linux_old1/drivers/hwmon/adm1026.c

1815 lines
59 KiB
C

/*
adm1026.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (C) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
Copyright (C) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
Chip details at:
<http://www.analog.com/UploadedFiles/Data_Sheets/779263102ADM1026_a.pdf>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(adm1026);
static int gpio_input[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(gpio_input, int, NULL, 0);
MODULE_PARM_DESC(gpio_input, "List of GPIO pins (0-16) to program as inputs");
module_param_array(gpio_output, int, NULL, 0);
MODULE_PARM_DESC(gpio_output, "List of GPIO pins (0-16) to program as "
"outputs");
module_param_array(gpio_inverted, int, NULL, 0);
MODULE_PARM_DESC(gpio_inverted, "List of GPIO pins (0-16) to program as "
"inverted");
module_param_array(gpio_normal, int, NULL, 0);
MODULE_PARM_DESC(gpio_normal, "List of GPIO pins (0-16) to program as "
"normal/non-inverted");
module_param_array(gpio_fan, int, NULL, 0);
MODULE_PARM_DESC(gpio_fan, "List of GPIO pins (0-7) to program as fan tachs");
/* Many ADM1026 constants specified below */
/* The ADM1026 registers */
#define ADM1026_REG_CONFIG1 0x00
#define CFG1_MONITOR 0x01
#define CFG1_INT_ENABLE 0x02
#define CFG1_INT_CLEAR 0x04
#define CFG1_AIN8_9 0x08
#define CFG1_THERM_HOT 0x10
#define CFG1_DAC_AFC 0x20
#define CFG1_PWM_AFC 0x40
#define CFG1_RESET 0x80
#define ADM1026_REG_CONFIG2 0x01
/* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */
#define ADM1026_REG_CONFIG3 0x07
#define CFG3_GPIO16_ENABLE 0x01
#define CFG3_CI_CLEAR 0x02
#define CFG3_VREF_250 0x04
#define CFG3_GPIO16_DIR 0x40
#define CFG3_GPIO16_POL 0x80
#define ADM1026_REG_E2CONFIG 0x13
#define E2CFG_READ 0x01
#define E2CFG_WRITE 0x02
#define E2CFG_ERASE 0x04
#define E2CFG_ROM 0x08
#define E2CFG_CLK_EXT 0x80
/* There are 10 general analog inputs and 7 dedicated inputs
* They are:
* 0 - 9 = AIN0 - AIN9
* 10 = Vbat
* 11 = 3.3V Standby
* 12 = 3.3V Main
* 13 = +5V
* 14 = Vccp (CPU core voltage)
* 15 = +12V
* 16 = -12V
*/
static u16 ADM1026_REG_IN[] = {
0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
0x36, 0x37, 0x27, 0x29, 0x26, 0x2a,
0x2b, 0x2c, 0x2d, 0x2e, 0x2f
};
static u16 ADM1026_REG_IN_MIN[] = {
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d,
0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a,
0x4b, 0x4c, 0x4d, 0x4e, 0x4f
};
static u16 ADM1026_REG_IN_MAX[] = {
0x50, 0x51, 0x52, 0x53, 0x54, 0x55,
0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42,
0x43, 0x44, 0x45, 0x46, 0x47
};
/* Temperatures are:
* 0 - Internal
* 1 - External 1
* 2 - External 2
*/
static u16 ADM1026_REG_TEMP[] = { 0x1f, 0x28, 0x29 };
static u16 ADM1026_REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 };
static u16 ADM1026_REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 };
static u16 ADM1026_REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 };
static u16 ADM1026_REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f };
static u16 ADM1026_REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f };
#define ADM1026_REG_FAN(nr) (0x38 + (nr))
#define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr))
#define ADM1026_REG_FAN_DIV_0_3 0x02
#define ADM1026_REG_FAN_DIV_4_7 0x03
#define ADM1026_REG_DAC 0x04
#define ADM1026_REG_PWM 0x05
#define ADM1026_REG_GPIO_CFG_0_3 0x08
#define ADM1026_REG_GPIO_CFG_4_7 0x09
#define ADM1026_REG_GPIO_CFG_8_11 0x0a
#define ADM1026_REG_GPIO_CFG_12_15 0x0b
/* CFG_16 in REG_CFG3 */
#define ADM1026_REG_GPIO_STATUS_0_7 0x24
#define ADM1026_REG_GPIO_STATUS_8_15 0x25
/* STATUS_16 in REG_STATUS4 */
#define ADM1026_REG_GPIO_MASK_0_7 0x1c
#define ADM1026_REG_GPIO_MASK_8_15 0x1d
/* MASK_16 in REG_MASK4 */
#define ADM1026_REG_COMPANY 0x16
#define ADM1026_REG_VERSTEP 0x17
/* These are the recognized values for the above regs */
#define ADM1026_COMPANY_ANALOG_DEV 0x41
#define ADM1026_VERSTEP_GENERIC 0x40
#define ADM1026_VERSTEP_ADM1026 0x44
#define ADM1026_REG_MASK1 0x18
#define ADM1026_REG_MASK2 0x19
#define ADM1026_REG_MASK3 0x1a
#define ADM1026_REG_MASK4 0x1b
#define ADM1026_REG_STATUS1 0x20
#define ADM1026_REG_STATUS2 0x21
#define ADM1026_REG_STATUS3 0x22
#define ADM1026_REG_STATUS4 0x23
#define ADM1026_FAN_ACTIVATION_TEMP_HYST -6
#define ADM1026_FAN_CONTROL_TEMP_RANGE 20
#define ADM1026_PWM_MAX 255
/* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled acording to built-in resistors. These are the
* voltages corresponding to 3/4 of full scale (192 or 0xc0)
* NOTE: The -12V input needs an additional factor to account
* for the Vref pullup resistor.
