sizeof(bf), "unknown attr type: %d",
evsel->attr.type);
break;
}
evsel->name = strdup(bf);
return evsel->name ?: "unknown";
}
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
return evsel->group_name ?: "anon group";
}
int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
int ret;
struct perf_evsel *pos;
const char *group_name = perf_evsel__group_name(evsel);
ret = scnprintf(buf, size, "%s", group_name);
ret += scnprintf(buf + ret, size - ret, " { %s",
perf_evsel__name(evsel));
for_each_group_member(pos, evsel)
ret += scnprintf(buf + ret, size - ret, ", %s",
perf_evsel__name(pos));
ret += scnprintf(buf + ret, size - ret, " }");
return ret;
}
/*
* The enable_on_exec/disabled value strategy:
*
* 1) For any type of traced program:
* - all independent events and group leaders are disabled
* - all group members are enabled
*
* Group members are ruled by group leaders. They need to
* be enabled, because the group scheduling relies on that.
*
* 2) For traced programs executed by perf:
* - all independent events and group leaders have
* enable_on_exec set
* - we don't specifically enable or disable any event during
* the record command
*
* Independent events and group leaders are initially disabled
* and get enabled by exec. Group members are ruled by group
* leaders as stated in 1).
*
* 3) For traced programs attached by perf (pid/tid):
* - we specifically enable or disable all events during
* the record command
*
* When attaching events to already running traced we
* enable/disable events specifically, as there's no
* initial traced exec call.
*/
void perf_evsel__config(struct perf_evsel *evsel,
struct perf_record_opts *opts)
{
struct perf_event_attr *attr = &evsel->attr;
int track = !evsel->idx; /* only the first counter needs these */
attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
attr->inherit = !opts->no_inherit;
perf_evsel__set_sample_bit(evsel, IP);
perf_evsel__set_sample_bit(evsel, TID);
/*
* We default some events to a 1 default interval. But keep
* it a weak assumption overridable by the user.
*/
if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
opts->user_interval != ULLONG_MAX)) {
if (opts->freq) {
perf_evsel__set_sample_bit(evsel, PERIOD);
attr->freq = 1;
attr->sample_freq = opts->freq;
} else {
attr->sample_period = opts->default_interval;
}
}
if (opts->no_samples)
attr->sample_freq = 0;
if (opts->inherit_stat)
attr->inherit_stat = 1;
if (opts->sample_address) {
perf_evsel__set_sample_bit(evsel, ADDR);
attr->mmap_data = track;
}
if (opts->call_graph) {
perf_evsel__set_sample_bit(evsel, CALLCHAIN);
if (opts->call_graph == CALLCHAIN_DWARF) {
perf_evsel__set_sample_bit(evsel, REGS_USER);
perf_evsel__set_sample_bit(evsel, STACK_USER);
attr->sample_regs_user = PERF_REGS_MASK;
attr->sample_stack_user = opts->stack_dump_size;
attr->exclude_callchain_user = 1;
}
}
if (perf_target__has_cpu(&opts->target))
perf_evsel__set_sample_bit(evsel, CPU);
if (opts->period)
perf_evsel__set_sample_bit(evsel, PERIOD);
if (!perf_missing_features.sample_id_all &&
(opts->sample_time || !opts->no_inherit ||
perf_target__has_cpu(&opts->target)))
perf_evsel__set_sample_bit(evsel, TIME);
if (opts->raw_samples) {
perf_evsel__set_sample_bit(evsel, TIME);
perf_evsel__set_sample_bit(evsel, RAW);
perf_evsel__set_sample_bit(evsel, CPU);
}
if (opts->sample_address)
attr->sample_type |= PERF_SAMPLE_DATA_SRC;
if (opts->no_delay) {
attr->watermark = 0;
attr->wakeup_events = 1;
}
if (opts->branch_stack) {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type = opts->branch_stack;
}
if (opts->sample_weight)
attr->sample_type |= PERF_SAMPLE_WEIGHT;
attr->mmap = track;
attr->comm = track;
/*
* XXX see the function comment above
*
* Disabling only independent events or group leaders,
* keeping group members enabled.
*/
if (perf_evsel__is_group_leader(evsel))
attr->disabled = 1;
/*
* Setting enable_on_exec for independent events and
* group leaders for traced executed by perf.
