1065 lines
27 KiB
C
1065 lines
27 KiB
C
/*
|
|
* linux/drivers/clocksource/arm_arch_timer.c
|
|
*
|
|
* Copyright (C) 2011 ARM Ltd.
|
|
* All Rights Reserved
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "arm_arch_timer: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include <asm/arch_timer.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include <clocksource/arm_arch_timer.h>
|
|
|
|
#define CNTTIDR 0x08
|
|
#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
|
|
|
|
#define CNTACR(n) (0x40 + ((n) * 4))
|
|
#define CNTACR_RPCT BIT(0)
|
|
#define CNTACR_RVCT BIT(1)
|
|
#define CNTACR_RFRQ BIT(2)
|
|
#define CNTACR_RVOFF BIT(3)
|
|
#define CNTACR_RWVT BIT(4)
|
|
#define CNTACR_RWPT BIT(5)
|
|
|
|
#define CNTVCT_LO 0x08
|
|
#define CNTVCT_HI 0x0c
|
|
#define CNTFRQ 0x10
|
|
#define CNTP_TVAL 0x28
|
|
#define CNTP_CTL 0x2c
|
|
#define CNTV_TVAL 0x38
|
|
#define CNTV_CTL 0x3c
|
|
|
|
#define ARCH_CP15_TIMER BIT(0)
|
|
#define ARCH_MEM_TIMER BIT(1)
|
|
static unsigned arch_timers_present __initdata;
|
|
|
|
static void __iomem *arch_counter_base;
|
|
|
|
struct arch_timer {
|
|
void __iomem *base;
|
|
struct clock_event_device evt;
|
|
};
|
|
|
|
#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
|
|
|
|
static u32 arch_timer_rate;
|
|
|
|
enum ppi_nr {
|
|
PHYS_SECURE_PPI,
|
|
PHYS_NONSECURE_PPI,
|
|
VIRT_PPI,
|
|
HYP_PPI,
|
|
MAX_TIMER_PPI
|
|
};
|
|
|
|
static int arch_timer_ppi[MAX_TIMER_PPI];
|
|
|
|
static struct clock_event_device __percpu *arch_timer_evt;
|
|
|
|
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
|
|
static bool arch_timer_c3stop;
|
|
static bool arch_timer_mem_use_virtual;
|
|
static bool arch_counter_suspend_stop;
|
|
|
|
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
|
|
|
|
static int __init early_evtstrm_cfg(char *buf)
|
|
{
|
|
return strtobool(buf, &evtstrm_enable);
|
|
}
|
|
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
|
|
|
|
/*
|
|
* Architected system timer support.
|
|
*/
|
|
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
|
|
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
|
|
|
|
static int fsl_a008585_enable = -1;
|
|
|
|
static int __init early_fsl_a008585_cfg(char *buf)
|
|
{
|
|
int ret;
|
|
bool val;
|
|
|
|
ret = strtobool(buf, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fsl_a008585_enable = val;
|
|
return 0;
|
|
}
|
|
early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
|
|
|
|
u32 __fsl_a008585_read_cntp_tval_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntp_tval_el0);
|
|
}
|
|
|
|
u32 __fsl_a008585_read_cntv_tval_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntv_tval_el0);
|
|
}
|
|
|
|
u64 __fsl_a008585_read_cntvct_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntvct_el0);
|
|
}
|
|
EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
|
|
#endif /* CONFIG_FSL_ERRATUM_A008585 */
|
|
|
|
static __always_inline
|
|
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
|
|
struct clock_event_device *clk)
|
|
{
|
|
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
writel_relaxed(val, timer->base + CNTP_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
writel_relaxed(val, timer->base + CNTP_TVAL);
|
|
break;
|
|
}
|
|
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
writel_relaxed(val, timer->base + CNTV_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
writel_relaxed(val, timer->base + CNTV_TVAL);
|
|
break;
|
|
}
|
|
} else {
|
|
arch_timer_reg_write_cp15(access, reg, val);
|
|
}
|
|
}
|
|
|
|
static __always_inline
|
|
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
|
|
struct clock_event_device *clk)
|
|
{
|
|
u32 val;
|
|
|
|
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
val = readl_relaxed(timer->base + CNTP_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