* NEG12_OFFSET = SCALE * Vref / V-192 - Vref
* = 13875 * 2.50 / 1.875 - 2500
* = 16000
*
* The values in this table are based on Table II, page 15 of the
* datasheet.
*/
static int adm1026_scaling[] = { /* .001 Volts */
2250, 2250, 2250, 2250, 2250, 2250,
1875, 1875, 1875, 1875, 3000, 3330,
3330, 4995, 2250, 12000, 13875
};
#define NEG12_OFFSET 16000
#define SCALE(val, from, to) (((val)*(to) + ((from)/2))/(from))
#define INS_TO_REG(n, val) (SENSORS_LIMIT(SCALE(val, adm1026_scaling[n], 192),\
0, 255))
#define INS_FROM_REG(n, val) (SCALE(val, 192, adm1026_scaling[n]))
/* FAN speed is measured using 22.5kHz clock and counts for 2 pulses
* and we assume a 2 pulse-per-rev fan tach signal
* 22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000
*/
#define FAN_TO_REG(val, div) ((val) <= 0 ? 0xff : \
SENSORS_LIMIT(1350000/((val)*(div)), 1, 254))
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1:(val) == 0xff ? 0 : \
1350000/((val)*(div)))
#define DIV_FROM_REG(val) (1<<(val))
#define DIV_TO_REG(val) ((val) >= 8 ? 3 : (val) >= 4 ? 2 : (val) >= 2 ? 1 : 0)
/* Temperature is reported in 1 degC increments */
#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
-127, 127))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define OFFSET_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
-127, 127))
#define OFFSET_FROM_REG(val) ((val) * 1000)
#define PWM_TO_REG(val) (SENSORS_LIMIT(val, 0, 255))
#define PWM_FROM_REG(val) (val)
#define PWM_MIN_TO_REG(val) ((val) & 0xf0)
#define PWM_MIN_FROM_REG(val) (((val) & 0xf0) + ((val) >> 4))
/* Analog output is a voltage, and scaled to millivolts. The datasheet
* indicates that the DAC could be used to drive the fans, but in our
* example board (Arima HDAMA) it isn't connected to the fans at all.
*/
#define DAC_TO_REG(val) (SENSORS_LIMIT(((((val)*255)+500)/2500), 0, 255))
#define DAC_FROM_REG(val) (((val)*2500)/255)
/* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* So, we keep the config data up to date in the cache
* when it is written and only sample it once every 5 *minutes*
*/
#define ADM1026_DATA_INTERVAL (1 * HZ)
#define ADM1026_CONFIG_INTERVAL (5 * 60 * HZ)
/* We allow for multiple chips in a single system.
*
* For each registered ADM1026, we need to keep state information
* at client->data. The adm1026_data structure is dynamically
* allocated, when a new client structure is allocated. */
struct pwm_data {
u8 pwm;
u8 enable;
u8 auto_pwm_min;
};
struct adm1026_data {
struct i2c_client client;
struct device *hwmon_dev;
struct mutex update_lock;
int valid; /* !=0 if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[17]; /* Register value */
u8 in_max[17]; /* Register value */
u8 in_min[17]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
s8 temp_tmin[3]; /* Register value */
s8 temp_crit[3]; /* Register value */
s8 temp_offset[3]; /* Register value */
u8 fan[8]; /* Register value */
u8 fan_min[8]; /* Register value */
u8 fan_div[8]; /* Decoded value */
struct pwm_data pwm1; /* Pwm control values */
int vid; /* Decoded value */
u8 vrm; /* VRM version */
u8 analog_out; /* Register value (DAC) */
long alarms; /* Register encoding, combined */
long alarm_mask; /* Register encoding, combined */
long gpio; /* Register encoding, combined */
long gpio_mask; /* Register encoding, combined */
u8 gpio_config[17]; /* Decoded value */
u8 config1; /* Register value */
u8 config2; /* Register value */
u8 config3; /* Register value */
};
static int adm1026_attach_adapter(struct i2c_adapter *adapter);
static int adm1026_detect(struct i2c_adapter *adapter, int address,
int kind);
static int adm1026_detach_client(struct i2c_client *client);
