linux_old1/arch/x86/kernel/kprobes/core.c

1132 lines
33 KiB
C

/*
* Kernel Probes (KProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> adapted for x86_64 from i386.
* 2005-Mar Roland McGrath <roland@redhat.com>
* Fixed to handle %rip-relative addressing mode correctly.
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> added function-return probes.
* 2005-May Rusty Lynch <rusty.lynch@intel.com>
* Added function return probes functionality
* 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
* kprobe-booster and kretprobe-booster for i386.
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
* and kretprobe-booster for x86-64
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
* <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
* unified x86 kprobes code.
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <linux/preempt.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/kallsyms.h>
#include <linux/ftrace.h>
#include <asm/cacheflush.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/debugreg.h>
#include "common.h"
void jprobe_return_end(void);
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<< (row % 32))
/*
* Undefined/reserved opcodes, conditional jump, Opcode Extension
* Groups, and some special opcodes can not boost.
* This is non-const and volatile to keep gcc from statically
* optimizing it out, as variable_test_bit makes gcc think only
* *(unsigned long*) is used.
*/
static volatile u32 twobyte_is_boostable[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
/* ----------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W
struct kretprobe_blackpoint kretprobe_blacklist[] = {
{"__switch_to", }, /* This function switches only current task, but
doesn't switch kernel stack.*/
{NULL, NULL} /* Terminator */
};
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
static nokprobe_inline void
__synthesize_relative_insn(void *from, void *to, u8 op)
{
struct __arch_relative_insn {
u8 op;
s32 raddr;
} __packed *insn;
insn = (struct __arch_relative_insn *)from;
insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
insn->op = op;
}
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
void synthesize_reljump(void *from, void *to)
{
__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
}
NOKPROBE_SYMBOL(synthesize_reljump);
/* Insert a call instruction at address 'from', which calls address 'to'.*/
void synthesize_relcall(void *from, void *to)
{
__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
}
NOKPROBE_SYMBOL(synthesize_relcall);
/*
* Skip the prefixes of the instruction.
*/
static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
{
insn_attr_t attr;
attr = inat_get_opcode_attribute((insn_byte_t)*insn);
while (inat_is_legacy_prefix(attr)) {
insn++;
attr = inat_get_opcode_attribute((insn_byte_t)*insn);
}
#ifdef CONFIG_X86_64
if (inat_is_rex_prefix(attr))
insn++;
#endif
return insn;
}
NOKPROBE_SYMBOL(skip_prefixes);
/*
* Returns non-zero if opcode is boostable.
* RIP relative instructions are adjusted at copying time in 64 bits mode
*/
int can_boost(kprobe_opcode_t *opcodes)
{
kprobe_opcode_t opcode;
kprobe_opcode_t *orig_opcodes = opcodes;
if (search_exception_tables((unsigned long)opcodes))
return 0; /* Page fault may occur on this address. */
retry:
if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
return 0;
opcode = *(opcodes++);
/* 2nd-byte opcode */
if (opcode == 0x0f) {
if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
return 0;
return test_bit(*opcodes,
(unsigned long *)twobyte_is_boostable);
}
switch (opcode & 0xf0) {
#ifdef CONFIG_X86_64
case 0x40:
goto retry; /* REX prefix is boostable */
#endif
case 0x60:
if (0x63 < opcode && opcode < 0x67)
goto retry; /* prefixes */
/* can't boost Address-size override and bound */
return (opcode != 0x62 && opcode != 0x67);
case 0x70:
return 0; /* can't boost conditional jump */
case 0xc0:
/* can't boost software-interruptions */
return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
case 0xd0:
/* can boost AA* and XLAT */
return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
case 0xe0:
/* can boost in/out and absolute jmps */
return ((opcode & 0x04) || opcode == 0xea);
case 0xf0:
if ((opcode & 0x0c) == 0 && opcode != 0xf1)
goto retry; /* lock/rep(ne) prefix */
/* clear and set flags are boostable */
return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
default:
/* segment override prefixes are boostable */
if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
goto retry; /* prefixes */
/* CS override prefix and call are not boostable */
return (opcode != 0x2e && opcode != 0x9a);
}
}
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
{
struct kprobe *kp;
unsigned long faddr;
kp = get_kprobe((void *)addr);
faddr = ftrace_location(addr);
/*
* Addresses inside the ftrace location are refused by
* arch_check_ftrace_location(). Something went terribly wrong
* if such an address is checked here.