val = readl_relaxed(timer->base + CNTP_TVAL);
|
|
break;
|
|
}
|
|
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
val = readl_relaxed(timer->base + CNTV_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
val = readl_relaxed(timer->base + CNTV_TVAL);
|
|
break;
|
|
}
|
|
} else {
|
|
val = arch_timer_reg_read_cp15(access, reg);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static __always_inline irqreturn_t timer_handler(const int access,
|
|
struct clock_event_device *evt)
|
|
{
|
|
unsigned long ctrl;
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
|
|
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
|
|
ctrl |= ARCH_TIMER_CTRL_IT_MASK;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
|
|
evt->event_handler(evt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
|
|
}
|
|
|
|
static __always_inline int timer_shutdown(const int access,
|
|
struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
|
|
}
|
|
|
|
static __always_inline void set_next_event(const int access, unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl |= ARCH_TIMER_CTRL_ENABLE;
|
|
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
}
|
|
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
static __always_inline void fsl_a008585_set_next_event(const int access,
|
|
unsigned long evt, struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
u64 cval = evt + arch_counter_get_cntvct();
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl |= ARCH_TIMER_CTRL_ENABLE;
|
|
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
|
|
|
|
if (access == ARCH_TIMER_PHYS_ACCESS)
|
|
write_sysreg(cval, cntp_cval_el0);
|
|
else if (access == ARCH_TIMER_VIRT_ACCESS)
|
|
write_sysreg(cval, cntv_cval_el0);
|
|
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
}
|
|
|
|
static int fsl_a008585_set_next_event_virt(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_a008585_set_next_event_phys(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_FSL_ERRATUM_A008585 */
|
|
|
|
static int arch_timer_set_next_event_virt(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_phys(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_phys_mem(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_a008585_set_sne(struct clock_event_device *clk)
|
|
{
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
|
|
return;
|
|
|
|
if (arch_timer_uses_ppi == VIRT_PPI)
|
|
clk->set_next_event = fsl_a008585_set_next_event_virt;
|
|
else
|
|
clk->set_next_event = fsl_a008585_set_next_event_phys;
|
|
#endif
|
|
}
|
|
|
|
static void __arch_timer_setup(unsigned type,
|
|
struct clock_event_device *clk)
|
|
{
|
|
clk->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
|
|
if (type == ARCH_CP15_TIMER) {
|
|
if (arch_timer_c3stop)
|
|
clk->features |= CLOCK_EVT_FEAT_C3STOP;
|
|
clk->name = "arch_sys_timer";
|
|
clk->rating = 450;
|
|
clk->cpumask = cpumask_of(smp_processor_id());
|
|
clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
|
|
switch (arch_timer_uses_ppi) {
|
|
case VIRT_PPI:
|
|
clk->set_state_shutdown = arch_timer_shutdown_virt;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
|
|
clk->set_next_event = arch_timer_set_next_event_virt;
|
|
break;
|
|
case PHYS_SECURE_PPI:
|
|
case PHYS_NONSECURE_PPI:
|
|
case HYP_PPI:
|
|
clk->set_state_shutdown = arch_timer_shutdown_phys;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
|
|
clk->set_next_event = arch_timer_set_next_event_phys;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
fsl_a008585_set_sne(clk);
|
|
} else {
|
|
clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
|
|
clk->name = "arch_mem_timer";
|
|
clk->rating = 400;
|
|
clk->cpumask = cpu_all_mask;
|
|
if (arch_timer_mem_use_virtual) {
|
|
clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
|
|
clk->set_next_event =
|
|
arch_timer_set_next_event_virt_mem;