static int adm1026_read_value(struct i2c_client *client, u8 reg);
static int adm1026_write_value(struct i2c_client *client, u8 reg, int value);
static void adm1026_print_gpio(struct i2c_client *client);
static void adm1026_fixup_gpio(struct i2c_client *client);
static struct adm1026_data *adm1026_update_device(struct device *dev);
static void adm1026_init_client(struct i2c_client *client);
static struct i2c_driver adm1026_driver = {
.driver = {
.name = "adm1026",
},
.attach_adapter = adm1026_attach_adapter,
.detach_client = adm1026_detach_client,
};
static int adm1026_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON)) {
return 0;
}
return i2c_probe(adapter, &addr_data, adm1026_detect);
}
static int adm1026_read_value(struct i2c_client *client, u8 reg)
{
int res;
if (reg < 0x80) {
/* "RAM" locations */
res = i2c_smbus_read_byte_data(client, reg) & 0xff;
} else {
/* EEPROM, do nothing */
res = 0;
}
return res;
}
static int adm1026_write_value(struct i2c_client *client, u8 reg, int value)
{
int res;
if (reg < 0x80) {
/* "RAM" locations */
res = i2c_smbus_write_byte_data(client, reg, value);
} else {
/* EEPROM, do nothing */
res = 0;
}
return res;
}
static void adm1026_init_client(struct i2c_client *client)
{
int value, i;
struct adm1026_data *data = i2c_get_clientdata(client);
dev_dbg(&client->dev, "Initializing device\n");
/* Read chip config */
data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1);
data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2);
data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3);
/* Inform user of chip config */
dev_dbg(&client->dev, "ADM1026_REG_CONFIG1 is: 0x%02x\n",
data->config1);
if ((data->config1 & CFG1_MONITOR) == 0) {
dev_dbg(&client->dev, "Monitoring not currently "
"enabled.\n");
}
if (data->config1 & CFG1_INT_ENABLE) {
dev_dbg(&client->dev, "SMBALERT interrupts are "
"enabled.\n");
}
if (data->config1 & CFG1_AIN8_9) {
dev_dbg(&client->dev, "in8 and in9 enabled. "
"temp3 disabled.\n");
} else {
dev_dbg(&client->dev, "temp3 enabled. in8 and "
"in9 disabled.\n");
}
if (data->config1 & CFG1_THERM_HOT) {
dev_dbg(&client->dev, "Automatic THERM, PWM, "
"and temp limits enabled.\n");
}
if (data->config3 & CFG3_GPIO16_ENABLE) {
dev_dbg(&client->dev, "GPIO16 enabled. THERM "
"pin disabled.\n");
} else {
dev_dbg(&client->dev, "THERM pin enabled. "
"GPIO16 disabled.\n");
}
if (data->config3 & CFG3_VREF_250) {
dev_dbg(&client->dev, "Vref is 2.50 Volts.\n");
} else {
dev_dbg(&client->dev, "Vref is 1.82 Volts.\n");
}
/* Read and pick apart the existing GPIO configuration */
value = 0;
for (i = 0;i <= 15;++i) {
if ((i & 0x03) == 0) {
value = adm1026_read_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4);
}
data->gpio_config[i] = value & 0x03;
value >>= 2;
}
data->gpio_config[16] = (data->config3 >> 6) & 0x03;
/* ... and then print it */
adm1026_print_gpio(client);
/* If the user asks us to reprogram the GPIO config, then
* do it now.
*/
if (gpio_input[0] != -1 || gpio_output[0] != -1
|| gpio_inverted[0] != -1 || gpio_normal[0] != -1
|| gpio_fan[0] != -1) {
adm1026_fixup_gpio(client);
}
/* WE INTENTIONALLY make no changes to the limits,
* offsets, pwms, fans and zones. If they were
* configured, we don't want to mess with them.
* If they weren't, the default is 100% PWM, no
* control and will suffice until 'sensors -s'
* can be run by the user. We DO set the default
* value for pwm1.auto_pwm_min to its maximum
* so that enabling automatic pwm fan control
* without first setting a value for pwm1.auto_pwm_min
* will not result in potentially dangerous fan speed decrease.