*/
if (WARN_ON(faddr && faddr != addr))
return 0UL;
/*
* Use the current code if it is not modified by Kprobe
* and it cannot be modified by ftrace.
*/
if (!kp && !faddr)
return addr;
/*
* Basically, kp->ainsn.insn has an original instruction.
* However, RIP-relative instruction can not do single-stepping
* at different place, __copy_instruction() tweaks the displacement of
* that instruction. In that case, we can't recover the instruction
* from the kp->ainsn.insn.
*
* On the other hand, in case on normal Kprobe, kp->opcode has a copy
* of the first byte of the probed instruction, which is overwritten
* by int3. And the instruction at kp->addr is not modified by kprobes
* except for the first byte, we can recover the original instruction
* from it and kp->opcode.
*
* In case of Kprobes using ftrace, we do not have a copy of
* the original instruction. In fact, the ftrace location might
* be modified at anytime and even could be in an inconsistent state.
* Fortunately, we know that the original code is the ideal 5-byte
* long NOP.
*/
memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
if (faddr)
memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
else
buf[0] = kp->opcode;
return (unsigned long)buf;
}
/*
* Recover the probed instruction at addr for further analysis.
* Caller must lock kprobes by kprobe_mutex, or disable preemption
* for preventing to release referencing kprobes.
* Returns zero if the instruction can not get recovered.
*/
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
{
unsigned long __addr;
__addr = __recover_optprobed_insn(buf, addr);
if (__addr != addr)
return __addr;
return __recover_probed_insn(buf, addr);
}
/* Check if paddr is at an instruction boundary */
static int can_probe(unsigned long paddr)
{
unsigned long addr, __addr, offset = 0;
struct insn insn;
kprobe_opcode_t buf[MAX_INSN_SIZE];
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
return 0;
/* Decode instructions */
addr = paddr - offset;
while (addr < paddr) {
/*
* Check if the instruction has been modified by another
* kprobe, in which case we replace the breakpoint by the
* original instruction in our buffer.
* Also, jump optimization will change the breakpoint to
* relative-jump. Since the relative-jump itself is
* normally used, we just go through if there is no kprobe.
*/
__addr = recover_probed_instruction(buf, addr);
if (!__addr)
return 0;
kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
insn_get_length(&insn);
/*
* Another debugging subsystem might insert this breakpoint.
* In that case, we can't recover it.
*/
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
return 0;
addr += insn.length;
}
return (addr == paddr);
}
/*
* Returns non-zero if opcode modifies the interrupt flag.
*/
static int is_IF_modifier(kprobe_opcode_t *insn)
{
/* Skip prefixes */
insn = skip_prefixes(insn);
switch (*insn) {
case 0xfa: /* cli */
case 0xfb: /* sti */
case 0xcf: /* iret/iretd */
case 0x9d: /* popf/popfd */
return 1;
}
return 0;
}
/*
* Copy an instruction and adjust the displacement if the instruction
* uses the %rip-relative addressing mode.
* If it does, Return the address of the 32-bit displacement word.
* If not, return null.
* Only applicable to 64-bit x86.
*/
int __copy_instruction(u8 *dest, u8 *src)
{
struct insn insn;
kprobe_opcode_t buf[MAX_INSN_SIZE];
int length;
unsigned long recovered_insn =
recover_probed_instruction(buf, (unsigned long)src);
if (!recovered_insn)
return 0;
kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
insn_get_length(&insn);
length = insn.length;
/* Another subsystem puts a breakpoint, failed to recover */
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
return 0;
memcpy(dest, insn.kaddr, length);
#ifdef CONFIG_X86_64
if (insn_rip_relative(&insn)) {
s64 newdisp;
u8 *disp;
kernel_insn_init(&insn, dest, length);
insn_get_displacement(&insn);
/*
* The copied instruction uses the %rip-relative addressing
* mode. Adjust the displacement for the difference between
* the original location of this instruction and the location
* of the copy that will actually be run. The tricky bit here
* is making sure that the sign extension happens correctly in
* this calculation, since we need a signed 32-bit result to
* be sign-extended to 64 bits when it's added to the %rip
* value and yield the same 64-bit result that the sign-
* extension of the original signed 32-bit displacement would
* have given.