*/
if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
attr->enable_on_exec = 1;
}
int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
int cpu, thread;
evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
if (evsel->fd) {
for (cpu = 0; cpu < ncpus; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
FD(evsel, cpu, thread) = -1;
}
}
}
return evsel->fd != NULL ? 0 : -ENOMEM;
}
int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
const char *filter)
{
int cpu, thread;
for (cpu = 0; cpu < ncpus; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
int fd = FD(evsel, cpu, thread),
err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter);
if (err)
return err;
}
}
return 0;
}
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
if (evsel->sample_id == NULL)
return -ENOMEM;
evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
if (evsel->id == NULL) {
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
return -ENOMEM;
}
return 0;
}
void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
{
memset(evsel->counts, 0, (sizeof(*evsel->counts) +
(ncpus * sizeof(struct perf_counts_values))));
}
int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
{
evsel->counts = zalloc((sizeof(*evsel->counts) +
(ncpus * sizeof(struct perf_counts_values))));
return evsel->counts != NULL ? 0 : -ENOMEM;
}
void perf_evsel__free_fd(struct perf_evsel *evsel)
{
xyarray__delete(evsel->fd);
evsel->fd = NULL;
}
void perf_evsel__free_id(struct perf_evsel *evsel)
{
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
free(evsel->id);
evsel->id = NULL;
}
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
int cpu, thread;
for (cpu = 0; cpu < ncpus; cpu++)
for (thread = 0; thread < nthreads; ++thread) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
}
void perf_evsel__free_counts(struct perf_evsel *evsel)
{
free(evsel->counts);
}
void perf_evsel__exit(struct perf_evsel *evsel)
{
assert(list_empty(&evsel->node));
perf_evsel__free_fd(evsel);
perf_evsel__free_id(evsel);
}
void perf_evsel__delete(struct perf_evsel *evsel)
{
perf_evsel__exit(evsel);
close_cgroup(evsel->cgrp);
free(evsel->group_name);
if (evsel->tp_format)
pevent_free_format(evsel->tp_format);
free(evsel->name);
free(evsel);
}
static inline void compute_deltas(struct perf_evsel *evsel,
int cpu,
struct perf_counts_values *count)
{
struct perf_counts_values tmp;
if (!evsel->prev_raw_counts)
return;
if (cpu == -1) {
tmp = evsel->prev_raw_counts->aggr;
evsel->prev_raw_counts->aggr = *count;
} else {
tmp = evsel->prev_raw_counts->cpu[cpu];
evsel->prev_raw_counts->cpu[cpu] = *count;
}
count->val = count->val - tmp.val;
count->ena = count->ena - tmp.ena;
count->run = count->run - tmp.run;
}
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
int cpu, int thread, bool scale)
{
struct perf_counts_values count;
size_t nv = scale ? 3 : 1;
if (FD(evsel, cpu, thread) < 0)
return -EINVAL;
if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
return -ENOMEM;
if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
return -errno;
compute_deltas(evsel, cpu, &count);
if (scale) {
if (count.run == 0)
count.val = 0;
else if (count.run < count.ena)
count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
} else
count.ena = count.run = 0;
evsel->counts->cpu[cpu] = count;
return 0;
}
int __perf_evsel__read(struct perf_evsel *evsel,
int ncpus, int nthreads, bool scale)
{
size_t nv = scale ? 3 : 1;
int cpu, thread;
struct perf_counts_values *aggr = &evsel->counts->aggr, count;
aggr->val = aggr->ena = aggr->run = 0;
for (cpu = 0; cpu < ncpus; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
if (FD(evsel, cpu, thread) < 0)
continue;
if (readn(FD(evsel, cpu, thread),
&count, nv * sizeof(u64)) < 0)
return -errno;
aggr->val += count.val;
if (scale) {
aggr->ena += count.ena;
aggr->run += count.run;
}
}
}
compute_deltas(evsel, -1, aggr);
evsel->counts->scaled = 0;
if (scale) {
if (aggr->run == 0) {
evsel->counts->scaled = -1;
aggr->val = 0;
return 0;
}
if (aggr->run < aggr->ena) {
evsel->counts->scaled = 1;
aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
}
} else
aggr->ena = aggr->run = 0;
return 0;
}
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
struct perf_evsel *leader = evsel->leader;
int fd;
if (perf_evsel__is_group_leader(evsel))
return -1;
/*
* Leader must be already processed/open,
* if not it's a bug.