*/
data->pwm1.auto_pwm_min=255;
/* Start monitoring */
value = adm1026_read_value(client, ADM1026_REG_CONFIG1);
/* Set MONITOR, clear interrupt acknowledge and s/w reset */
value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET);
dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
data->config1 = value;
adm1026_write_value(client, ADM1026_REG_CONFIG1, value);
/* initialize fan_div[] to hardware defaults */
value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) |
(adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8);
for (i = 0;i <= 7;++i) {
data->fan_div[i] = DIV_FROM_REG(value & 0x03);
value >>= 2;
}
}
static void adm1026_print_gpio(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
dev_dbg(&client->dev, "GPIO config is:");
for (i = 0;i <= 7;++i) {
if (data->config2 & (1 << i)) {
dev_dbg(&client->dev, "\t%sGP%s%d\n",
data->gpio_config[i] & 0x02 ? "" : "!",
data->gpio_config[i] & 0x01 ? "OUT" : "IN",
i);
} else {
dev_dbg(&client->dev, "\tFAN%d\n", i);
}
}
for (i = 8;i <= 15;++i) {
dev_dbg(&client->dev, "\t%sGP%s%d\n",
data->gpio_config[i] & 0x02 ? "" : "!",
data->gpio_config[i] & 0x01 ? "OUT" : "IN",
i);
}
if (data->config3 & CFG3_GPIO16_ENABLE) {
dev_dbg(&client->dev, "\t%sGP%s16\n",
data->gpio_config[16] & 0x02 ? "" : "!",
data->gpio_config[16] & 0x01 ? "OUT" : "IN");
} else {
/* GPIO16 is THERM */
dev_dbg(&client->dev, "\tTHERM\n");
}
}
static void adm1026_fixup_gpio(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
int value;
/* Make the changes requested. */
/* We may need to unlock/stop monitoring or soft-reset the
* chip before we can make changes. This hasn't been
* tested much. FIXME
*/
/* Make outputs */
for (i = 0;i <= 16;++i) {
if (gpio_output[i] >= 0 && gpio_output[i] <= 16) {
data->gpio_config[gpio_output[i]] |= 0x01;
}
/* if GPIO0-7 is output, it isn't a FAN tach */
if (gpio_output[i] >= 0 && gpio_output[i] <= 7) {
data->config2 |= 1 << gpio_output[i];
}
}
/* Input overrides output */
for (i = 0;i <= 16;++i) {
if (gpio_input[i] >= 0 && gpio_input[i] <= 16) {
data->gpio_config[gpio_input[i]] &= ~ 0x01;
}
/* if GPIO0-7 is input, it isn't a FAN tach */
if (gpio_input[i] >= 0 && gpio_input[i] <= 7) {
data->config2 |= 1 << gpio_input[i];
}
}
/* Inverted */
for (i = 0;i <= 16;++i) {
if (gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16) {
data->gpio_config[gpio_inverted[i]] &= ~ 0x02;
}
}
/* Normal overrides inverted */
for (i = 0;i <= 16;++i) {
if (gpio_normal[i] >= 0 && gpio_normal[i] <= 16) {
data->gpio_config[gpio_normal[i]] |= 0x02;
}
}
/* Fan overrides input and output */
for (i = 0;i <= 7;++i) {
if (gpio_fan[i] >= 0 && gpio_fan[i] <= 7) {
data->config2 &= ~(1 << gpio_fan[i]);
}
}
/* Write new configs to registers */
adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2);
data->config3 = (data->config3 & 0x3f)
| ((data->gpio_config[16] & 0x03) << 6);
adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3);
for (i = 15, value = 0;i >= 0;--i) {
value <<= 2;
value |= data->gpio_config[i] & 0x03;
if ((i & 0x03) == 0) {
adm1026_write_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4,
value);
value = 0;
}
}
/* Print the new config */
adm1026_print_gpio(client);
}
static struct adm1026_data *adm1026_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
long value, alarms, gpio;
mutex_lock(&data->update_lock);
if (!data->valid
|| time_after(jiffies, data->last_reading + ADM1026_DATA_INTERVAL)) {
/* Things that change quickly */
dev_dbg(&client->dev, "Reading sensor values\n");
for (i = 0;i <= 16;++i) {
data->in[i] =
adm1026_read_value(client, ADM1026_REG_IN[i]);
}
for (i = 0;i <= 7;++i) {
data->fan[i] =
adm1026_read_value(client, ADM1026_REG_FAN(i));
}
for (i = 0;i <= 2;++i) {
/* NOTE: temp[] is s8 and we assume 2's complement
* "conversion" in the assignment */
data->temp[i] =
adm1026_read_value(client, ADM1026_REG_TEMP[i]);
}
data->pwm1.pwm = adm1026_read_value(client,
ADM1026_REG_PWM);
data->analog_out = adm1026_read_value(client,
ADM1026_REG_DAC);
/* GPIO16 is MSbit of alarms, move it to gpio */
alarms = adm1026_read_value(client, ADM1026_REG_STATUS4);
gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */
alarms &= 0x7f;
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1);
data->alarms = alarms;
/* Read the GPIO values */
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_STATUS_8_15);
gpio <<= 8;
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_STATUS_0_7);
data->gpio = gpio;
data->last_reading = jiffies;
}; /* last_reading */
if (!data->valid ||
time_after(jiffies, data->last_config + ADM1026_CONFIG_INTERVAL)) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0;i <= 16;++i) {
data->in_min[i] = adm1026_read_value(client,
ADM1026_REG_IN_MIN[i]);
data->in_max[i] = adm1026_read_value(client,
ADM1026_REG_IN_MAX[i]);
}
value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3)
| (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7)
<< 8);
for (i = 0;i <= 7;++i) {
data->fan_min[i] = adm1026_read_value(client,
ADM1026_REG_FAN_MIN(i));
data->fan_div[i] = DIV_FROM_REG(value & 0x03);
value >>= 2;
}
for (i = 0; i <= 2; ++i) {
/* NOTE: temp_xxx[] are s8 and we assume 2's
* complement "conversion" in the assignment
*/
data->temp_min[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_MIN[i]);
data->temp_max[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_MAX[i]);