*/
newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
if ((s64) (s32) newdisp != newdisp) {
pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
return 0;
}
disp = (u8 *) dest + insn_offset_displacement(&insn);
*(s32 *) disp = (s32) newdisp;
}
#endif
return length;
}
static int arch_copy_kprobe(struct kprobe *p)
{
int ret;
/* Copy an instruction with recovering if other optprobe modifies it.*/
ret = __copy_instruction(p->ainsn.insn, p->addr);
if (!ret)
return -EINVAL;
/*
* __copy_instruction can modify the displacement of the instruction,
* but it doesn't affect boostable check.
*/
if (can_boost(p->ainsn.insn))
p->ainsn.boostable = 0;
else
p->ainsn.boostable = -1;
/* Check whether the instruction modifies Interrupt Flag or not */
p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
/* Also, displacement change doesn't affect the first byte */
p->opcode = p->ainsn.insn[0];
return 0;
}
int arch_prepare_kprobe(struct kprobe *p)
{
if (alternatives_text_reserved(p->addr, p->addr))
return -EINVAL;
if (!can_probe((unsigned long)p->addr))
return -EILSEQ;
/* insn: must be on special executable page on x86. */
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
return -ENOMEM;
return arch_copy_kprobe(p);
}
void arch_arm_kprobe(struct kprobe *p)
{
text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
}
void arch_disarm_kprobe(struct kprobe *p)
{
text_poke(p->addr, &p->opcode, 1);
}
void arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
p->ainsn.insn = NULL;
}
}
static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
}
static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
}
static nokprobe_inline void
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_flags = kcb->kprobe_old_flags
= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
if (p->ainsn.if_modifier)
kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
}
static nokprobe_inline void clear_btf(void)
{
if (test_thread_flag(TIF_BLOCKSTEP)) {
unsigned long debugctl = get_debugctlmsr();
debugctl &= ~DEBUGCTLMSR_BTF;
update_debugctlmsr(debugctl);
}
}
static nokprobe_inline void restore_btf(void)
{
if (test_thread_flag(TIF_BLOCKSTEP)) {
unsigned long debugctl = get_debugctlmsr();
debugctl |= DEBUGCTLMSR_BTF;
update_debugctlmsr(debugctl);
}
}
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
{
unsigned long *sara = stack_addr(regs);
ri->ret_addr = (kprobe_opcode_t *) *sara;
/* Replace the return addr with trampoline addr */
*sara = (unsigned long) &kretprobe_trampoline;
}
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb, int reenter)
{
if (setup_detour_execution(p, regs, reenter))
return;
#if !defined(CONFIG_PREEMPT)
if (p->ainsn.boostable == 1 && !p->post_handler) {
/* Boost up -- we can execute copied instructions directly */
if (!reenter)
reset_current_kprobe();
/*
* Reentering boosted probe doesn't reset current_kprobe,
* nor set current_kprobe, because it doesn't use single
* stepping.
*/
regs->ip = (unsigned long)p->ainsn.insn;
preempt_enable_no_resched();
return;
}
#endif
if (reenter) {
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kcb->kprobe_status = KPROBE_REENTER;
} else
kcb->kprobe_status = KPROBE_HIT_SS;
/* Prepare real single stepping */
clear_btf();
regs->flags |= X86_EFLAGS_TF;
regs->flags &= ~X86_EFLAGS_IF;
/* single step inline if the instruction is an int3 */
if (p->opcode == BREAKPOINT_INSTRUCTION)
regs->ip = (unsigned long)p->addr;
else
regs->ip = (unsigned long)p->ainsn.insn;
}
NOKPROBE_SYMBOL(setup_singlestep);
/*
* We have reentered the kprobe_handler(), since another probe was hit while
* within the handler. We save the original kprobes variables and just single
* step on the instruction of the new probe without calling any user handlers.