|
|
} else {
|
|
clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
|
|
clk->set_next_event =
|
|
arch_timer_set_next_event_phys_mem;
|
|
}
|
|
}
|
|
|
|
clk->set_state_shutdown(clk);
|
|
|
|
clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
|
|
}
|
|
|
|
static void arch_timer_evtstrm_enable(int divider)
|
|
{
|
|
u32 cntkctl = arch_timer_get_cntkctl();
|
|
|
|
cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
|
|
/* Set the divider and enable virtual event stream */
|
|
cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
|
|
| ARCH_TIMER_VIRT_EVT_EN;
|
|
arch_timer_set_cntkctl(cntkctl);
|
|
elf_hwcap |= HWCAP_EVTSTRM;
|
|
#ifdef CONFIG_COMPAT
|
|
compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
|
|
#endif
|
|
}
|
|
|
|
static void arch_timer_configure_evtstream(void)
|
|
{
|
|
int evt_stream_div, pos;
|
|
|
|
/* Find the closest power of two to the divisor */
|
|
evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
|
|
pos = fls(evt_stream_div);
|
|
if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
|
|
pos--;
|
|
/* enable event stream */
|
|
arch_timer_evtstrm_enable(min(pos, 15));
|
|
}
|
|
|
|
static void arch_counter_set_user_access(void)
|
|
{
|
|
u32 cntkctl = arch_timer_get_cntkctl();
|
|
|
|
/* Disable user access to the timers and the physical counter */
|
|
/* Also disable virtual event stream */
|
|
cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
|
|
| ARCH_TIMER_USR_VT_ACCESS_EN
|
|
| ARCH_TIMER_VIRT_EVT_EN
|
|
| ARCH_TIMER_USR_PCT_ACCESS_EN);
|
|
|
|
/* Enable user access to the virtual counter */
|
|
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
|
|
|
|
arch_timer_set_cntkctl(cntkctl);
|
|
}
|
|
|
|
static bool arch_timer_has_nonsecure_ppi(void)
|
|
{
|
|
return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
|
|
arch_timer_ppi[PHYS_NONSECURE_PPI]);
|
|
}
|
|
|
|
static u32 check_ppi_trigger(int irq)
|
|
{
|
|
u32 flags = irq_get_trigger_type(irq);
|
|
|
|
if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
|
|
pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
|
|
pr_warn("WARNING: Please fix your firmware\n");
|
|
flags = IRQF_TRIGGER_LOW;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static int arch_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
|
|
u32 flags;
|
|
|
|
__arch_timer_setup(ARCH_CP15_TIMER, clk);
|
|
|
|
flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
|
|
enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
|
|
|
|
if (arch_timer_has_nonsecure_ppi()) {
|
|
flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
|
|
enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
|
|
}
|
|
|
|
arch_counter_set_user_access();
|
|
if (evtstrm_enable)
|
|
arch_timer_configure_evtstream();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
|
|
{
|
|
/* Who has more than one independent system counter? */
|
|
if (arch_timer_rate)
|
|
return;
|
|
|
|
/*
|
|
* Try to determine the frequency from the device tree or CNTFRQ,
|
|
* if ACPI is enabled, get the frequency from CNTFRQ ONLY.
|
|
*/
|
|
if (!acpi_disabled ||
|
|
of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
|
|
if (cntbase)
|
|
arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
|
|
else
|
|
arch_timer_rate = arch_timer_get_cntfrq();
|
|
}
|
|
|
|
/* Check the timer frequency. */
|
|
if (arch_timer_rate == 0)
|
|
pr_warn("Architected timer frequency not available\n");
|
|
}
|
|
|
|
static void arch_timer_banner(unsigned type)
|
|
{
|
|
pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
|
|
type & ARCH_CP15_TIMER ? "cp15" : "",
|
|
type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
|
|
type & ARCH_MEM_TIMER ? "mmio" : "",
|
|
(unsigned long)arch_timer_rate / 1000000,
|
|
(unsigned long)(arch_timer_rate / 10000) % 100,
|
|
type & ARCH_CP15_TIMER ?