data->temp_tmin[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_TMIN[i]);
data->temp_crit[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_THERM[i]);
data->temp_offset[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_OFFSET[i]);
}
/* Read the STATUS/alarm masks */
alarms = adm1026_read_value(client, ADM1026_REG_MASK4);
gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */
alarms = (alarms & 0x7f) << 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK3);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK2);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK1);
data->alarm_mask = alarms;
/* Read the GPIO values */
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_MASK_8_15);
gpio <<= 8;
gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7);
data->gpio_mask = gpio;
/* Read various values from CONFIG1 */
data->config1 = adm1026_read_value(client,
ADM1026_REG_CONFIG1);
if (data->config1 & CFG1_PWM_AFC) {
data->pwm1.enable = 2;
data->pwm1.auto_pwm_min =
PWM_MIN_FROM_REG(data->pwm1.pwm);
}
/* Read the GPIO config */
data->config2 = adm1026_read_value(client,
ADM1026_REG_CONFIG2);
data->config3 = adm1026_read_value(client,
ADM1026_REG_CONFIG3);
data->gpio_config[16] = (data->config3 >> 6) & 0x03;
value = 0;
for (i = 0;i <= 15;++i) {
if ((i & 0x03) == 0) {
value = adm1026_read_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4);
}
data->gpio_config[i] = value & 0x03;
value >>= 2;
}
data->last_config = jiffies;
}; /* last_config */
dev_dbg(&client->dev, "Setting VID from GPIO11-15.\n");
data->vid = (data->gpio >> 11) & 0x1f;
data->valid = 1;
mutex_unlock(&data->update_lock);
return data;
}
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in[nr]));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
adm1026_write_value(client, ADM1026_REG_IN_MIN[nr], data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
adm1026_write_value(client, ADM1026_REG_IN_MAX[nr], data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define in_reg(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in, \
NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset);
in_reg(0);
in_reg(1);
in_reg(2);
in_reg(3);
in_reg(4);
in_reg(5);
in_reg(6);
in_reg(7);
in_reg(8);
in_reg(9);
in_reg(10);
in_reg(11);
in_reg(12);
in_reg(13);
in_reg(14);
in_reg(15);
static ssize_t show_in16(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in[16]) -
NEG12_OFFSET);
}
static ssize_t show_in16_min(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in_min[16])
- NEG12_OFFSET);
}
static ssize_t set_in16_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[16] = INS_TO_REG(16, val + NEG12_OFFSET);
adm1026_write_value(client, ADM1026_REG_IN_MIN[16], data->in_min[16]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in16_max(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in_max[16])
- NEG12_OFFSET);
}
static ssize_t set_in16_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[16] = INS_TO_REG(16, val+NEG12_OFFSET);
adm1026_write_value(client, ADM1026_REG_IN_MAX[16], data->in_max[16]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in16, NULL, 16);
static SENSOR_DEVICE_ATTR(in16_min, S_IRUGO | S_IWUSR, show_in16_min, set_in16_min, 16);
static SENSOR_DEVICE_ATTR(in16_max, S_IRUGO | S_IWUSR, show_in16_max, set_in16_max, 16);
/* Now add fan read/write functions */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, data->fan_div[nr]);
adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan, NULL, \
offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1);
fan_offset(1);
fan_offset(2);
fan_offset(3);
fan_offset(4);
fan_offset(5);
fan_offset(6);
fan_offset(7);
fan_offset(8);
/* Adjust fan_min to account for new fan divisor */
static void fixup_fan_min(struct device *dev, int fan, int old_div)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int new_min;
int new_div = data->fan_div[fan];
/* 0 and 0xff are special. Don't adjust them */
if (data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff) {
return;
}
new_min = data->fan_min[fan] * old_div / new_div;
new_min = SENSORS_LIMIT(new_min, 1, 254);
data->fan_min[fan] = new_min;
adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min);
}
/* Now add fan_div read/write functions */
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", data->fan_div[nr]);
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val, orig_div, new_div, shift;
val = simple_strtol(buf, NULL, 10);
new_div = DIV_TO_REG(val);
if (new_div == 0) {
return -EINVAL;
}
mutex_lock(&data->update_lock);
orig_div = data->fan_div[nr];
data->fan_div[nr] = DIV_FROM_REG(new_div);
if (nr < 4) { /* 0 <= nr < 4 */
shift = 2 * nr;
adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3,
((DIV_TO_REG(orig_div) & (~(0x03 << shift))) |
(new_div << shift)));
} else { /* 3 < nr < 8 */
shift = 2 * (nr - 4);
adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7,
((DIV_TO_REG(orig_div) & (~(0x03 << (2 * shift)))) |
(new_div << shift)));
}
if (data->fan_div[nr] != orig_div) {
fixup_fan_min(dev, nr, orig_div);
}
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset_div(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1);
fan_offset_div(1);
fan_offset_div(2);
fan_offset_div(3);
fan_offset_div(4);
fan_offset_div(5);
fan_offset_div(6);
fan_offset_div(7);
fan_offset_div(8);
/* Temps */
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_MIN[nr],
data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_MAX[nr],