*/
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
switch (kcb->kprobe_status) {
case KPROBE_HIT_SSDONE:
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SS:
kprobes_inc_nmissed_count(p);
setup_singlestep(p, regs, kcb, 1);
break;
case KPROBE_REENTER:
/* A probe has been hit in the codepath leading up to, or just
* after, single-stepping of a probed instruction. This entire
* codepath should strictly reside in .kprobes.text section.
* Raise a BUG or we'll continue in an endless reentering loop
* and eventually a stack overflow.
*/
printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
p->addr);
dump_kprobe(p);
BUG();
default:
/* impossible cases */
WARN_ON(1);
return 0;
}
return 1;
}
NOKPROBE_SYMBOL(reenter_kprobe);
/*
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
* remain disabled throughout this function.
*/
int kprobe_int3_handler(struct pt_regs *regs)
{
kprobe_opcode_t *addr;
struct kprobe *p;
struct kprobe_ctlblk *kcb;
if (user_mode(regs))
return 0;
addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
/*
* We don't want to be preempted for the entire
* duration of kprobe processing. We conditionally
* re-enable preemption at the end of this function,
* and also in reenter_kprobe() and setup_singlestep().
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
p = get_kprobe(addr);
if (p) {
if (kprobe_running()) {
if (reenter_kprobe(p, regs, kcb))
return 1;
} else {
set_current_kprobe(p, regs, kcb);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
* pre-handler and it returned non-zero, it prepped
* for calling the break_handler below on re-entry
* for jprobe processing, so get out doing nothing
* more here.
*/
if (!p->pre_handler || !p->pre_handler(p, regs))
setup_singlestep(p, regs, kcb, 0);
return 1;
}
} else if (*addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
* Back up over the (now missing) int3 and run
* the original instruction.
*/
regs->ip = (unsigned long)addr;
preempt_enable_no_resched();
return 1;
} else if (kprobe_running()) {
p = __this_cpu_read(current_kprobe);
if (p->break_handler && p->break_handler(p, regs)) {
if (!skip_singlestep(p, regs, kcb))
setup_singlestep(p, regs, kcb, 0);
return 1;
}
} /* else: not a kprobe fault; let the kernel handle it */
preempt_enable_no_resched();
return 0;
}
NOKPROBE_SYMBOL(kprobe_int3_handler);
/*
* When a retprobed function returns, this code saves registers and
* calls trampoline_handler() runs, which calls the kretprobe's handler.
*/
static void __used kretprobe_trampoline_holder(void)
{
asm volatile (
".global kretprobe_trampoline\n"
"kretprobe_trampoline: \n"
#ifdef CONFIG_X86_64
/* We don't bother saving the ss register */
" pushq %rsp\n"
" pushfq\n"
SAVE_REGS_STRING
" movq %rsp, %rdi\n"
" call trampoline_handler\n"
/* Replace saved sp with true return address. */
" movq %rax, 152(%rsp)\n"
RESTORE_REGS_STRING
" popfq\n"
#else
" pushf\n"
SAVE_REGS_STRING
" movl %esp, %eax\n"
" call trampoline_handler\n"
/* Move flags to cs */
" movl 56(%esp), %edx\n"
" movl %edx, 52(%esp)\n"
/* Replace saved flags with true return address. */
" movl %eax, 56(%esp)\n"
RESTORE_REGS_STRING
" popf\n"
#endif
" ret\n");
}
NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
NOKPROBE_SYMBOL(kretprobe_trampoline);
/*
* Called from kretprobe_trampoline
*/
__visible __used void *trampoline_handler(struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
kprobe_opcode_t *correct_ret_addr = NULL;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/* fixup registers */
#ifdef CONFIG_X86_64
regs->cs = __KERNEL_CS;
#else
regs->cs = __KERNEL_CS | get_kernel_rpl();
regs->gs = 0;
#endif
regs->ip = trampoline_address;
regs->orig_ax = ~0UL;
/*
* It is possible to have multiple instances associated with a given
* task either because multiple functions in the call path have
* return probes installed on them, and/or more than one
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always pushed into the head of the list
* - when multiple return probes are registered for the same
* function, the (chronologically) first instance's ret_addr
* will be the real return address, and all the rest will
* point to kretprobe_trampoline.