|
|
(arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
|
|
"",
|
|
type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
|
|
type & ARCH_MEM_TIMER ?
|
|
arch_timer_mem_use_virtual ? "virt" : "phys" :
|
|
"");
|
|
}
|
|
|
|
u32 arch_timer_get_rate(void)
|
|
{
|
|
return arch_timer_rate;
|
|
}
|
|
|
|
static u64 arch_counter_get_cntvct_mem(void)
|
|
{
|
|
u32 vct_lo, vct_hi, tmp_hi;
|
|
|
|
do {
|
|
vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
|
|
vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
|
|
tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
|
|
} while (vct_hi != tmp_hi);
|
|
|
|
return ((u64) vct_hi << 32) | vct_lo;
|
|
}
|
|
|
|
/*
|
|
* Default to cp15 based access because arm64 uses this function for
|
|
* sched_clock() before DT is probed and the cp15 method is guaranteed
|
|
* to exist on arm64. arm doesn't use this before DT is probed so even
|
|
* if we don't have the cp15 accessors we won't have a problem.
|
|
*/
|
|
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
|
|
|
|
static cycle_t arch_counter_read(struct clocksource *cs)
|
|
{
|
|
return arch_timer_read_counter();
|
|
}
|
|
|
|
static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
|
|
{
|
|
return arch_timer_read_counter();
|
|
}
|
|
|
|
static struct clocksource clocksource_counter = {
|
|
.name = "arch_sys_counter",
|
|
.rating = 400,
|
|
.read = arch_counter_read,
|
|
.mask = CLOCKSOURCE_MASK(56),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static struct cyclecounter cyclecounter = {
|
|
.read = arch_counter_read_cc,
|
|
.mask = CLOCKSOURCE_MASK(56),
|
|
};
|
|
|
|
static struct arch_timer_kvm_info arch_timer_kvm_info;
|
|
|
|
struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
|
|
{
|
|
return &arch_timer_kvm_info;
|
|
}
|
|
|
|
static void __init arch_counter_register(unsigned type)
|
|
{
|
|
u64 start_count;
|
|
|
|
/* Register the CP15 based counter if we have one */
|
|
if (type & ARCH_CP15_TIMER) {
|
|
if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
|
|
arch_timer_read_counter = arch_counter_get_cntvct;
|
|
else
|
|
arch_timer_read_counter = arch_counter_get_cntpct;
|
|
|
|
clocksource_counter.archdata.vdso_direct = true;
|
|
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
/*
|
|
* Don't use the vdso fastpath if errata require using
|
|
* the out-of-line counter accessor.