*/
BUG_ON(!leader->fd);
fd = FD(leader, cpu, thread);
BUG_ON(fd == -1);
return fd;
}
static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
struct thread_map *threads)
{
int cpu, thread;
unsigned long flags = 0;
int pid = -1, err;
if (evsel->fd == NULL &&
perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
return -ENOMEM;
if (evsel->cgrp) {
flags = PERF_FLAG_PID_CGROUP;
pid = evsel->cgrp->fd;
}
fallback_missing_features:
if (perf_missing_features.exclude_guest)
evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
retry_sample_id:
if (perf_missing_features.sample_id_all)
evsel->attr.sample_id_all = 0;
for (cpu = 0; cpu < cpus->nr; cpu++) {
for (thread = 0; thread < threads->nr; thread++) {
int group_fd;
if (!evsel->cgrp)
pid = threads->map[thread];
group_fd = get_group_fd(evsel, cpu, thread);
FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
pid,
cpus->map[cpu],
group_fd, flags);
if (FD(evsel, cpu, thread) < 0) {
err = -errno;
goto try_fallback;
}
}
}
return 0;
try_fallback:
if (err != -EINVAL || cpu > 0 || thread > 0)
goto out_close;
if (!perf_missing_features.exclude_guest &&
(evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
perf_missing_features.exclude_guest = true;
goto fallback_missing_features;
} else if (!perf_missing_features.sample_id_all) {
perf_missing_features.sample_id_all = true;
goto retry_sample_id;
}
out_close:
do {
while (--thread >= 0) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
thread = threads->nr;
} while (--cpu >= 0);
return err;
}
void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
{
if (evsel->fd == NULL)
return;
perf_evsel__close_fd(evsel, ncpus, nthreads);
perf_evsel__free_fd(evsel);
evsel->fd = NULL;
}
static struct {
struct cpu_map map;
int cpus[1];
} empty_cpu_map = {
.map.nr = 1,
.cpus = { -1, },
};
static struct {
struct thread_map map;
int threads[1];
} empty_thread_map = {
.map.nr = 1,
.threads = { -1, },
};
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
struct thread_map *threads)
{
if (cpus == NULL) {
/* Work around old compiler warnings about strict aliasing */
cpus = &empty_cpu_map.map;
}
if (threads == NULL)
threads = &empty_thread_map.map;
return __perf_evsel__open(evsel, cpus, threads);
}
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
struct cpu_map *cpus)
{
return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
}
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
struct thread_map *threads)
{
return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
}
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
const union perf_event *event,
struct perf_sample *sample)
{
u64 type = evsel->attr.sample_type;
const u64 *array = event->sample.array;
bool swapped = evsel->needs_swap;
union u64_swap u;
array += ((event->header.size -
sizeof(event->header)) / sizeof(u64)) - 1;
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
sample->cpu = u.val32[0];
array--;
}
if (type & PERF_SAMPLE_STREAM_ID) {
sample->stream_id = *array;
array--;
}
if (type & PERF_SAMPLE_ID) {
sample->id = *array;
array--;
}
if (type & PERF_SAMPLE_TIME) {
sample->time = *array;
array--;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
sample->pid = u.val32[0];
sample->tid = u.val32[1];
}
return 0;
}
static bool sample_overlap(const union perf_event *event,
const void *offset, u64 size)
{
const void *base = event;
if (offset + size > base + event->header.size)
return true;
return false;
}
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
struct perf_sample *data)
{
u64 type = evsel->attr.sample_type;
u64 regs_user = evsel->attr.sample_regs_user;
bool swapped = evsel->needs_swap;
const u64 *array;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
memset(data, 0, sizeof(*data));
data->cpu = data->pid = data->tid = -1;
data->stream_id = data->id = data->time = -1ULL;
data->period = 1;
data->weight = 0;
if (event->header.type != PERF_RECORD_SAMPLE) {
if (!evsel->attr.sample_id_all)
return 0;
return perf_evsel__parse_id_sample(evsel, event, data);
}
array = event->sample.array;
if (evsel->sample_size + sizeof(event->header) > event->header.size)
return -EFAULT;
if (type & PERF_SAMPLE_IP) {
data->ip = event->ip.ip;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
data->pid = u.val32[0];
data->tid = u.val32[1];
array++;
}
if (type & PERF_SAMPLE_TIME) {
data->time = *array;
array++;
}
data->addr = 0;
if (type & PERF_SAMPLE_ADDR) {
data->addr = *array;
array++;
}
data->id = -1ULL;
if (type & PERF_SAMPLE_ID) {
data->id = *array;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
data->stream_id = *array;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