*/
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
correct_ret_addr = ri->ret_addr;
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (ri->rp && ri->rp->handler) {
__this_cpu_write(current_kprobe, &ri->rp->kp);
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ri->ret_addr = correct_ret_addr;
ri->rp->handler(ri, regs);
__this_cpu_write(current_kprobe, NULL);
}
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
return (void *)orig_ret_address;
}
NOKPROBE_SYMBOL(trampoline_handler);
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "int 3"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* interrupt. We have to fix up the stack as follows:
*
* 0) Except in the case of absolute or indirect jump or call instructions,
* the new ip is relative to the copied instruction. We need to make
* it relative to the original instruction.
*
* 1) If the single-stepped instruction was pushfl, then the TF and IF
* flags are set in the just-pushed flags, and may need to be cleared.
*
* 2) If the single-stepped instruction was a call, the return address
* that is atop the stack is the address following the copied instruction.
* We need to make it the address following the original instruction.
*
* If this is the first time we've single-stepped the instruction at
* this probepoint, and the instruction is boostable, boost it: add a
* jump instruction after the copied instruction, that jumps to the next
* instruction after the probepoint.
*/
static void resume_execution(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
unsigned long *tos = stack_addr(regs);
unsigned long copy_ip = (unsigned long)p->ainsn.insn;
unsigned long orig_ip = (unsigned long)p->addr;
kprobe_opcode_t *insn = p->ainsn.insn;
/* Skip prefixes */
insn = skip_prefixes(insn);
regs->flags &= ~X86_EFLAGS_TF;
switch (*insn) {
case 0x9c: /* pushfl */
*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
*tos |= kcb->kprobe_old_flags;
break;
case 0xc2: /* iret/ret/lret */
case 0xc3:
case 0xca:
case 0xcb:
case 0xcf:
case 0xea: /* jmp absolute -- ip is correct */
/* ip is already adjusted, no more changes required */
p->ainsn.boostable = 1;
goto no_change;
case 0xe8: /* call relative - Fix return addr */
*tos = orig_ip + (*tos - copy_ip);
break;
#ifdef CONFIG_X86_32
case 0x9a: /* call absolute -- same as call absolute, indirect */
*tos = orig_ip + (*tos - copy_ip);
goto no_change;
#endif
case 0xff:
if ((insn[1] & 0x30) == 0x10) {
/*
* call absolute, indirect
* Fix return addr; ip is correct.
* But this is not boostable
*/
*tos = orig_ip + (*tos - copy_ip);
goto no_change;
} else if (((insn[1] & 0x31) == 0x20) ||
((insn[1] & 0x31) == 0x21)) {
/*
* jmp near and far, absolute indirect
* ip is correct. And this is boostable
*/
p->ainsn.boostable = 1;
goto no_change;
}
default:
break;
}
if (p->ainsn.boostable == 0) {
if ((regs->ip > copy_ip) &&
(regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
/*
* These instructions can be executed directly if it
* jumps back to correct address.
*/
synthesize_reljump((void *)regs->ip,
(void *)orig_ip + (regs->ip - copy_ip));
p->ainsn.boostable = 1;
} else {
p->ainsn.boostable = -1;
}
}
regs->ip += orig_ip - copy_ip;
no_change:
restore_btf();
}
NOKPROBE_SYMBOL(resume_execution);
/*
* Interrupts are disabled on entry as trap1 is an interrupt gate and they
* remain disabled throughout this function.