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp, \
NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1);
temp_reg(1);
temp_reg(2);
temp_reg(3);
static ssize_t show_temp_offset(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_offset[nr]));
}
static ssize_t set_temp_offset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET[nr],
data->temp_offset[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_offset_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
show_temp_offset, set_temp_offset, offset - 1);
temp_offset_reg(1);
temp_offset_reg(2);
temp_offset_reg(3);
static ssize_t show_temp_auto_point1_temp_hyst(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(
ADM1026_FAN_ACTIVATION_TEMP_HYST + data->temp_tmin[nr]));
}
static ssize_t show_temp_auto_point2_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_tmin[nr] +
ADM1026_FAN_CONTROL_TEMP_RANGE));
}
static ssize_t show_temp_auto_point1_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_tmin[nr]));
}
static ssize_t set_temp_auto_point1_temp(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_tmin[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_TMIN[nr],
data->temp_tmin[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_auto_point(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp, \
S_IRUGO | S_IWUSR, show_temp_auto_point1_temp, \
set_temp_auto_point1_temp, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp_hyst, S_IRUGO,\
show_temp_auto_point1_temp_hyst, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point2_temp, S_IRUGO, \
show_temp_auto_point2_temp, NULL, offset - 1);
temp_auto_point(1);
temp_auto_point(2);
temp_auto_point(3);
static ssize_t show_temp_crit_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", (data->config1 & CFG1_THERM_HOT) >> 4);
}
static ssize_t set_temp_crit_enable(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
if ((val == 1) || (val==0)) {
mutex_lock(&data->update_lock);
data->config1 = (data->config1 & ~CFG1_THERM_HOT) | (val << 4);
adm1026_write_value(client, ADM1026_REG_CONFIG1,
data->config1);
mutex_unlock(&data->update_lock);
}
return count;
}
#define temp_crit_enable(offset) \
static DEVICE_ATTR(temp##offset##_crit_enable, S_IRUGO | S_IWUSR, \
show_temp_crit_enable, set_temp_crit_enable);
temp_crit_enable(1);
temp_crit_enable(2);
temp_crit_enable(3);
static ssize_t show_temp_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_crit[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_THERM[nr],
data->temp_crit[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_crit_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
show_temp_crit, set_temp_crit, offset - 1);
temp_crit_reg(1);
temp_crit_reg(2);
temp_crit_reg(3);
static ssize_t show_analog_out_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", DAC_FROM_REG(data->analog_out));
}
static ssize_t set_analog_out_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->analog_out = DAC_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_DAC, data->analog_out);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(analog_out, S_IRUGO | S_IWUSR, show_analog_out_reg,
set_analog_out_reg);
static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid & 0x3f, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1026_data *data = dev_get_drvdata(dev);
data->vrm = simple_strtol(buf, NULL, 10);
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%ld\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
int bitnr = to_sensor_dev_attr(attr)->index;
return sprintf(buf, "%ld\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in11_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in12_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in13_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(in14_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(in15_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(in16_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 13);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 14);
static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 15);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 16);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 17);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 18);
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 19);
static SENSOR_DEVICE_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 20);
static SENSOR_DEVICE_ATTR(fan6_alarm, S_IRUGO, show_alarm, NULL, 21);
static SENSOR_DEVICE_ATTR(fan7_alarm, S_IRUGO, show_alarm, NULL, 22);
static SENSOR_DEVICE_ATTR(fan8_alarm, S_IRUGO, show_alarm, NULL, 23);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 24);
static SENSOR_DEVICE_ATTR(in10_alarm, S_IRUGO, show_alarm, NULL, 25);
static SENSOR_DEVICE_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 26);
static ssize_t show_alarm_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%ld\n", data->alarm_mask);
}
static ssize_t set_alarm_mask(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
unsigned long mask;
mutex_lock(&data->update_lock);
data->alarm_mask = val & 0x7fffffff;
mask = data->alarm_mask
| (data->gpio_mask & 0x10000 ? 0x80000000 : 0);
adm1026_write_value(client, ADM1026_REG_MASK1,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK2,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK3,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK4,