data->cpu = u.val32[0];
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
data->period = *array;
array++;
}
if (type & PERF_SAMPLE_READ) {
fprintf(stderr, "PERF_SAMPLE_READ is unsupported for now\n");
return -1;
}
if (type & PERF_SAMPLE_CALLCHAIN) {
if (sample_overlap(event, array, sizeof(data->callchain->nr)))
return -EFAULT;
data->callchain = (struct ip_callchain *)array;
if (sample_overlap(event, array, data->callchain->nr))
return -EFAULT;
array += 1 + data->callchain->nr;
}
if (type & PERF_SAMPLE_RAW) {
const u64 *pdata;
u.val64 = *array;
if (WARN_ONCE(swapped,
"Endianness of raw data not corrected!\n")) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
if (sample_overlap(event, array, sizeof(u32)))
return -EFAULT;
data->raw_size = u.val32[0];
pdata = (void *) array + sizeof(u32);
if (sample_overlap(event, pdata, data->raw_size))
return -EFAULT;
data->raw_data = (void *) pdata;
array = (void *)array + data->raw_size + sizeof(u32);
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
u64 sz;
data->branch_stack = (struct branch_stack *)array;
array++; /* nr */
sz = data->branch_stack->nr * sizeof(struct branch_entry);
sz /= sizeof(u64);
array += sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
/* First u64 tells us if we have any regs in sample. */
u64 avail = *array++;
if (avail) {
data->user_regs.regs = (u64 *)array;
array += hweight_long(regs_user);
}
}
if (type & PERF_SAMPLE_STACK_USER) {
u64 size = *array++;
data->user_stack.offset = ((char *)(array - 1)
- (char *) event);
if (!size) {
data->user_stack.size = 0;
} else {
data->user_stack.data = (char *)array;
array += size / sizeof(*array);
data->user_stack.size = *array++;
}
}
data->weight = 0;
if (type & PERF_SAMPLE_WEIGHT) {
data->weight = *array;
array++;
}
data->data_src = PERF_MEM_DATA_SRC_NONE;
if (type & PERF_SAMPLE_DATA_SRC) {
data->data_src = *array;
array++;
}
return 0;
}
int perf_event__synthesize_sample(union perf_event *event, u64 type,
const struct perf_sample *sample,
bool swapped)
{
u64 *array;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
array = event->sample.array;
if (type & PERF_SAMPLE_IP) {
event->ip.ip = sample->ip;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val32[0] = sample->pid;
u.val32[1] = sample->tid;
if (swapped) {
/*
* Inverse of what is done in perf_evsel__parse_sample
*/
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
u.val64 = bswap_64(u.val64);
}
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_TIME) {
*array = sample->time;
array++;
}
if (type & PERF_SAMPLE_ADDR) {
*array = sample->addr;
array++;
}
if (type & PERF_SAMPLE_ID) {
*array = sample->id;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
*array = sample->stream_id;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val32[0] = sample->cpu;
if (swapped) {
/*
* Inverse of what is done in perf_evsel__parse_sample
*/
u.val32[0] = bswap_32(u.val32[0]);
u.val64 = bswap_64(u.val64);
}
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
*array = sample->period;
array++;
}
return 0;
}
struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
{
return pevent_find_field(evsel->tp_format, name);
}
void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
const char *name)
{
struct format_field *field = perf_evsel__field(evsel, name);
int offset;
if (!field)
return NULL;
offset = field->offset;
if (field->flags & FIELD_IS_DYNAMIC) {
offset = *(int *)(sample->raw_data + field->offset);
offset &= 0xffff;
}
return sample->raw_data + offset;
}
u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
const char *name)
{
struct format_field *field = perf_evsel__field(evsel, name);
void *ptr;
u64 value;
if (!field)
return 0;
ptr = sample->raw_data + field->offset;
switch (field->size) {
case 1:
return *(u8 *)ptr;
case 2:
value = *(u16 *)ptr;
break;
case 4:
value = *(u32 *)ptr;
break;
case 8:
value = *(u64 *)ptr;
break;
default:
return 0;
}
if (!evsel->needs_swap)
return value;
switch (field->size) {
case 2:
return bswap_16(value);
case 4:
return bswap_32(value);
case 8:
return bswap_64(value);
default:
return 0;
}
return 0;
}
static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
{
va_list args;
int ret = 0;
if (!*first) {
ret += fprintf(fp, ",");
} else {
ret += fprintf(fp, ":");
*first = false;
}
va_start(args, fmt);
ret += vfprintf(fp, fmt, args);
va_end(args);
return ret;
}
static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
{
if (value == 0)
return 0;
return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
}
#define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
struct bit_names {
int bit;