|
|
*/
|
|
if (static_branch_unlikely(&arch_timer_read_ool_enabled))
|
|
clocksource_counter.archdata.vdso_direct = false;
|
|
#endif
|
|
} else {
|
|
arch_timer_read_counter = arch_counter_get_cntvct_mem;
|
|
}
|
|
|
|
if (!arch_counter_suspend_stop)
|
|
clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
|
|
start_count = arch_timer_read_counter();
|
|
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
|
|
cyclecounter.mult = clocksource_counter.mult;
|
|
cyclecounter.shift = clocksource_counter.shift;
|
|
timecounter_init(&arch_timer_kvm_info.timecounter,
|
|
&cyclecounter, start_count);
|
|
|
|
/* 56 bits minimum, so we assume worst case rollover */
|
|
sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
|
|
}
|
|
|
|
static void arch_timer_stop(struct clock_event_device *clk)
|
|
{
|
|
pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
|
|
clk->irq, smp_processor_id());
|
|
|
|
disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
|
|
if (arch_timer_has_nonsecure_ppi())
|
|
disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
|
|
|
|
clk->set_state_shutdown(clk);
|
|
}
|
|
|
|
static int arch_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
|
|
|
|
arch_timer_stop(clk);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static unsigned int saved_cntkctl;
|
|
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
if (action == CPU_PM_ENTER)
|
|
saved_cntkctl = arch_timer_get_cntkctl();
|
|
else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
|
|
arch_timer_set_cntkctl(saved_cntkctl);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block arch_timer_cpu_pm_notifier = {
|
|
.notifier_call = arch_timer_cpu_pm_notify,
|
|
};
|
|
|
|
static int __init arch_timer_cpu_pm_init(void)
|
|
{
|
|
return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
|
|
}
|
|
|
|
static void __init arch_timer_cpu_pm_deinit(void)
|
|
{
|
|
WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
|
|
}
|
|
|
|
#else
|
|
static int __init arch_timer_cpu_pm_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __init arch_timer_cpu_pm_deinit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __init arch_timer_register(void)
|
|
{
|
|
int err;
|
|
int ppi;
|
|
|
|
arch_timer_evt = alloc_percpu(struct clock_event_device);
|
|
if (!arch_timer_evt) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ppi = arch_timer_ppi[arch_timer_uses_ppi];
|
|
switch (arch_timer_uses_ppi) {
|
|
case VIRT_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_virt,
|
|
"arch_timer", arch_timer_evt);
|
|
break;
|
|
case PHYS_SECURE_PPI:
|
|
case PHYS_NONSECURE_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
|
|
ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
if (err)
|
|
free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
|
|
arch_timer_evt);
|
|
}
|
|
break;
|
|
case HYP_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (err) {
|
|
pr_err("arch_timer: can't register interrupt %d (%d)\n",
|
|
ppi, err);
|
|
goto out_free;
|
|
}
|
|
|
|
err = arch_timer_cpu_pm_init();
|
|
if (err)
|
|
goto out_unreg_notify;
|
|
|
|
|
|
/* Register and immediately configure the timer on the boot CPU */
|
|
err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
|
|
"AP_ARM_ARCH_TIMER_STARTING",
|
|
arch_timer_starting_cpu, arch_timer_dying_cpu);
|
|
if (err)
|
|
goto out_unreg_cpupm;
|
|
return 0;
|
|
|
|
out_unreg_cpupm:
|
|
arch_timer_cpu_pm_deinit();
|
|
|
|
out_unreg_notify:
|
|
free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
|
|
if (arch_timer_has_nonsecure_ppi())
|
|
free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
|
|
arch_timer_evt);
|
|
|
|
out_free:
|
|
free_percpu(arch_timer_evt);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
|
|
{
|
|
int ret;
|
|
irq_handler_t func;
|
|
struct arch_timer *t;
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
t->base = base;
|
|
t->evt.irq = irq;
|
|
__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
|
|
|
|
if (arch_timer_mem_use_virtual)
|
|
func = arch_timer_handler_virt_mem;
|
|
else
|
|
func = arch_timer_handler_phys_mem;
|
|
|
|
ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
|
|
if (ret) {
|
|
pr_err("arch_timer: Failed to request mem timer irq\n");
|
|
kfree(t);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id arch_timer_of_match[] __initconst = {
|
|
{ .compatible = "arm,armv7-timer", },
|
|
{ .compatible = "arm,armv8-timer", },
|
|
{},
|
|
};
|
|
|
|
static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
|
|
{ .compatible = "arm,armv7-timer-mem", },
|
|
{},
|
|
};
|
|
|
|
static bool __init
|
|
arch_timer_needs_probing(int type, const struct of_device_id *matches)
|
|
{
|
|
struct device_node *dn;
|
|
bool needs_probing = false;
|
|
|
|
dn = of_find_matching_node(NULL, matches);
|
|
if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
|
|
needs_probing = true;
|
|
of_node_put(dn);
|
|
|
|
return needs_probing;
|
|
}
|
|
|
|
static int __init arch_timer_common_init(void)
|
|
{
|
|
unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
|
|
|
|
/* Wait until both nodes are probed if we have two timers */
|
|
if ((arch_timers_present & mask) != mask) {
|
|
if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
|
|
return 0;
|
|
if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
|
|
return 0;
|
|
}
|
|
|
|
arch_timer_banner(arch_timers_present);
|
|
arch_counter_register(arch_timers_present);
|
|
return arch_timer_arch_init();
|
|
}
|
|
|
|
static int __init arch_timer_init(void)
|
|
{
|
|
int ret;
|
|
/*
|
|
* If HYP mode is available, we know that the physical timer
|
|
* has been configured to be accessible from PL1. Use it, so
|
|
* that a guest can use the virtual timer instead.