mask & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(alarm_mask, S_IRUGO | S_IWUSR, show_alarm_mask,
set_alarm_mask);
static ssize_t show_gpio(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%ld\n", data->gpio);
}
static ssize_t set_gpio(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
long gpio;
mutex_lock(&data->update_lock);
data->gpio = val & 0x1ffff;
gpio = data->gpio;
adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_0_7, gpio & 0xff);
gpio >>= 8;
adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_8_15, gpio & 0xff);
gpio = ((gpio >> 1) & 0x80) | (data->alarms >> 24 & 0x7f);
adm1026_write_value(client, ADM1026_REG_STATUS4, gpio & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(gpio, S_IRUGO | S_IWUSR, show_gpio, set_gpio);
static ssize_t show_gpio_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%ld\n", data->gpio_mask);
}
static ssize_t set_gpio_mask(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
long mask;
mutex_lock(&data->update_lock);
data->gpio_mask = val & 0x1ffff;
mask = data->gpio_mask;
adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7, mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15, mask & 0xff);
mask = ((mask >> 1) & 0x80) | (data->alarm_mask >> 24 & 0x7f);
adm1026_write_value(client, ADM1026_REG_MASK1, mask & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(gpio_mask, S_IRUGO | S_IWUSR, show_gpio_mask, set_gpio_mask);
static ssize_t show_pwm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm1.pwm));
}
static ssize_t set_pwm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
if (data->pwm1.enable == 1) {
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm1.pwm = PWM_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
mutex_unlock(&data->update_lock);
}
return count;
}
static ssize_t show_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1.auto_pwm_min);
}
static ssize_t set_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm1.auto_pwm_min = SENSORS_LIMIT(val, 0, 255);
if (data->pwm1.enable == 2) { /* apply immediately */
data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
PWM_MIN_TO_REG(data->pwm1.auto_pwm_min));
adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_auto_pwm_max(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", ADM1026_PWM_MAX);
}
static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1.enable);
}
static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
int old_enable;
if ((val >= 0) && (val < 3)) {
mutex_lock(&data->update_lock);
old_enable = data->pwm1.enable;
data->pwm1.enable = val;
data->config1 = (data->config1 & ~CFG1_PWM_AFC)
| ((val == 2) ? CFG1_PWM_AFC : 0);
adm1026_write_value(client, ADM1026_REG_CONFIG1,
data->config1);
if (val == 2) { /* apply pwm1_auto_pwm_min to pwm1 */
data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
PWM_MIN_TO_REG(data->pwm1.auto_pwm_min));
adm1026_write_value(client, ADM1026_REG_PWM,
data->pwm1.pwm);
} else if (!((old_enable == 1) && (val == 1))) {
/* set pwm to safe value */
data->pwm1.pwm = 255;
adm1026_write_value(client, ADM1026_REG_PWM,
data->pwm1.pwm);
}
mutex_unlock(&data->update_lock);
}
return count;
}
/* enable PWM fan control */
static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm3, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(pwm2_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(pwm3_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(temp1_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp2_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp3_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp1_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp2_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp3_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static struct attribute *adm1026_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in10_alarm.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_in11_max.dev_attr.attr,
&sensor_dev_attr_in11_min.dev_attr.attr,
&sensor_dev_attr_in11_alarm.dev_attr.attr,
&sensor_dev_attr_in12_input.dev_attr.attr,
&sensor_dev_attr_in12_max.dev_attr.attr,
&sensor_dev_attr_in12_min.dev_attr.attr,
&sensor_dev_attr_in12_alarm.dev_attr.attr,
&sensor_dev_attr_in13_input.dev_attr.attr,
&sensor_dev_attr_in13_max.dev_attr.attr,
&sensor_dev_attr_in13_min.dev_attr.attr,
&sensor_dev_attr_in13_alarm.dev_attr.attr,
&sensor_dev_attr_in14_input.dev_attr.attr,
&sensor_dev_attr_in14_max.dev_attr.attr,
&sensor_dev_attr_in14_min.dev_attr.attr,
&sensor_dev_attr_in14_alarm.dev_attr.attr,
&sensor_dev_attr_in15_input.dev_attr.attr,
&sensor_dev_attr_in15_max.dev_attr.attr,
&sensor_dev_attr_in15_min.dev_attr.attr,
&sensor_dev_attr_in15_alarm.dev_attr.attr,
&sensor_dev_attr_in16_input.dev_attr.attr,
&sensor_dev_attr_in16_max.dev_attr.attr,
&sensor_dev_attr_in16_min.dev_attr.attr,
&sensor_dev_attr_in16_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_div.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan4_div.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan5_div.dev_attr.attr,
&sensor_dev_attr_fan5_min.dev_attr.attr,
&sensor_dev_attr_fan5_alarm.dev_attr.attr,
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan6_div.dev_attr.attr,
&sensor_dev_attr_fan6_min.dev_attr.attr,
&sensor_dev_attr_fan6_alarm.dev_attr.attr,
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan7_div.dev_attr.attr,
&sensor_dev_attr_fan7_min.dev_attr.attr,