const char *name;
};
static int bits__fprintf(FILE *fp, const char *field, u64 value,
struct bit_names *bits, bool *first)
{
int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
bool first_bit = true;
do {
if (value & bits[i].bit) {
printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
first_bit = false;
}
} while (bits[++i].name != NULL);
return printed;
}
static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
struct bit_names bits[] = {
bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
{ .name = NULL, }
};
#undef bit_name
return bits__fprintf(fp, "sample_type", value, bits, first);
}
static int read_format__fprintf(FILE *fp, bool *first, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
struct bit_names bits[] = {
bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
bit_name(ID), bit_name(GROUP),
{ .name = NULL, }
};
#undef bit_name
return bits__fprintf(fp, "read_format", value, bits, first);
}
int perf_evsel__fprintf(struct perf_evsel *evsel,
struct perf_attr_details *details, FILE *fp)
{
bool first = true;
int printed = 0;
if (details->event_group) {
struct perf_evsel *pos;
if (!perf_evsel__is_group_leader(evsel))
return 0;
if (evsel->nr_members > 1)
printed += fprintf(fp, "%s{", evsel->group_name ?: "");
printed += fprintf(fp, "%s", perf_evsel__name(evsel));
for_each_group_member(pos, evsel)
printed += fprintf(fp, ",%s", perf_evsel__name(pos));
if (evsel->nr_members > 1)
printed += fprintf(fp, "}");
goto out;
}
printed += fprintf(fp, "%s", perf_evsel__name(evsel));
if (details->verbose || details->freq) {
printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
(u64)evsel->attr.sample_freq);
}
if (details->verbose) {
if_print(type);
if_print(config);
if_print(config1);
if_print(config2);
if_print(size);
printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
if (evsel->attr.read_format)
printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
if_print(disabled);
if_print(inherit);
if_print(pinned);
if_print(exclusive);
if_print(exclude_user);
if_print(exclude_kernel);
if_print(exclude_hv);
if_print(exclude_idle);
if_print(mmap);
if_print(comm);
if_print(freq);
if_print(inherit_stat);
if_print(enable_on_exec);
if_print(task);
if_print(watermark);
if_print(precise_ip);
if_print(mmap_data);
if_print(sample_id_all);
if_print(exclude_host);
if_print(exclude_guest);
if_print(__reserved_1);
if_print(wakeup_events);
if_print(bp_type);
if_print(branch_sample_type);
}
out:
fputc('\n', fp);
return ++printed;
}
bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
char *msg, size_t msgsize)
{
if ((err == ENOENT || err == ENXIO) &&
evsel->attr.type == PERF_TYPE_HARDWARE &&
evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
/*
* If it's cycles then fall back to hrtimer based
* cpu-clock-tick sw counter, which is always available even if
* no PMU support.
*
* PPC returns ENXIO until 2.6.37 (behavior changed with commit
* b0a873e).
*/
scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
evsel->attr.type = PERF_TYPE_SOFTWARE;
evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
free(evsel->name);
evsel->name = NULL;
return true;
}
return false;
}
int perf_evsel__open_strerror(struct perf_evsel *evsel,
struct perf_target *target,
int err, char *msg, size_t size)
{
switch (err) {
case EPERM:
case EACCES:
return scnprintf(msg, size,
"You may not have permission to collect %sstats.\n"
"Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
" -1 - Not paranoid at all\n"
" 0 - Disallow raw tracepoint access for unpriv\n"
" 1 - Disallow cpu events for unpriv\n"
" 2 - Disallow kernel profiling for unpriv",
target->system_wide ? "system-wide " : "");
case ENOENT:
return scnprintf(msg, size, "The %s event is not supported.",
perf_evsel__name(evsel));
case EMFILE:
return scnprintf(msg, size, "%s",
"Too many events are opened.\n"
"Try again after reducing the number of events.");
case ENODEV:
if (target->cpu_list)
return scnprintf(msg, size, "%s",
"No such device - did you specify an out-of-range profile CPU?\n");
break;
case EOPNOTSUPP:
if (evsel->attr.precise_ip)
return scnprintf(msg, size, "%s",
"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
if (evsel->attr.type == PERF_TYPE_HARDWARE)
return scnprintf(msg, size, "%s",
"No hardware sampling interrupt available.\n"
"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
#endif
break;
default:
break;
}
return scnprintf(msg, size,
"The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n"
"/bin/dmesg may provide additional information.\n"
"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
err, strerror(err), perf_evsel__name(evsel));
}