|
|
*
|
|
* If no interrupt provided for virtual timer, we'll have to
|
|
* stick to the physical timer. It'd better be accessible...
|
|
*
|
|
* On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
|
|
* accesses to CNTP_*_EL1 registers are silently redirected to
|
|
* their CNTHP_*_EL2 counterparts, and use a different PPI
|
|
* number.
|
|
*/
|
|
if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
|
|
bool has_ppi;
|
|
|
|
if (is_kernel_in_hyp_mode()) {
|
|
arch_timer_uses_ppi = HYP_PPI;
|
|
has_ppi = !!arch_timer_ppi[HYP_PPI];
|
|
} else {
|
|
arch_timer_uses_ppi = PHYS_SECURE_PPI;
|
|
has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
|
|
!!arch_timer_ppi[PHYS_NONSECURE_PPI]);
|
|
}
|
|
|
|
if (!has_ppi) {
|
|
pr_warn("arch_timer: No interrupt available, giving up\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = arch_timer_register();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arch_timer_common_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init arch_timer_of_init(struct device_node *np)
|
|
{
|
|
int i;
|
|
|
|
if (arch_timers_present & ARCH_CP15_TIMER) {
|
|
pr_warn("arch_timer: multiple nodes in dt, skipping\n");
|
|
return 0;
|
|
}
|
|
|
|
arch_timers_present |= ARCH_CP15_TIMER;
|
|
for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
|
|
arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
|
|
|
|
arch_timer_detect_rate(NULL, np);
|
|
|
|
arch_timer_c3stop = !of_property_read_bool(np, "always-on");
|
|
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
if (fsl_a008585_enable < 0)
|
|
fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
|
|
if (fsl_a008585_enable) {
|
|
static_branch_enable(&arch_timer_read_ool_enabled);
|
|
pr_info("Enabling workaround for FSL erratum A-008585\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we cannot rely on firmware initializing the timer registers then
|
|
* we should use the physical timers instead.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM) &&
|
|
of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
|
|
arch_timer_uses_ppi = PHYS_SECURE_PPI;
|
|
|
|
/* On some systems, the counter stops ticking when in suspend. */
|
|
arch_counter_suspend_stop = of_property_read_bool(np,
|
|
"arm,no-tick-in-suspend");
|
|
|
|
return arch_timer_init();
|
|
}
|
|
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
|
|
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
|
|
|
|
static int __init arch_timer_mem_init(struct device_node *np)
|
|
{
|
|
struct device_node *frame, *best_frame = NULL;
|
|
void __iomem *cntctlbase, *base;
|
|
unsigned int irq, ret = -EINVAL;
|
|
u32 cnttidr;
|
|
|
|
arch_timers_present |= ARCH_MEM_TIMER;
|
|
cntctlbase = of_iomap(np, 0);
|
|
if (!cntctlbase) {
|
|
pr_err("arch_timer: Can't find CNTCTLBase\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
|
|
|
|
/*
|
|
* Try to find a virtual capable frame. Otherwise fall back to a
|
|
* physical capable frame.