&sensor_dev_attr_fan7_alarm.dev_attr.attr,
&sensor_dev_attr_fan8_input.dev_attr.attr,
&sensor_dev_attr_fan8_div.dev_attr.attr,
&sensor_dev_attr_fan8_min.dev_attr.attr,
&sensor_dev_attr_fan8_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&dev_attr_temp1_crit_enable.attr,
&dev_attr_temp2_crit_enable.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
&dev_attr_alarms.attr,
&dev_attr_alarm_mask.attr,
&dev_attr_gpio.attr,
&dev_attr_gpio_mask.attr,
&dev_attr_pwm1.attr,
&dev_attr_pwm2.attr,
&dev_attr_pwm3.attr,
&dev_attr_pwm1_enable.attr,
&dev_attr_pwm2_enable.attr,
&dev_attr_pwm3_enable.attr,
&dev_attr_temp1_auto_point1_pwm.attr,
&dev_attr_temp2_auto_point1_pwm.attr,
&dev_attr_temp1_auto_point2_pwm.attr,
&dev_attr_temp2_auto_point2_pwm.attr,
&dev_attr_analog_out.attr,
NULL
};
static const struct attribute_group adm1026_group = {
.attrs = adm1026_attributes,
};
static struct attribute *adm1026_attributes_temp3[] = {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&dev_attr_temp3_crit_enable.attr,
&dev_attr_temp3_auto_point1_pwm.attr,
&dev_attr_temp3_auto_point2_pwm.attr,
NULL
};
static const struct attribute_group adm1026_group_temp3 = {
.attrs = adm1026_attributes_temp3,
};
static struct attribute *adm1026_attributes_in8_9[] = {
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in8_alarm.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in9_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1026_group_in8_9 = {
.attrs = adm1026_attributes_in8_9,
};
static int adm1026_detect(struct i2c_adapter *adapter, int address,
int kind)
{
int company, verstep;
struct i2c_client *client;
struct adm1026_data *data;
int err = 0;
const char *type_name = "";
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
/* We need to be able to do byte I/O */
goto exit;
};
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access adm1026_{read,write}_value. */
if (!(data = kzalloc(sizeof(struct adm1026_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
client = &data->client;
i2c_set_clientdata(client, data);
client->addr = address;
client->adapter = adapter;
client->driver = &adm1026_driver;
/* Now, we do the remaining detection. */
company = adm1026_read_value(client, ADM1026_REG_COMPANY);
verstep = adm1026_read_value(client, ADM1026_REG_VERSTEP);
dev_dbg(&client->dev, "Detecting device at %d,0x%02x with"
" COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
i2c_adapter_id(client->adapter), client->addr,
company, verstep);
/* If auto-detecting, Determine the chip type. */
if (kind <= 0) {
dev_dbg(&client->dev, "Autodetecting device at %d,0x%02x "
"...\n", i2c_adapter_id(adapter), address);
if (company == ADM1026_COMPANY_ANALOG_DEV
&& verstep == ADM1026_VERSTEP_ADM1026) {
kind = adm1026;
} else if (company == ADM1026_COMPANY_ANALOG_DEV
&& (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
dev_err(&adapter->dev, ": Unrecognized stepping "
"0x%02x. Defaulting to ADM1026.\n", verstep);
kind = adm1026;
} else if ((verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
dev_err(&adapter->dev, ": Found version/stepping "
"0x%02x. Assuming generic ADM1026.\n",
verstep);
kind = any_chip;
} else {
dev_dbg(&client->dev, ": Autodetection "
"failed\n");
/* Not an ADM1026 ... */
if (kind == 0) { /* User used force=x,y */
dev_err(&adapter->dev, "Generic ADM1026 not "
"found at %d,0x%02x. Try "
"force_adm1026.\n",
i2c_adapter_id(adapter), address);
}
goto exitfree;
}
}
/* Fill in the chip specific driver values */
switch (kind) {
case any_chip :
type_name = "adm1026";
break;
case adm1026 :
type_name = "adm1026";
break;
default :
dev_err(&adapter->dev, ": Internal error, invalid "
"kind (%d)!\n", kind);
err = -EFAULT;
goto exitfree;
}
strlcpy(client->name, type_name, I2C_NAME_SIZE);
/* Fill in the remaining client fields */
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(client)))
goto exitfree;
/* Set the VRM version */
data->vrm = vid_which_vrm();
/* Initialize the ADM1026 chip */
adm1026_init_client(client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&client->dev.kobj, &adm1026_group)))
goto exitdetach;
if (data->config1 & CFG1_AIN8_9)
err = sysfs_create_group(&client->dev.kobj,
&adm1026_group_in8_9);
else
err = sysfs_create_group(&client->dev.kobj,
&adm1026_group_temp3);
if (err)
goto exitremove;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exitremove;
}
return 0;
/* Error out and cleanup code */
exitremove:
sysfs_remove_group(&client->dev.kobj, &adm1026_group);
if (data->config1 & CFG1_AIN8_9)
sysfs_remove_group(&client->dev.kobj, &adm1026_group_in8_9);
else
sysfs_remove_group(&client->dev.kobj, &adm1026_group_temp3);
exitdetach:
i2c_detach_client(client);
exitfree:
kfree(data);
exit:
return err;
}
static int adm1026_detach_client(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &adm1026_group);
if (data->config1 & CFG1_AIN8_9)
sysfs_remove_group(&client->dev.kobj, &adm1026_group_in8_9);
else
sysfs_remove_group(&client->dev.kobj, &adm1026_group_temp3);
i2c_detach_client(client);
kfree(data);
return 0;
}
static int __init sm_adm1026_init(void)
{
return i2c_add_driver(&adm1026_driver);
}
static void __exit sm_adm1026_exit(void)
{
i2c_del_driver(&adm1026_driver);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
"Justin Thiessen <jthiessen@penguincomputing.com>");
MODULE_DESCRIPTION("ADM1026 driver");
module_init(sm_adm1026_init);
module_exit(sm_adm1026_exit);