*/
int kprobe_debug_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur)
return 0;
resume_execution(cur, regs, kcb);
regs->flags |= kcb->kprobe_saved_flags;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
/* Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
/*
* if somebody else is singlestepping across a probe point, flags
* will have TF set, in which case, continue the remaining processing
* of do_debug, as if this is not a probe hit.
*/
if (regs->flags & X86_EFLAGS_TF)
return 0;
return 1;
}
NOKPROBE_SYMBOL(kprobe_debug_handler);
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
/* This must happen on single-stepping */
WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
kcb->kprobe_status != KPROBE_REENTER);
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the ip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->ip = (unsigned long)cur->addr;
regs->flags |= kcb->kprobe_old_flags;
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable_no_resched();
} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
kcb->kprobe_status == KPROBE_HIT_SSDONE) {
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if (fixup_exception(regs))
return 1;
/*
* fixup routine could not handle it,
* Let do_page_fault() fix it.
*/
}
return 0;
}
NOKPROBE_SYMBOL(kprobe_fault_handler);
/*
* Wrapper routine for handling exceptions.
*/
int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
void *data)
{
struct die_args *args = data;
int ret = NOTIFY_DONE;
if (args->regs && user_mode(args->regs))
return ret;
if (val == DIE_GPF) {
/*
* To be potentially processing a kprobe fault and to
* trust the result from kprobe_running(), we have
* be non-preemptible.
*/
if (!preemptible() && kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
}
return ret;
}
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
unsigned long addr;
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
kcb->jprobe_saved_regs = *regs;
kcb->jprobe_saved_sp = stack_addr(regs);
addr = (unsigned long)(kcb->jprobe_saved_sp);
/*
* As Linus pointed out, gcc assumes that the callee
* owns the argument space and could overwrite it, e.g.
* tailcall optimization. So, to be absolutely safe
* we also save and restore enough stack bytes to cover
* the argument area.
*/
memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
MIN_STACK_SIZE(addr));
regs->flags &= ~X86_EFLAGS_IF;
trace_hardirqs_off();
regs->ip = (unsigned long)(jp->entry);
/*
* jprobes use jprobe_return() which skips the normal return
* path of the function, and this messes up the accounting of the
* function graph tracer to get messed up.
*
* Pause function graph tracing while performing the jprobe function.
*/
pause_graph_tracing();
return 1;
}
NOKPROBE_SYMBOL(setjmp_pre_handler);
void jprobe_return(void)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
asm volatile (
#ifdef CONFIG_X86_64
" xchg %%rbx,%%rsp \n"
#else
" xchgl %%ebx,%%esp \n"
#endif
" int3 \n"
" .globl jprobe_return_end\n"
" jprobe_return_end: \n"
" nop \n"::"b"
(kcb->jprobe_saved_sp):"memory");
}
NOKPROBE_SYMBOL(jprobe_return);
NOKPROBE_SYMBOL(jprobe_return_end);
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
u8 *addr = (u8 *) (regs->ip - 1);
struct jprobe *jp = container_of(p, struct jprobe, kp);
void *saved_sp = kcb->jprobe_saved_sp;
if ((addr > (u8 *) jprobe_return) &&
(addr < (u8 *) jprobe_return_end)) {
if (stack_addr(regs) != saved_sp) {
struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
printk(KERN_ERR
"current sp %p does not match saved sp %p\n",
stack_addr(regs), saved_sp);
printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
show_regs(saved_regs);
printk(KERN_ERR "Current registers\n");
show_regs(regs);
BUG();
}
/* It's OK to start function graph tracing again */
unpause_graph_tracing();
*regs = kcb->jprobe_saved_regs;
memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
preempt_enable_no_resched();
return 1;
}
return 0;
}
NOKPROBE_SYMBOL(longjmp_break_handler);
bool arch_within_kprobe_blacklist(unsigned long addr)
{
return (addr >= (unsigned long)__kprobes_text_start &&
addr < (unsigned long)__kprobes_text_end) ||
(addr >= (unsigned long)__entry_text_start &&
addr < (unsigned long)__entry_text_end);
}
int __init arch_init_kprobes(void)
{
return 0;
}
int arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}