|
|
*/
|
|
for_each_available_child_of_node(np, frame) {
|
|
int n;
|
|
u32 cntacr;
|
|
|
|
if (of_property_read_u32(frame, "frame-number", &n)) {
|
|
pr_err("arch_timer: Missing frame-number\n");
|
|
of_node_put(frame);
|
|
goto out;
|
|
}
|
|
|
|
/* Try enabling everything, and see what sticks */
|
|
cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
|
|
CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
|
|
writel_relaxed(cntacr, cntctlbase + CNTACR(n));
|
|
cntacr = readl_relaxed(cntctlbase + CNTACR(n));
|
|
|
|
if ((cnttidr & CNTTIDR_VIRT(n)) &&
|
|
!(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
|
|
of_node_put(best_frame);
|
|
best_frame = frame;
|
|
arch_timer_mem_use_virtual = true;
|
|
break;
|
|
}
|
|
|
|
if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
|
|
continue;
|
|
|
|
of_node_put(best_frame);
|
|
best_frame = of_node_get(frame);
|
|
}
|
|
|
|
ret= -ENXIO;
|
|
base = arch_counter_base = of_io_request_and_map(best_frame, 0,
|
|
"arch_mem_timer");
|
|
if (IS_ERR(base)) {
|
|
pr_err("arch_timer: Can't map frame's registers\n");
|
|
goto out;
|
|
}
|
|
|
|
if (arch_timer_mem_use_virtual)
|
|
irq = irq_of_parse_and_map(best_frame, 1);
|
|
else
|
|
irq = irq_of_parse_and_map(best_frame, 0);
|
|
|
|
ret = -EINVAL;
|
|
if (!irq) {
|
|
pr_err("arch_timer: Frame missing %s irq",
|
|
arch_timer_mem_use_virtual ? "virt" : "phys");
|
|
goto out;
|
|
}
|
|
|
|
arch_timer_detect_rate(base, np);
|
|
ret = arch_timer_mem_register(base, irq);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return arch_timer_common_init();
|
|
out:
|
|
iounmap(cntctlbase);
|
|
of_node_put(best_frame);
|
|
return ret;
|
|
}
|
|
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
|
|
arch_timer_mem_init);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
|
|
{
|
|
int trigger, polarity;
|
|
|
|
if (!interrupt)
|
|
return 0;
|
|
|
|
trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
|
|
: ACPI_LEVEL_SENSITIVE;
|
|
|
|
polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
|
|
: ACPI_ACTIVE_HIGH;
|
|
|
|
return acpi_register_gsi(NULL, interrupt, trigger, polarity);
|
|
}
|
|
|
|
/* Initialize per-processor generic timer */
|
|
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
|
|
{
|
|
struct acpi_table_gtdt *gtdt;
|
|
|
|
if (arch_timers_present & ARCH_CP15_TIMER) {
|
|
pr_warn("arch_timer: already initialized, skipping\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
gtdt = container_of(table, struct acpi_table_gtdt, header);
|
|
|
|
arch_timers_present |= ARCH_CP15_TIMER;
|
|
|
|
arch_timer_ppi[PHYS_SECURE_PPI] =
|
|
map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
|
|
gtdt->secure_el1_flags);
|
|
|
|
arch_timer_ppi[PHYS_NONSECURE_PPI] =
|
|
map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
|
|
gtdt->non_secure_el1_flags);
|
|
|
|
arch_timer_ppi[VIRT_PPI] =
|
|
map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
|
|
gtdt->virtual_timer_flags);
|
|
|
|
arch_timer_ppi[HYP_PPI] =
|
|
map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
|
|
gtdt->non_secure_el2_flags);
|
|
|
|
/* Get the frequency from CNTFRQ */
|
|
arch_timer_detect_rate(NULL, NULL);
|
|
|
|
/* Always-on capability */
|
|
arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
|
|
|
|
arch_timer_init();
|
|
return 0;
|
|
}
|
|
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
|
|
#endif
|